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Enhanced photo‑fenton 
and photoelectrochemical activities 
in nitrogen doped brownmillerite 
 KBiFe2O5
Durga Sankar Vavilapalli1*, Santosh Behara2, Raja Gopal Peri3, Tiju Thomas2, 
B. Muthuraaman3, M. S. Ramachandra Rao4 & Shubra Singh1*

Visible‑light‑driven photo‑fenton‑like catalytic activity and photoelectrochemical (PEC) performance 
of nitrogen‑doped brownmillerite  KBiFe2O5 (KBFO) are investigated. The effective optical bandgap 
of KBFO reduces from 1.67 to 1.60 eV post N‑doping, enabling both enhancement of visible light 
absorption and photoactivity. The photo‑fenton activity of KBFO and N‑doped KBFO samples were 
analysed by degrading effluents like Methylene Blue (MB), Bisphenol‑A (BPA) and antibiotics such 
as Norfloxacin (NOX) and Doxycycline (DOX). 20 mmol of Nitrogen‑doped KBFO (20N‑KBFO) exhibits 
enhanced catalytic activity while degrading MB. 20N‑KBFO sample is further tested for degradation 
of Bisphenol‑A and antibiotics in the presence of  H2O2 and chelating agent L‑cysteine. Under optimum 
conditions, MB, BPA, and NOX, and DOX are degraded by 99.5% (0.042  min‑1), 83% (0.016  min‑1), 
72% (0.011  min‑1) and 95% (0.026  min‑1) of its initial concentration respectively. Photocurrent 
density of 20N‑KBFO improves to 8.83 mA/cm2 from 4.31 mA/cm2 for pure KBFO. Photocatalytic 
and photoelectrochemical (PEC) properties of N‑doped KBFO make it a promising candidate for 
energy and environmental applications.

Contaminants like organic dyes, synthetic compounds and antibiotics in wastewater are severe threat to environ-
ment and human  health1–3. Several organic dyes have been used as a human and veterinary medicine for some of 
therapeutic and diagnostic  procedures4,5. However, traces of dyes in water bodies is hazardous to environment 
and difficult to degrade using conventional water treatment methods due to aromatic structures, hydrophilic 
nature and high stability against light, and temperature  etc6. Another organic effluent Bisphenol-A [2,2-bis 
(4-hydroxyphenyl) propane] or BPA widely found in wastewaters, is a raw material for manufacturing epoxy 
and polycarbonate plastics. Recent studies reveal that BPA has severe effects on the human health. , effects 
reproductive systems and causes fertility  problems7,8. It is one of the emerging pollutants, contaminating water 
bodies in recent times due to excessive plastic usage. This synthetic compound is difficult to degrade in natural 
conditions due to its complex structure. Various techniques such as physical adsorption, biodegradation and 
other chemical remediation are tested for degradation of BPA, which are expensive as well as take longer time to 
 degrade9. Hence, economical and energy efficient strategies are required to treat these kinds of effluents. Water 
pollutants like pharmaceutically active compounds such as antibiotics are also being extensively used in recent 
times for the treatment of infectious diseases and for enhancing agricultural  production10,11. Their extensive 
use, incomplete biodegradability, partial removal using conventional water treatment plants lead to environ-
mental contamination. Some of such antibiotics are Norfloxacin (NOX) and Doxycycline (DOX). Norfloxacin 
is a Fluoroquinolone antibiotic widely used for respiratory and bacterial  infections12. Doxycycline is one of the 
widely used antibiotic, which is used to treat some of the most hazardous diseases such as plague and  anthrax13. 
These fluoroquinolone and Doxycycline antibiotics are widely detected in surface water and other environmen-
tal matrixes due to incomplete treatment of these antibiotics in water treatment plants. A prolonged exposure 
to these antibiotics in aquatic environment can lead to antibiotic  resistance14,15. As a result, pathogens become 
increasingly resistant to the drugs and hence it is a severe threat to the both aquatic and terrestrial organisms. 
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These toxic, non-biodegradable pollutants are difficult to degrade/mineralize under natural conditions. Since 
last two decades many physical, chemical and biological techniques which have been developed to degrade/
remove these contaminants from wastewater have disadvantages like high cost, longer time of degradation, and 
other pollutant parameters. Among various advanced oxidation processes (AOPs), photocatalytic and photo-
fenton-like catalytic processes have attracted remarkable attention for the decomposition of organic effluents and 
antibiotics in efficient ways, the processes being both economically feasible and energy efficient.

The photocatalytic process involves redox reactions initiated by electron(e−)-hole  (h+) pairs (generated by 
catalyst under light irradiation)16 leading to the formation of active species. These active species are responsible 
for degradation of  pollutants17. The photo-fenton-like catalytic process is a conventional fenton process in pres-
ence of light irradiation. In fenton process, •OH radicals can be generated by reaction between Fe-based catalysts 
 (Fe3O4,  BiFeO3) and fenton reagent (eg:  H2O2). The additional light irradiation on fenton-process leads to genera-
tion of more •OH  radicals18. The synergistic effect between the photocatalysis and fenton reactions enhances the 
photodegradation of  effluents19–21. Fe-based visible light active photocatalysts could be promising candidates for 
photo-fenton-like catalytic processes, which can absorb 45–50% of sunlight from entire solar spectrum, whereas 
ultraviolet (UV) light active photocatalysts absorbs only 3–5% of  sunlight22. Hence it is necessary to develop 
visible light-driven photo-fenton-like catalysts for wastewater treatment applications.

Perovskite  BiFeO3(BFO) is one of the well-known multifunctional material, which has a wide range of appli-
cations due to its promising magnetic, electrical and optical properties. In recent times BFO and its composites 
have been widely explored as photocatalyst for water splitting and wastewater treatment as  well23–28. The bandgap 
of BFO (2.1–2.6 eV) falls under visible range of solar spectrum and has a theoretical photo conversion efficiency 
about 7%29,30. If the bandgap can be reduced further, it is expected that the efficiency can be enhanced improv-
ing the photodegradation performance of catalyst. Another strategy to improve the catalytic activity is creation 
of substantial oxygen vacancies in perovskite structures, acting as active sites for catalytic  activity31–33. In this 
regard, materials with a combination of low bandgap and oxygen deficiency, such as, oxygen deficient perovs-
kite structured/brownmillerites can be  explored34,35. Brownmillerite oxides such as  Ca2Fe2O5,  Ca2Mn2O5 and 
 Sr2Fe2O5 show better catalytic activity over perovskite compounds due to substantial oxygen vacancies in their 
 structure36–39.  KBiFe2O5 (KBFO) is one such recent brownmillerite compound which has smaller bandgap than 
BFO and showed promising photocatalytic activity to degrade organic  effluents40. Nitrogen doping in KBFO 
can further enhance the photo-fenton activity due to presence of Fe-Nx active sites and reduced bandgap over 
bare KBFO.

Recent studies have revealed that addition of chelating agent L-Cysteine to Fe-based catalysts  Fe3O4 and 
 BiFeO3 enhances the catalytic  activity41,42. L-Cysteine is a sulfur-containing amino acid with three functional 
groups (-SH, -NH2, and -COOH)42. Reaction of L-Cysteine with  O2

- is reported to generate  H2O2, which acts as 
the fenton reagent. Hence, N-KBFO/H2O2/L-Cysteine system could well be proposed as a promising candidate 
for efficient photo-fenton activity and decomposition of organic effluents and  antibiotics41,42.

In this work N-KBFO with various N-doping concentrations has been synthesized by sol–gel method. The 
structural, morphology, optical properties of as prepared samples were analyzed and detailed photo-fenton 
activity of N-KBFO in the presence of L-Cysteine and  H2O2 were investigated by degrading organic effluents 
Methylene blue (MB), Bisphenol-A (BPA) and antibiotics Norfloxacin (NOX) and Doxycycline (DOX) under 
visible light. The active species responsible for degradation of organic effluents are investigated using active 
species trapping experiment. The photoactivity of this N-KBFO and KBFO was also demonstrated using pho-
toelectrochemical studies.

Experimental section
Preparation of N‑KBFO. N-KBFO compound was prepared by conventional sol–gel technique. 
 KNO3(0.1 M), Bi(NO3)3.5H2O (0.1 M) and Fe(NO3)3.9H2O (0.2 M) are taken as precursors and dissolved in 
50 ml of Ethylene glycol under vigorous stirring. Here, Melamine  (C3H6N6) was used as the source to incorpo-
rate Nitrogen. Various concentrations of melamine are dissolved in 50 ml of precursor solution, (N concentra-
tion in the precursor solution: 0, 5, 10, 15, 20, 25 and 30 mmol). After 10 h of constant stirring, the suspension 
was dried in an oven for 24 h at 100 °C. Finally, the dry mass was calcined at 700 °C for 6 h in a  furnace40,42. The 
obtained brownish powder was labeled as KBFO, 5N-KBFO, 10N-KBFO, 15N-KBFO, 20N-KBFO, 25N-KBFO 
and 30N-KBFO based on its respective nitrogen doping concentration. The N-doping concentrations of KBFO, 
5N-KBFO, 10N-KBFO, 15N-KBFO, 20N-KBFO, 25N-KBFO and 30N-KBFO were estimated to be 0, 0.81, 1.63, 
2.16, 2.75, 3.12 and 3.63 At. % using energy dispersive X-ray spectroscopy (EDS).

Characterization. The structural, morphological, optical, and spectroscopic studies on as prepared samples 
have been performed by an X-ray diffractometer (Bruker S4 pioneer) and high resolution scanning electron 
microscope (FESEM, TESCAN-MIRA3), UV − visible spectrophotometer (JASCO, V-730), and an X-ray photo-
electron spectroscopy (SPECS GmbH, Germany) respectively.

Photocatalytic degradation of MB, BPA, NOX and DOX. Photo-fenton reaction experiments were 
performed to evaluate the photocatalytic performance of as synthesized N-doped KBFO by degrading organic 
effluents Methylene blue MB (20 ppm), BPA (30 ppm) and antibiotics such as Norfloxacin(NOX, 30 ppm)and 
Doxycycline (DOX, 30 ppm) under visible light (100 mW/cm2, AM1.5, Xenon lamp at 25 °C). Initially aqueous 
MB dye solution was loaded with 50 mg/L of as synthesized catalysts and photodegradation experiments were 
performed to find an optimum N doping for better performance. Photo-fenton reactions were then performed 
by adding optimum content of  H2O2 and organic ligand (L-cysteine) to effluent-catalyst suspension. Prior to 
light exposure, the catalyst-effluent solutions were ultrasonicated under dark for 20 min to ensure adsorption–
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desorption equilibrium. Then the catalyst loaded effluent suspension was placed under light and samples were 
collected at regular time intervals and filtered (using 0.25 µm syringe filter). The residual concentration of efflu-
ents was measured using UV–Visible spectrometer. These experiments are repeated to degrade BPA (30 ppm), 
antibiotics Norfloxacin (NOX, 30 ppm) and Doxycycline (DOX, 30 ppm). The percentage of degradation and 
first order kinetics are measured using the following expressions (Eqs. 1 and 2)

where C0 and C are the concentrations of effluent at 0 min and at time interval t respectively. k is the degrada-
tion rate constant.

Photoelectrochemical studies. Photoelectrochemical (PEC) studies were carried out using Electro-
chemical workstation (AUTOLAB, PGSTAT 204 FRA32M) under illumination of 100 mW/cm2 (1 Sun) of light 
intensity using a 150 W Tungsten-halogen lamp source. KBFO and N doped KBFO electrodes are prepared by 
coating slurry of active material on FTO (a mixture of α-terpineol and ethyl cellulose mixture used as binder). 
PEC performance was investigated through linear sweep voltammetry (LSV), chronoamperometry (CA) and 
Electrochemical impedance spectroscopy (EIS) studies.

DFT calculations. In order to estimate the theoretical bandgap of KBFO and N-doped KBFO Density func-
tional theory (DFT) calculations were conducted. DFT calculations are performed using the ultrasoft pseudopo-
tential (USPP) method in the Quantum ESPRESSO  package43. The exchange correlation energy is approximated 
using the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA)  functional44. We have 
used the plane wave energy cutoff of 130 Ry and a 4 × 4 × 4 Monkhorst–Pack  grid45. Self-consistency in calcula-
tions is achieved until the total energies have converged to  10–6 eV/cell, and the structures have been relaxed 
until the Hellman-Feymann forces relaxed to less than  10–2 eV/Å. The electronic structure is calculated by sam-
pling the Brillouin zone with a set of high symmetry k-points46.

Results and discussions
Figure 1a shows the XRD pattern of N-KBFO with various nitrogen doping concentrations. The XRD pat-
tern is in good agreement with monoclinic structure (P2/c) of  KBFO40. No impurity phases are observed after 
N-doping for all the concentrations. The diffraction peaks shift towards lower 2θ values with increase in N-doping 
concentration, due to the substitution of lower ionic radius N-atom in O-site. The shift in lattice plane (100) 
corresponds to N-doping concentration shown in Fig. 1b. A similar trend was observed in earlier reports on 
nitrogen doped metal-oxide  systems47,48. Figure 2a–d shows the SEM images of KBFO, 10N-KBFO, 20N-KBFO 

(1)Percentage of Degradation(%D) =

[

C0 − C

C0

]

(2)ln
C0

C
= kt

Figure 1.  (a) XRD patterns for KBFO with various N-doping concentrations (b) Magnified view of (100) plane 
in XRD showing a shift towards lower 2θ.
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and 30N-KBFO respectively. All samples exhibit randomly oriented rectangular like grains. The EDS elemental 
mapping (Figure(e-j)) of 20N-KBFO confirms the uniform distribution of constituent elements throughout the 
sample and presence of N is observed in N-doped sample.

Valence states of constituent elements as well as presence of nitrogen in N doped KBFO were confirmed 
by XPS analysis [Fig. 3]. The XPS spectra of K 2 s peak lies at 376.60 eV and 376.74 eV for pure KBFO and 
20N-KBFO respectively as shown in Fig. 3a&e40. XPS spectra corresponding to Bi 4f. for both KBFO and 
20N-KBFO samples split into two spin orbit peaks [Fig. 3(b&f)], occurring at 157.6 ± 0.5 eV and 163.1 ± 0.5 eV 
and ascribed to Bi  4f7/2 and Bi  4f5/2 respectively. It indicates that Bi exists in 3+ valence state in both  samples30. Fig-
ure (c&g) shows the Fe 2p spectra of KBFO and 20N-KBFO samples respectively. The Fe 2p peak of KBFO splits 
into two peaks lying at 710.63 eV and 724.15 eV corresponding to Fe  2p3/2 and Fe  2p1/2 spin orbits respectively. For 
sample 20N-KBFO, Fe  2p3/2 and Fe  2p1/2 peaks lie at 709.75 eV and 723.15 eV respectively. Corresponding bind-
ing energies of Fe  2p3/2 and Fe  2p1/2 peaks indicate the existence of  Fe3+ oxidation state in both the  samples30,34. 
The peaks appearing above  Fe  2p3/2 and Fe  2p1/2 peaks correspond to satellite  peaks35. The slight shift of Fe 2p 
peak towards lower binding energy in sample 20N-KBFO  attributed to the incorporation of N atoms in KBFO, 
is due to the lower electronegativity of  N34. The XPS spectrum of O 1s is shown in Fig. 3d&h. The O 1s peak of 
KBFO could be fitted to two peaks at 528.9 eV and 530.72 eV, whereas the peaks for sample 20N-KBFO, lie at 
529.43 eV and 531.62 eV respectively. The lower and higher binding energy peaks correspond to lattice oxygen 
and surface chemisorbed oxygen species  respectively34. Figure 3i shows the presence of N 1 s peak in 20N-KBFO 
at 399.6 eV and is attributed to the presence of substitutional N in the form of Fe-(N–O) bonding. This implies 
that the lattice oxygen was partially substituted by N  atoms49,50.

Figure 4(a) shows the UV–Visible absorption spectra of pure KBFO and N-doped KBFO with various doping 
concentrations. The absorption spectra of KBFO was broadened to NIR region after N-doping. The corresponding 
Tauc plots are shown in Fig. 4b. The effective optical bandgap of KBFO reduced from 1.67 to 1.60 eV (20N-KBFO) 
[Fig. 4b(inset)]. This reduction upon N-doping was attributed to the occupation of discrete midgap states of N 
2p over O 2p states in valence band and also confirms the successful substitution of N atoms in O-sites34,51. A 
similar trend has been observed in previous  reports34. Lower bandgap values are one of the important criteria 
for achieving enhanced visible light active photocatalysis. The energy band structures of KBFO and N-doped 
KBFO (Fig. 4c) were determined from Mulliken electronegativity expressions (Eqs. 3 and 4).

where  ECB and  EVB are the conduction and valence band edge positions, χ and EC are the absolute electronega-
tivity of compound and energy of free electron on hydrogen scale (4.5 eV) respectively. Eg is the corresponding 
bandgap energy.

Theoretical bandgaps of KBFO and N-KBFO were calculated using density functional theory (DFT) calcula-
tions (Fig. 5a&b). DFT calculations were performed by sampling the Brillouin zone with a set of high symmetry 
k-points. The effect of Nitrogen doping in KBFO was analysed computationally and the bandgap of KBFO was 
found to be 1.59 eV. Upon replacement of few O atoms with N atoms in a unit cell of KBFO, the bandgap reduced 
to 1.18 eV, strongly supporting the experimental trend.

The catalytic activity of N doped KBFO samples were studied by degrading organic effluents MB and BPA 
as well as persistent antibiotics NOX and DOX. Photocatalytic degradation profile of MB by KBFO with var-
ious N- doping concentrations is shown in Fig. 6a. 20N-KBFO samples show better degradation efficiency 
(~ 84.5%), much higher than 41.6% for pure KBFO [Fig. 6(b)]. An increase in the photodegradation efficiency 

(3)ECB = χ − EC −
1

2
Eg

(4)EVB = ECB + Eg

Figure 2.  SEM images corresponding to (a) KBFO (b) 10N-KBFO (c) 20N-KBFO (d) 30N-KBFO. (e–j) EDS 
mapping images of 20N-KBFO sample showing uniform distribution of K, Bi, Fe, O and N elements.
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upon increasing N concentration in KBFO may be attributed to the narrow bandgap and efficient charge sepa-
ration in N doped samples due to the presence of Fe–N active  sites34. N-doping in KBFO shifts the absorption 
edge to enable it to absorb more sunlight as compared to bare KBFO. The modification of perovskite structures 
with transition metal-N active sites is desirable to enhance the charge transport features enabling higher catalytic 
activity towards remediation of wastewater. With an increase in N concentration over and above 20 mmol, the 
degradation efficiency starts decreasing and the results are consistent with optical absorption studies. Excess N 
incorporation induces defect levels in KBFO, which act as recombination centers, thus reducing the photodeg-
radation  efficiency52. Hence the optimum N incorporation was confined to 20 mmol.

The photocatalytic process is mainly governed by electron–hole  (e– _ h+) pairs generated in the catalyst upon 
light illumination and are responsible for redox reactions which mineralize the effluents. The photocatalytic 
mechanism of 20N-KBFO can be further enhanced by adopting fenton reactions with the addition of  H2O2 in 
optimum quantity. Addition of  H2O2 to an aqueous system containing an organic effluent and ferrous  (Fe3+/Fe2+) 
ions lead to occurrence of complex redox reactions. The hydroxyl radicals and superoxide radicles generated 
in this process attach with the complex organic molecule and mineralize into nontoxic byproducts. The revers-
ible redox reactions generate  Fe3+/Fe2+ions and these reactions take place until effluents degrade completely. 
Recent studies have revealed that in addition to chelating agents like sulfur containing amino acid, L-cysteine 
improves the photo-fenton activity which allows generation of •OH active species by reacting with  O2 and thus 
improve the catalytic performance. The optimization of dosage of fenton reagents  (H2O2 and L-Cysteine) in 
photocatalysis enhances the performance as well as economic feasibility. In this work,  H2O2 and L-cysteine dos-
age was optimized and found to be 1.5 mg/L and 10 mg/ml respectively. Upon addition of  H2O2 the degradation 
efficiency of 20N-KBFO improved from 84.5 to 92.7% while with L-cysteine it improved to 94.7% [Fig. 6c]. 
The photo-fenton performance was also tested through different combinations of fenton reagents as shown in 
Fig. 6(d). MB almost degraded completely (99.5% with a rate constant about 0.042  min-1) post addition of both 
 H2O2 and L-cysteine, which is only 9% for  H2O2 + L-cysteine without any catalyst. These investigations imply 
that 20N-KBFO +  H2O2 + L-cysteine combination is the best system for photo-fenton reaction for degrading MB. 
The degradation profile and first order reaction kinetics plot are shown in Fig. 6 (e & f).

In order to examine the active species involved in photo-fenton reaction, active species trapping experiments 
were conducted using various scavengers such as  AgNO3, ethylenediaminetetraacetic acid (EDTA), isopropyl 
alcohol (IPA) and benzoquinone (BQ) and shown in Fig. 7. Sample 20N-KBFO +  H2O2 + L-cysteine showed a 
photodegradation efficiency of about 99.5% without any scavenger. When  AgNO3 (1 mmol) and IPA (1 mmol) 
were added to dye-catalyst suspension as  e- and •OH radical trapping agents, the photodegradation efficiency 

Figure 3.  X-ray photoelectron spectra and the corresponding fits belonging to KBFO and 20 N-KBFO samples: 
(a–d) K 2s, Bi 4f, Fe 2p, and O 1s corresponding to KBFO (e–i) K 2s, Bi 4f, Fe 2p, O 1s and N 1s corresponding 
to 20N-KBFO.
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Figure 4.  (a) UV–vis absorption spectra of KBFO with various N-doping concentrations (b) Tauc plots 
corresponding to KBFO, 10N-KBFO, 20N-KBFO, 30N-KBFO (inset shows variation of effective optical 
bandgap with respect to N-doping concentration) (c) Energy band diagram corresponding to pure KBFO and 
20N-KBFO.
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rapidly decreased to 54.9% and 35.1% respectively. The results point towards the role of  e- and •OH radicals 
being the main species responsible for photo-fenton mechanism. Upon addition of EDTA (1 mmol) and BQ 
(1 mmol) as  h+ and superoxide  (O2

.) radicle trapping agents respectively, the degradation profile doesn’t change 
much. It implies that the role of  h+ and superoxide  (O2

.) radicals in photo-fenton mechanism is negligible. The 
photo-fenton mechanism is thus mainly governed by  e- and •OH radicals. The major contribution of •OH radicals 
in this mechanism is due to addition of  H2O2 and L-cysteine. A plausible degradation mechanism is illustrated 
in Fig. 8. The recyclability and stability of 20N-KBFO sample was investigated for three cycles. In all the three 
cycles, photodegradation performance of 20N-KBFO is negligible (Fig. 9a). The XRD pattern (Fig. 9) of recy-
cled 20N-KBFO reveal that there are no structural transformations and secondary phases post three cycles of 
usage, stressing on the fact that the as prepared samples are reusable and stable for photocatalytic degradation 
of organic effluents.

20N-KBFO +  H2O2 + L-cysteine combination was further used to degrade the organic synthetic compound 
Bisphenol-A (BPA) under visible light. After exposing BPA-catalyst suspension in visible light for 120 min, BPA 
could be degraded upto 83% of its initial concentration with a rate constant of k = 0.016  min-1 whereas BPA alone 
degraded upto 2% only. The degradation profile and C/C0 plot ratio plots are shown in Fig. 10a,b.

20N-KBFO +  H2O2 + L-cysteine was also used for degrading antibacterial effluents such as NOX and DOX 
under visible light. NOX and DOX degraded by 72% (k = 0.011  min-1) and 95% (0.026  min-1) of its initial con-
centration. The degradation profile and C/C0 ratio plots are shown in Fig. 11a,b. These photo-fenton reaction 
studies with N-doped KBFO is a potential candidate for treating various effluents under sunlight.

The photoactivity of KBFO and 20N-KBFO were investigated and compared by photoelectrochemical (PEC) 
studies in 1 M  Na2SO4 aqueous electrolyte solution. Linear sweep voltammetry (LSV), Chronoamperometry (CA) 
and electrochemical impedance spectroscopic (EIS) studies were carried out under dark and light illumination. 
Figure 12a shows the linear sweep voltammogram under dark and light for KBFO and 20N-KBFO exhibiting 
an enhanced photoresponse in 20N-KBFO over pure KBFO. The photocurrents corresponding to pure KBFO 
and 20N-KBFO were observed from CA studies at a potential of 0.6 V [Fig. 12b]. The average photocurrent 
density for KBFO was observed around ~ 4.31 mA/cm2under constant light illumination. For nitrogen doped 
KBFO (20N-KBFO) electrode, it increased to ~ 8.83 mA/cm2. The photocurrent density improved by two times 
in 20N-KBFO. Nyquist plots (Fig. 12(c) recorded using EIS shows the improved conductivity in nitrogen incor-
porated KBFO over KBFO. The samples show a rapid decrease in impedance under light illumination implying 
an efficient and rapid separation of photogenerated charge carriers under light irradiation leading to enhanced 
photoconductivity in 20N-KBFO40. The PEC studies revealed good photo response as well as efficient charge 
separation features in nitrogen doped KBFO over pure KBFO. The enhanced photocatalytic and photoelec-
trochemical properties of nitrogen doped brownmillerite KBFO make it a promising material for energy and 
environmental applications.

Figure 5.  Electronic band structures of (a) KBFO and (b) N-KBFO calculated using DFT computations.
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Figure 6.  (a) Photocatalytic degradation profile of MB by KBFO with various N- doping concentrations. (b) 
Degradation efficacy chart of MB by KBFO with various N- doping concentrations (c) effects of  H2O2 and 
L-cysteine concentration on the degradation of MB, (d) degradation (C/C0) of MB with  H2O2 and L-cysteine 
systems. (e) Degradation profile of MB by 20N-KBFO +  H2O2 + L-Cysteine. (f) first order reaction kinetics of 
MB by 20N-KBFO +  H2O2 + L-Cysteine.
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Figure 7.  Effect of various of scavengers on the degradation of MB by 20N-KBFO +  H2O2 + L-Cysteine.

Figure 8.  Photo-fenton degradation mechanism of MB using 20N-KBFO +  H2O2 + L-Cysteine.
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Figure 9.  Reusability of 20N-KBFO for degradation of MB for three cycles (b) XRD pattern of 20 N-KBFO 
before and after three cycles of photocatalytic reaction.

Figure 10.  (a) Degradation profile of BPA by 20N-KBFO +  H2O2 + L-Cysteine. (b) photocatalytic degradation 
(C/C0) of BPA by 20N-KBFO +  H2O2 + L-Cysteine (inset showsfirst order reaction kinetics).
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Conclusion
Nitrogen doped  KBiFe2O5 was successfully synthesised using melamine  (C3H6N6) as the N source. Systematic 
investigations on structural, morphology and optical properties of as prepared samples were carried out. Opti-
mum nitrogen incorporation in KBFO was analysed by degrading MB and 20 mmol of N doped KBFO was 
found to be the best sample for photo-fenton activity. Combination of  H2O2 + L-cystyein was used as fenton 
reagent and the photo-fenton activity in presence of 20N-KBFO +  H2O2 + L-cysteine showed rapid improvement 
in photodegradation efficiency by generating more active species like •OH (as confirmed from active species 
trapping experiments). Reusability and stability studies were performed upto three cycles and the samples show 
stable catalytic performance without any structural change. The performance of 20N-KBFO, LSV, CA and EIS 
studies revealed an enhanced photoresponse in 20N-KBFO over pure KBFO. Lower bandgap, high photodeg-
radation efficiency, stability and satisfactory photoresponse exhibited by N-doped  KBiFe2O5 make it one of the 
best brownmillerite compound for energy and environmental applications.
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