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Abstract

Background: Protective CD4+CD25+ regulatory T cells bearing the Forkhead Foxp3 transcription factor can now be divided
into three subsets: Endogenous thymus-derived cells, those induced in the periphery, and another subset induced ex-vivo
with pharmacological amounts of IL-2 and TGF-b. Unfortunately, endogenous CD4+CD25+ regulatory T cells are unstable
and can be converted to effector cells by pro-inflammatory cytokines. Although protective Foxp3+CD4+CD25+ cells
resistant to proinflammatory cytokines have been generated in mice, in humans this result has been elusive. Our objective,
therefore, was to induce human naı̈ve CD4+ cells to become stable, functional CD25+ Foxp3+ regulatory cells that were also
resistant to the inhibitory effects of proinflammatory cytokines.

Methodology/Principal Findings: The addition of the vitamin A metabolite, all-trans retinoic acid (atRA) to human naı̈ve
CD4+ cells suboptimally activated with IL-2 and TGF-b enhanced and stabilized FOXP3 expression, and accelerated their
maturation to protective regulatory T cells. AtRA, by itself, accelerated conversion of naı̈ve to mature cells but did not
induce FOXP3 or suppressive activity. The combination of atRA and TGF-b enabled CD4+CD45RA+ cells to express a
phenotype and trafficking receptors similar to natural Tregs. AtRA/TGF-b-induced CD4+ regs were anergic and low
producers of IL-2. They had potent in vitro suppressive activity and protected immunodeficient mice from a human-anti-
mouse GVHD as well as expanded endogenous Tregs. However, treatment of endogenous Tregs with IL-1b and IL-6
decreased FOXP3 expression and diminished their protective effects in vivo while atRA-induced iTregs were resistant to
these inhibitory effects.

Conclusions/Significance: We have developed a methodology that induces human CD4+ cells to rapidly become stable,
fully functional suppressor cells that are also resistant to proinflammatory cytokines. This methodology offers a practical
novel strategy to treat human autoimmune diseases and prevent allograft rejection without the use of agents that kill cells
or interfere with signaling pathways.
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Introduction

CD4+ regulatory T cells (Tregs) bearing the Forkhead Box P3

(Foxp3) transcription factor are required to maintain immunologic

homeostasis and prevent autoimmunity [1,2]. Mutations of the

Foxp3 gene result in immune dysregulation and multiorgan

autoimmunity [3]. Both CD4+ cells and CD8+ cells can express

Foxp3 [4,5], but the former have received the most attention.

Because abnormalities in the numbers and function of Tregs can

lead to autoimmunity, allergy and graft rejection, manipulation of

these cells to correct these defects offers a novel treatment strategy

[6]. Endogenous CD4+Foxp3+ cells can be divided into thymus-

derived, natural regulatory T cells (nTregs) which constitutively

express high levels of CD25, the IL-2 receptor alpha chain and

those induced in the periphery from CD4+CD252Foxp32

precursors by a TGF-b dependent mechanism (iTregs). In mice

and humans these two subsets have been indistinguishable

phenotypically until recently [7], and may have separate or

synergistic roles in vivo [8,9]. In humans CD4+FOXP3+ Tregs

express high levels of CD25 and low levels of CD127, the IL-7

receptor alpha chain [10].

In addition to endogenous Foxp3+ Tregs, substantial evidence

exists that the combination of IL-2 and TGF-b can induce naı̈ve

CD4+CD252 cells to become FOXP3+ iTregs in both mice and

humans. In mice, suboptimal polyclonal TCR stimulation of naı̈ve

CD4+ cells with IL-2 and TGF-b can induce iTregs that have

protective effects in autoimmune diabetes [11], experimental

autoimmune encephalitis[12] and myasthenia gravis [13]. Because
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of decreased numbers and/or function of FOXP3+ Tregs in

human autoimmune diseases [14], the transfer of iTregs generated

ex-vivo could be therapeutic to subjects with these diseases.

In humans CD4+CD252 cells activated by either superantigens

or alloantigens with IL-2 and TGF-b developed potent in vitro

suppressive activity [15,16], and these alloantigen-induced

FOXP3+ iTregs could also induce other CD4+CD252 cells to

become TGF-b dependent suppressor cells [17]. One group

recently also reported that polyclonal TCR stimulation of naı̈ve

CD4+ cells with TGF-b could result in FOXP3+ suppressor cells

[18]. However, the generation of fully functional polyclonal

human FOXP3+ iTregs ex vivo is controversial. First, TCR

activation without TGF-b can induce naive CD4+ cells to

transiently express FOXP3 [19]. Secondly, although we and

others have observed that TGF-b can greatly increase FOXP3

expression and stability, after one week in vitro suppressive activity

of these human CD4+ cells was not greater than control cells

[20,21]. Moreover, unlike nTregs which are anergic in response to

TCR stimulation, these human CD4+ cells primed with TGF-b
produced IL-2 and proliferated robustly following re-stimulation.

Interestingly, however, repeated stimulation of TGF-b primed

CD4+ cells did result in anergy, membrane-expression of TGF-b,

and in vitro suppressive activity similar to that described with

nTregs [20,22]. We concluded that human TGF-b primed CD4+

cells one week after culture were partially differentiated cells and

required a much longer time to mature than similar mouse Foxp3+

iTregs [21]. Thus, agents that accelerate cell differentiation might

be useful for a more rapid generation of human iTregs ex-vivo.

Retinoic acid (RA), a vitamin A derivative, has an important

role in the development of various organs including the immune

system. RA metabolites strongly contribute to the maintenance of

immunologic tolerance. All-trans retinoic acid (atRA), an active

metabolite of retinoic acid, markedly enhances TGF-b-induced

Foxp3 expression and stability in mice [23], and the expansion of

these iTregs by either direct cytokine-dependent [24] or cytokine

independent mechanisms [25]. In human CD4+ cells, atRA has

been reported to induce histone acetylation at the FOXP3 gene

promoter and expression of the FOXP3 protein [26]. Recently,

atRA has been shown to enhance the stability and expansion of

TGF-b induced iTreg and endogenous nTreg cells [27]. Here we

have extensively characterized the phenotype and functional

properties of iTregs induced by TGF-b and atRA. We report that

atRA markedly accelerates the differentiation of naı̈ve cells to fully

functional suppressor cells. Unlike CD4+ cells generated in one

week with IL-2 and TGF-b the presence of atRA during this time

enabled naı̈ve CD4+ cells to demonstrate strong protective

suppressive effects not only in vitro, but also in vivo when transferred

to immunodeficient mice. Moreover, unlike endogenous nTregs,

atRA-induced iTregs were resistant to the inhibitory effects of IL-

1b and IL-6. Thus, we have demonstrated that it is possible to

induce naı̈ve human CD4+ cells to rapidly become iTregs that

have protective effects in vivo and that are resistant to the inhibitory

effects of proinflammatory cytokines.

Results

The addition of atRA to TGF-b enhanced FOXP3 stable

expression and accelerated the maturation of naı̈ve CD4+ cells to

memory/effector regulatory cells. Naı̈ve CD4+ cells were activated

with suboptimal anti-CD3/28 beads titrated to numbers needed

for the cells to express CD25. While IL-2 and TGF-b increased

the percentage of CD4+CD25+ cells that expressed FOXP3 after 5

days of culture, the addition of atRA to TGF-b markedly

enhanced this effect (Figure 1, A and B). Time course studies

revealed that adequate levels of IL-2 can sustain TGF-b induced

FOXP3 [28] (result not shown). However, with less IL-2, TGF-b
induced Foxp3 also decreased after culture for 7 to 9 days, while

FOXP3+ cells induced by atRA and TGF-b remained stable

(Figure 1B). This finding is in agreement with Wang et al [27].

Thus, the combination of atRA and TGF-b rapidly induced naı̈ve

CD4+ cells to express FOXP3, and the stability of this

transcription factor is less IL-2 dependent than FOXP3 induced

by TGF-b alone.

Although IL-7 is an important growth and survival factor for

certain T cell subsets, CD127, the a chain of the IL-7 receptor, is

down-regulated on nTreg cells. These cells are CD25+CD127dim

[10]. Figure 2A shows that following activation for 6 days,

CD127 displayed by naı̈ve CD4+ cells was moderately downreg-

ulated. While TGF-b enhanced this down-regulation of CD127,

atRA resulted in more than 90% of the CD4+ cells becoming

CD127dim. However, only a small fraction expressed FOXP3.

Because .80% of CD4+ cells activated with atRA and TGF-b
expressed FOXP3, presumably most were also CD127dim.

Similarly, although atRA alone also accelerated transition from

CD45RA+ to CD45RO+ cells, most of these cells were Foxp32.

Only with the combination of atRA and TGF-b do most

CD45RO+ cells also express FOXP3 (Figure 2B).

Figure 3A shows ten markers characteristically expressed by

nTreg cells [22,29]. Of these, naı̈ve CD4+ cells express only L-

selectin (CD62L) and CCR7 (see below). The figure shows that

following TCR activation with atRA and TGF-b added separately

or together, naı̈ve CD4+ cells acquire other Treg-related receptors

and retain CD62L and CCR7. These cells expressed GITR, and

CTLA-4, although these markers are also expressed by control

activated T cells. Besides FOXP3 and CD127 shown above, the

combination of atRA and TGF-b increased the intensity of

CD122, PD-1, and TNFRII (Tumor necrosis factor receptor II)

staining. Although some activated T-Med expressed TNFRII+,

atRA markedly enhanced this effect. These cells, however, were

FOXP32. Only with both atRA and TGF-b did most of these cells

display FOXP3. TNFRII expression has been described on mouse

nTregs, but to date not on human Tregs [29].

Finally, activated nTreg cells express membrane-bound TGF-b
[30]. We observed that adding atRA to TGF-b greatly increased

the number of iTreg cells expressing membrane TGF-b
(Figure 3B). Unlike most markers that are stained at 4uC,

membrane-bound TGF-b is maximal at 37uC. Thus, the addition

of atRA to TGF-b increases the conversion of activated CD4+ cells

to the effector/memory cells and accelerates their phenotypic

differentiation to FOXP3+ Treg cells.

Activation of naı̈ve CD4+ cells with atRA added to TGF-b
enables them to retain or acquire receptors needed to recirculate

from blood to lymphoid organs. Naı̈ve and central memory CD4+

cells constitutively express the lymphoid homing receptors CD62L

and CCR7 that enable them to circulate from blood to secondary

lymphoid tissues [31]. CD4+CD45RO+ effector cells generally lack

these receptors and express others that enable them to migrate to

extravascular sites. Even though most nTregs are CD45RO+, they

continue to express CD62L and CCR-7 which facilitate their

trafficking to lymphoid organs. CCR7 has been reported to be

needed for nTreg homing and function in lymphoid tissues [32].

Figure 3A shows that following activation of naı̈ve CD4+

CD45RA+ cells, down-regulation of CD62L is decreased by

TGF-b. Similarly, activation with atRA decreases CCR7 down-

regulation. Accordingly, when naı̈ve CD4+ cells were activated

with both TGF-b and atRA, expression of both CD62L and

CCR7 was retained, even though the cells they underwent

transition from CD45RA to CD45RO (Figure 2B). Thus, similar

Retinoid-Induced Human CD4+CD25+ FOXP3+ Tregs
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to nTregs, most atRA/TGF-b-induced iTregs are CD45RO+

effector/memory cells that continue to express CCR7 and

CD62L.

Human nTregs also express CCR4, another lymphoid homing

receptor [33]. Interestingly, TGF-b also induced naı̈ve CD4+ cells

to express CCR4 (Figure 3A). CD103 (aE integrin) is another

Figure 1. AtRA enhances and stabilizes FOXP3 induced by TGF-b. CD4+CD45RA+ cells were stimulated with suboptimal numbers of antiCD3/
CD28 beads and IL-2, with and without TGF-b and atRA. (A) Representative expression of CD25 and FOXP3 by flow cytometry after 5 days of culture.
(B) Stability study: Naive CD4 cells were similarly activated with IL-2 (50 U/ml) with and without TGF-b and atRA. At day 5, the medium was removed
and the additives replaced with IL-2 (20 U/ml), an amount that is not sufficient to sustain FOXP3 induced by IL-2 and TGF-b. At the various days
indicated, the percentage of FOXP3+ cells is indicated for each conditioned CD4+ subset studied. The values indicate the mean 6 SEM of 4 separate
experiments.
doi:10.1371/journal.pone.0015150.g001

Figure 2. AtRA accelerates the maturation of naı̈ve CD4+ cells to effector/memory cells. CD4+CD45RA+CD252naive T cells were cultured in
the presence and absence of atRA (0.1 mM) and/or TGF-b-1 (5 ng/ml) with IL-2 (50 U/ml) for 5 days. As indicated by flow cytometry: (A) By itself, atRA
increased the down-regulation of CD127, and (B) the transition from CD45RA to CD45RO. In combination with TGF-b, atRA markedly increased the
proportion of FOXP3+ cells that became CD127dim and CD45RO+. The result is representative of four separate experiments.
doi:10.1371/journal.pone.0015150.g002
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homing receptor especially important in the mucosal immune

system [34]. Human nTregs and iTregs express CD103 [18]. Here

we observed that the combination of TGF-b and atRA induced

higher levels of CD103 than either agent used alone (Figure 3A).

In other experiments, atRA/TGF-b-induced iTregs and expanded

nTregs were restimulated with anti-CD3/28 beads and low dose

IL-2 for 3 days. We observed that CCR4 and CCR7 expression

remained high on iTregs, but began to decrease on nTregs

(Figure S1).

Tregs generated with atRA and TGF-b produce low levels of

proinflammatory cytokines, are hypoproliferative in vitro, and

develop potent suppressive activity in vitro and in vivo. Unlike naı̈ve

CD4+ cells primed with TGF-b, the addition of atRA to TGF-b
resulted in functional activities similar to those of nTregs within 5

to 7 days following activation. As shown in Figure 4, atRA/TGF-

b-induced Tregs (iTregs) produced only small amounts of

intracellular IL-2 and IFN-c. They were non-responsive following

restimulation with anti-CD3/28 coated beads and remained

hyporesponsive (Figure 5A). Interestingly, the addition of anti-

TGF-b to the cultures restored their proliferative response, a

finding suggesting that membrane-bound TGF-b may contribute

to anergy in vitro.

As has been reported previously, human polyclonally-stimulated

CD4+ cells primed with IL-2 and TGF-b did not acquire marked

Figure 3. Phenotypic characterization of human atRA/TGF-b induced CD4+ iTregs at day 5. Naı̈ve CD25 depleted CD4+ cells were
stimulated with CD3/CD28 beads and the additives indicated above for 5 days. (A) The staining intensity of each marker and the isotype control is
shown in comparison with the staining of unstimulated CD4 naı̈ve cells. (B) The cells were rested in fresh medium containing 10% FCS for 24 hours
and restimulated with anti CD3/CD28beads (1:1) and IL-2 (20 U/ml) for 48 hours. FACS analysis of CD25 and mTGFb1 expression by the various CD4+

conditioned subsets is shown. The results are representative of three separate experiments.
doi:10.1371/journal.pone.0015150.g003
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suppressive activity [20]. By contrast, CD4+ cells primed with

atRA and TGF-b developed potent suppressive activity. Marked in

vitro suppressive activity remained even when iTregs comprised

only 3 per 100 T responder cells (1:32) (Figure 5, B and C).

While most workers report that the in vitro suppressive activity of

human nTregs is contact-dependent and cytokine independent

[20,22], we also found that the suppressive activity of iTregs was

contact-dependent, but in some experiments anti-TGF-b mark-

edly inhibited suppressive activity (Figure S2).

Finally, since suppressive activity in vitro may not correlate with

activity in vivo [30], we have established a mouse model to examine

in vivo effects of human iTregs. Lightly irradiated NOD SCID

common c chain2/2 (NOG) mice injected with 20 million human

CD25 depleted PBMC rapidly lost weight and survived only 14

days. The addition of 5 million naı̈ve CD4+ cells, or CD4+ cells

activated with IL-2 (Tcon) to PBMC resulted in similar demise.

Examination of the blood and spleen of mice at 14 days revealed

marked engraftment of both human CD4+ and CD8+ T cells

(Figure 6A). Examination of other organs demonstrated both

extensive mononuclear infiltrates especially in the liver and lung

(Figure 6B). As reported by Ito and co-workers[35], unlike the

transfer of human PBMC to Rag2/2 SCID cc 2/2 mice, human

PBMC did not migrate to the NOG gut or skin (result not shown).

Nonetheless, they had developed the human anti-mouse graft-

versus-host disease (GVHD) described by others [35,36,37]. The

addition of human CD4+ cells primed with IL-2 and TGF-b
(T-TGF-b) also could not protect mice from this rapidly fatal xeno-

GVHD. The mononuclear cell infiltrates and tissue damage

observed in these mice was equivalent to mice that received

PBMC and T control cells (T-Med) (Figure S3).

By contrast, the onset of GVHD was significantly delayed in

mice that had received PBMC with iTregs, or expanded

endogenous Tregs (nTregs). They did not begin to lose weight

until 2 weeks later and survived up to 8 weeks (Figure 7, A and
B). To compare engraftment of human cells in these mice with

controls that died at two weeks, other experiments were performed

where mice that received PBMC with iTreg or nTregs were also

sacrificed at 14 days. Figure 6B (and Figure S3) shows

markedly fewer numbers of mononuclear cell infiltrating the liver

and kidneys, although there were peribronchial and a moderate

interstitial mononuclear cell infiltrate in the lungs. This infiltration

was probably a consequence of the intravascular trafficking of the

transferred cells through the lungs.

Interestingly, although Tregs limited the magnitude of engraft-

ment, the percentage of human cells found, and the proportion of

CD4, CD8, NK and B cells was similar to the transfer of human

PBMC and Tcon cells (Figure 6A). The percentage of human

CD45+ cells present in the blood was small, but comprised .80%

of the mononuclear cells isolated from the spleen, liver and lung.

In all organs studied engraftment of CD4+ cells was greater than

CD8+ cells. An even greater predominance of CD4+ cells was

observed in the blood and liver of animals that received iTreg cells.

Relatively more NK cells found in spleen, liver, lung and liver

compared to blood and bone marrow. The kidney was the only

organ with .10% B cells. Thus, to increase the survival of these

immunodeficient mice, it is likely that iTreg cells inhibit the

magnitude of mononuclear cells trafficking to various organs, but

not the pattern of human engraftment. In addition to using

protection from GVHD to assess suppressor cell activity in vivo, we

used suppression of T cell-dependent IgG production. By two

weeks after transfer of human PBMC .2 mg/ml of human

IgG was detected in mouse serum (Figure 7C). The addition of

iTregs or nTregs to PBMC markedly suppressed human IgG

production.

Figure 4. AtRA/TGF-b-primed CD4+ cells produce less IL-2 and IFN-c. Naı̈ve CD4+ cells were stimulated with the additives described above for
5 days, washed and the beads were removed. The cells were rested for 24 hours and then restimulated with anti CD3/CD28beads for 48 hours. PMA
and ionomycin was added for the last 5 hours, and brefeldin A for 4 hours, and intracellular IL-2 and IFN-c cytokine expression was then assessed by
flow cytometry. The results shown are representative of three separate experiments.
doi:10.1371/journal.pone.0015150.g004
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Figure 5. CD4+CD25+Foxp3+ cells induced by atRA and TGF-b are anergic and have potent suppressive effects in vitro. (A) The various
primed CD4+ cell subsets indicated were prepared as described above. After culture for 5 days, the cells were washed, rested for 48 hours, and

Retinoid-Induced Human CD4+CD25+ FOXP3+ Tregs
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Because of the possible therapeutic potential of Treg cells

generated and expanded ex-vivo, they should be not only

functional, but also resistant to T effector cell conversion in vivo.

The plasticity of Foxp3+ nTregs has become evident with

proinflammatory cytokines such as IL-1b and IL-6 converting

human nTreg cells to Th17 cells [38,39]. These cytokines also

inhibit nTreg suppressor cell activity [40]. Accordingly, both

atRA-induced iTregs and expanded nTregs were treated

similarly with these cytokines. They were restimulated with

anti-CD3/28 beads, low dose IL-2 6 IL-1b and IL-6 for three

days (see methods). These treated Treg cells were mixed with

autologous PBMC and injected into NOG mice. The xeno-

GVHD observed in two experiments was even more aggressive

than the previous study (maximum survival 14 vs. 18 days).

Nonetheless, Figure 7D shows that both iTregs and nTregs had

significant protective effects (p = 0.004). However, after treat-

ment with IL-1b and IL-6, the protective activity of the atRA-

induced iTregs was significantly greater than nTregs

(Figure 7E). While the protective activity of cytokine-treated

nTregs decreased in comparison with control nTregs, the

protective activity of cytokine-treated iTregs was modestly

greater than control cells (Figures 7F, G).

Phenotypic analysis of these Treg subsets after restimulation

using low dose IL-2 revealed decreased expression of Foxp3 by

nTregs compared with iTregs. PD-1, GITR, CD103, CTLA-4,

and CD62L expression by nTregs also decreased and was weaker

than iTregs (Figure S4). This was probably a consequence of the

strong TCR stimulation and high IL-2 dose used for Treg

expansion. After iTregs and nTregs were restimulated with IL-1b
and IL-6, Foxp3 expression by the nTregs decreased even further.

Surprisingly, expression of PD-1, GITR, was greater on iTregs

restimulated with IL-1b and IL-6 than iTregs restimulated without

these cytokines. Thus, atRA-induced iTregs were not only

resistant to the inhibitory effects of IL-1b and IL-6, but these

proinflammatory cytokines appeared to have a mild positive effect

in stabilizing their phenotype and functional activity.

Discussion

We have shown that within one week the addition of atRA to

IL-2 and TGF-b can induce polyclonally activated human naı̈ve

CD4+ cells to become CD25+FOXP3+ Tregs that resemble nTregs

phenotypically and functionally. These atRA/TGF-b iTregs have

strong suppressive activity both in vitro and in vivo. While IL-2 and

labeled with CFSE. The cells were then restimulated with anti-CD3/CD28 beads with the additives indicated for three days and proliferation was
evaluated by CFSE dilution. Note that the addition of atRA to TGF-b primed cells also resulted in anergy, and the hypoproliferative state was
abolished by anti- TGF-b. (B) To examine the suppressive capacity of T-Med, T-TGF-b and T-atRA+TGF-b, these primed CD4+ cells were mixed with
autologous CFSE-labeled T cells in different ratios and stimulated with soluble anti-CD3 (1:500) with irradiated non T cells as APC (1:1). At day 4,
inhibition of proliferation (CFSE dilution) of responder T cells was analyzed by flow cytometry. The mean 6 SEM percent suppression at the various
ratios of 3 separate experiments is shown. (C) In this representative experiment, the cells were stained for anti-CD8 and the suppressive activity of
various primed CD4+ cells subsets on CFSE-labeled CD8+ at various Tsuppressor to T effector ratios is shown.
doi:10.1371/journal.pone.0015150.g005

Figure 6. Engraftment human cells in NOG mice 15 days after transfer activated CD4+ cells and atRA/TGF-b induced Treg cells. A)
Pattern of engraftment: Total human mononuclear cells in the blood, spleen and in collagenase suspensions of liver, kidneys and lungs are indicated
as percent human CD45+ cells by flow cytometry. CD4/CD8 ratios, CD4, CD8, B cells, and NK cells, also calculated as percent human CD45+ cells. B)
Hematoxylin-eosin stained sections of liver, kidneys and lungs of mice treated as indicated compared with control mice injected with PBS. The result
is representative of studies in four mice.
doi:10.1371/journal.pone.0015150.g006
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TGF-b can induce polyclonally activated human CD4+ cells to

express FOXP3, with one exception [18], most workers have

found that these cells lack the functional profile of iTreg [20,21].

However, the addition of atRA to IL-2 and TGF-b completes the

maturation of these partially differentiated cells and enables them

to protect immunodeficient mice from a xeno-GVHD at least as

well as expanded human nTreg cells. Thus, using conventional cell

separation methods to separate naı̈ve CD4+ cells from other

PBMC, we have shown that these cells can rapidly be induced to

become potent suppressor cells.

This study confirms and extends the report by Wang and co-

workers showing that atRA enhanced and stabilized TGF-b
induced Foxp3 expression and induced naı̈ve human CD4+ cells

to express markers also expressed by Treg cells [27]. In humans

Broxmeyer’s group reported that atRA could induce human cord

blood, but not mouse CD4+ cells to become FOXP3+ suppressor

cells without the addition of TGF-b [26]. Herein, we used adult

peripheral blood CD45RA+ CD4+ cells and found that atRA, by

itself, could not induce CD4+ cells to express FOXP3. In

agreement with Wang et al. we found that atRA greatly enhanced

the proportion of cells that TGF-b induced to express Foxp3[27].

We also found that TGF-b and atRA could act separately or

together in inducing naı̈ve CD4+ cells to phenotypically resemble

endogenous CD25+FOXP3+ Tregs, and these effects are summa-

rized in Table 1. TGF-b, by itself, enhanced the expression of

CD122, the IL-2Rb chain, GITR, and membrane-bound TGF-b,

all markers expressed by nTreg effector cells [22,30]. AtRA, by

itself, enhanced the intensity of, TNFRII and CCR7 expression.

Figure 7. AtRA/TGF-b iTregs have equivalent protective effects in vivo as expanded nTregs and are also resistant to the inhibitory
effects of IL-1b and IL-6. A rapidly fatal xenogenic GVHD was induced by the transfer of human PBMC to NOG mice (See materials and methods).
Various conditioned CD4+ cells cultured for 5 to 6 days were rested for 24 h. Then 5 million were added to 20 million human PBMC and transferred IV
to sublethally irradiated NOG mice. Two experiments were combined so that each group contained six to eight mice. A) Survival: TatRA/TGF-b cells
significantly enhanced the survival of NOG mice (P,0.01, Log Rank test), B) prevented weight loss (P,0.01): C) Suppressed human IgG production
(P,0.01). Panels D–G, Effects of IL-1b and IL-6 on Treg protective effects. Induced Tregs and expanded nTregs were restimulated with IL-1b and IL-6
(See Methods) and 4 million cells were mixed with 20 million PBMC and injected IV into NOG mice. D) Equivalent effects of restimulated iTregs and
nTregs; E) Significantly decreased protective effects of nTregs after treatment with cytokines; F) Comparison of nTregs restimulated 6 IL-1b and IL-6.
G) Comparative effects of iTregs restimulated 6 IL-1b and IL-6. Results are a combination of two experiments with 6 mice per group. P values shown
were calculated using the Log Rank test.
doi:10.1371/journal.pone.0015150.g007
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The principal effect of atRA, however, was to accelerate the

maturation of naı̈ve CD4+ cells to become effector/memory cells.

Upregulation of CD45RO and down-regulation of CD127 was

markedly accelerated. Although these CD127dim cells were

FOXP32, in combination with TGF-b, most now co-expressed

FOXP3. Moreover, expression of membrane-bound TGF-b was

maximal in the presence of atRA and TGF-b. Most suppressive

FOXP3+ cells are CD127dim [10]. When added together, atRA

and TGF-b also enhanced expression of PD-1 and CD103. Thus,

atRA and TGF-b have induced human naı̈ve CD4+ cells to

become phenotypically fully mature Tregs in one week.

Both TGF-b and atRA have well established effects on CD4+

cell trafficking. TGF-b induces CD103, aE integrin [41,42], and

atRA induces CCR9 and integrin b7 [26]. We found the

combination of atRA and TGF-b enhanced CD103 expression

by human CD4+ cells, as previously observed in mice [42]. We

also found that TGF-b induced CCR4 and that atRA enhanced

this effect. While human CD4+CD25+FOXP3+ cells expressing

CCR4 are found in certain tumors and in rheumatoid synovial

tissue [43], to our knowledge this is the first description of CCR4

expressed by iTregs induced ex-vivo.

Naı̈ve CD4+ cells constantly recirculate from the blood to

lymphoid organs and these cells express CD62L (L-selectin) and

CCR7 for this function. CCR7 enables CD4+ cells to enter lymph

nodes through high endothelial venules [32]. Following strong

TCR stimulation, these receptors are down-regulated as CD4+

cells become CD45RO+ effector/memory cells. However, al-

though most nTregs have become CD45RO+, they retain both

CD62L and CCR7. TGF-b inhibited the loss of CD62L and atRA

blocked the downregulation of CCR7 so that the combination of

both agents resulted in iTregs similar to nTregs that were effector/

memory cells that had not downregulated expression of both of

these homing receptors.

In addition to phenotypic similarities, there were several other

similarities between iTregs and nTreg cells: 1) As has been

described with activated mouse nTregs [44], activated iTregs also

express membrane-bound TGF-b. Recently, others reported that

human macrophage-induced FOXP3+ iTregs express membrane-

bound TGF-b [45]. Previously, we had observed that CD4+ cells

primed with IL-2 and TGF-b had to be repeatedly stimulated

before they expressed membrane-bound TGF-b [21]; 2) Both

nTregs and iTregs produce much less IL-2 and IFN-c than

conventional CD4+ cells. 3) Both Treg subsets proliferate poorly in

response to TCR stimulation in vitro. However, this property of

iTregs was abolished by antagonizing TGF-b, a result suggesting

that the membrane-bound TGF-b contributed to this effect.

Reversal of nTreg anergy by neutralizing TGF-b is unusual. The

anergy experiments also revealed that atRA and TGF-b do not

have to be added together for the cells to become hyporesponsive.

Although CD4+ primed with TGF-b respond robustly to re-

stimulation, adding atRA to these cells resulted in anergy.

This is the first report showing that the addition of atRA to IL-2

and TGF-b enabled polyclonally TCR-stimulated naı̈ve CD4+ cells

to acquire protective suppressive activity in vivo within one week.

Whether human TGF-b induced CD4+CD25+FOXP3+ cells

develop suppressive activity has been controversial [18,20]. As

stated above, we and others could not induce TGF-b primed human

naı̈ve CD4+ cells to resemble nTregs in one week, However, since

we observed that they did acquire these properties following

repeated stimulation, we suspected that at one week they were only

partially differentiated cells. With the addition of atRA to accelerate

maturation, here we document almost complete suppression of T

cell proliferation with only 1 iTreg added to 32 T responder cells,

and in vivo suppressive activity at least as strong as nTreg cells. We

also assessed the ability of iTreg cells to block a xeno-GVHD and

prevent human T cell-dependent IgG production in NOD SCID

IL-2R common c chain2/2 immunodeficient deficient (NOG)

mice. Others have used RAG2/2 SCID cc chain2/2 mice to

induce a human xeno-GVHD, and demonstrated protective effects

of expanded endogenous nTregs [36,37]. To induce GVHD these

Table 1. Human naı̈ve CD4+ cells polyclonally activated with TGF-b and retinoic acid rapidly become CD25+ cells phenotypically
similar to nTreg cells.

Relative expression by naı̈ve CD4+ cells following TCR activation with:

nTreg markers medium only TGF-b atRA Both

Foxp3 +/2 + +/2 ++

CD127dim +/2 + + ++

CD45RO + +/2 ++ +

CD122 +/2 + +/2 ++

CTLA-4 + ++ + ++

GITR +/2 + +/2 +

Membrane-bound - + - ++

TGF-b

CD62L Decreased Sustained Decreased Sustained

CD103 +/2 + +/2 ++

CCR4 + ++ + ++

CCR7 Decreased Decreased Sustained Sustained

Naı̈ve CD4+ cells were stimulated with suboptimal numbers of anti-CD3/28 beads with IL-2 (50 U/ml) in serum-free medium without APCs for 5 days with the indicated
additives. The markers were assessed by flow cytometry.
- no significant change.
+/2 minimal to modest enhancement.
+ moderate enhancement.
++ marked enhancement.
doi:10.1371/journal.pone.0015150.t001
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mice must be irradiated and given toxic chlordronate liposomes to

deplete macrophages. As documented by others, to develop GVHD

in NOG mice, the use of toxic liposomes is not necessary [35]. Thus,

possibly confounding toxic effects contributing to the early death of

these mice is avoided. In anticipation of further studies with other

epigenetic agents to induce iTreg cells, we desired to have a rapid

readout for our suppressor cell assay. Therefore, we transferred a

large dose of human CD252 depleted human PBMC to have a

rapid demise of the mice studied.

The addition of CD4+ cells conditioned with atRA and TGF-b,

but not TGF-b by itself, delayed the onset of weight loss and

extended their survival for two additional months. Other groups

had reported that expanded human nTreg cells had protective

effects in this mouse [35,36,37]. We learned that the protective

effects of iTregs were at least as strong as nTregs. It is not

surprising that the protective effect of these Treg cell subsets in

NOG mice was not permanent. These Treg cells require human

IL-2 to maintain Foxp3 expression[46], and production of this

cytokine by the human cells engrafted in these mice will decrease

with time. The result will be a corresponding decrease in the

suppressive effects of the Treg cells.

Some workers have suggested that FOXP3 expression by TGF-b
induced iTregs is only transient [47]. Others have reported that

iTregs cannot suppress acute GVHD [48]. It has become evident

that the methodology used to prepare mouse iTregs affects both the

stability of Foxp3 expression and the protective effects of these cells

in vivo [12,49]. The methodology used to prepare human iTregs in

this study resulted in suppressive activity that was equivalent to that

of nTregs in protecting immunodeficient mice from a rapidly fatal

xeno-GVHD. To address the mechanism of the protective effect of

iTregs, we provide evidence that they may have suppressed the

numbers of human mononuclear cells trafficking to various organs,

as others have reported for expanded nTregs [36,37].

The last and most important new finding of this study is that, in

contrast to expanded nTregs, atRA-induced iTregs were resistant

to the inhibitory effects of the pro-inflammatory cytokines IL-1b
and IL-6 on an in vivo protective activity. It has become evident

that Foxp3+ Tregs are not stable. These cytokines can down-

regulate Foxp3 expression and convert these Tregs to Th17

effector cells [38,39]. This effect can have adverse consequences in

established chronic immune-mediated diseases where these

cytokines are very abundant. Since retinoic acid in mice can

stabilize Foxp3 [23,24,25] and confer T cells resistance to Th17

conversion [25,26,50,51], we expected that human atRA-induced

iTregs would be resistant to the inhibitory effects of IL-1b and IL-

6. In mice where IL-2 and TGF-b are sufficient to induce iTregs,

we found that these cytokines enabled these iTregs to be resistant

to Th17 conversion by IL-6 [52].

Because of the well described protective effects of Tregs in

immunologic diseases and allograft rejection, it is possible that these

cells can be exploited as a therapeutic modality. Efforts are currently

underway to use expanded endogenous CD4regs for this purpose.

However, because of the small numbers of these cells in the blood,

the technical difficulties to expand them and their instability after

extended expansion [53], this procedure may be impractical for

commercial development. Alternatively, personalized iTreg therapy

may be more practical because: 1) large numbers of

CD4+CD45RA+ cells can be obtained following pheresis; 2) the

procedures to obtain these cells would utilize present methodologies

used to isolate stem cells; 3) it is likely that these cells will have

proliferative potential in vivo following transfer, and 4) atRA induced

iTregs are resistant to Th17 conversion. Thus, the generation of

Tregs ex-vivo is a promising therapeutic strategy to treat autoimmune

diseases and prevent allograft rejection.

Materials and Methods

Mice
NOD/scid/IL2r common c chain2/2 (NOG) mice were

obtained from Jackson Laboratory (Bar Harbor, ME). The mice

were bred and housed under specific pathogen-free conditions in

microisolator cages and given unrestricted access to autoclaved

food and sterile water. Animals of both sexes were used for

experiments at 8–12 weeks of age. The mice received a single dose

of 200 cGy gamma irradiation from a linear accelerator before

injection of human PBMC on the same day. Some mice were

irradiated but did not receive human PBMC. All experiments

were performed according to the guidelines of the Institutional

Animal Committee of the University of Southern California.

Monoclonal antibodies and cytokines used
The following FITC, PE or Cyc conjugated human antibodies

were used for flow cytometric analysis: CD4 (RM4-5), CD25 (PC61),

CD45RA (L48), CD45RO (UCHL1), CD122 (Mik-b3), CD127

(hIL-7R-M21), CD103 (Ber-ACT8), CD28 (CD28.2), CCR4 (1G1),

CCR7 (3D12), CTLA-4 (BNI3), PD-1 (MIH4), Foxp3 (FJK-16),

TNF-aRII (2B7/97) and TGF-b (4E8). All reagents were purchased

from BD PharMingen (San Diego, CA) and eBiosciences (San

Diego, CA). Other agents purchased included: OKT3 from Ortho

Biotech Products (Bridgewater, NJ), all-trans retinoic acid (atRA)

and RPMI medium from Sigma-Aldrich (St. Louis, MO), Biotin-

conjugated anti-GITR, recombinant human TGF-b1 and IL-2 from

R&D Systems Inc. (Minneapolis, MN), IL-1b and IL-6 from

HumanZyme (Chicago, IL), anti-human CD3/CD28-conjugated

Dynabeads and carboxyfluorescein succinimidyl ester (CFSE), and

AIM-V serum-free medium from Invitrogen (Carlsbad, CA),

rapamycin from CalbiochemH EMD Chemicals (Gibbstown, NJ).

Isolation of human nTregs and generation of human
iTreg cells ex vivo

PBMC were prepared from heparinized venous blood of healthy

adult volunteers by Ficoll-Hypaque density gradient centrifugation.

All protocols that involved human blood donors were approved by

the IRB at the University of Southern California. T cells were

prepared by negative selection as described previously to a purity of

.95% [8]. The CD4+CD25high cells were obtained by fluorescence-

activated cell sorting and FOXP3 expressed by these cells was

.90%. These endogenous Treg cells are a mixture of nTregs and

iTregs induced in vivo, but for simplicity they will be called nTregs.

They were expanded for two weeks by activation with anti-CD3/

CD28 beads in the presence of IL-2 (300 U/ml) and rapamycin

(100 nM). CD4+CD45RA cells were isolated from the CD4+CD252

cells by negative selection and activated with anti-human CD3/

CD28 beads 1:10 (one bead to 10 cells) in AIM-V serum-free

medium containing Hepes buffer (10 mM), sodium pyruvate

(1 mM), glutamine, non-essential amino acids and penicillin and

streptomycin. This complete medium was supplemented with IL-2

(50–100 U/ml) 6 TGF-b1 (5 ng/ml) 6 atRA (100 nM). The dose

of TGF-b1 was determined from testing concentrations from 1–

20 ng/ml, and atRA from testing 0.01–1000 nM. The populations

studied were 1) naive CD4+CD45RA+ cells activated with IL-2

(Tmed): 2) CD4+ cells activated with IL-2 and TGF-b (T-TGF-b); 3)

CD4+ cells activated with IL-2 and atRA (T-atRA); and 4) CD4+ cells

activated with IL-2, TGF-b and atRA (T-atRA/TGF-b or iTreg cells).

The cells were stimulated for 5 days in 24 or 48 well plates, washed,

and transferred to new wells with fresh culture medium containing

IL-2 (50–100 U/m) unless stated otherwise. Depending upon cell

density, they were split and fresh culture medium with the

corresponding additives replaced every 3 days.
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Treatment of iTregs and nTregs with IL-1b and IL-6
Naı̈ve CD4+ cells that had been stimulated with anti-CD3/28

beads with IL-2 (50 U/ml), TGF-b and atRA for 7 days and

nTregs that had been expanded with anti-CD3/28 beads and IL-2

(300 U/ml) for 1 to 2 weeks were prepared. Foxp3 expressed by

iTregs was between 70 to 75%% and expanded nTregs was

between 75 to 80%. After the cells were harvested, the beads were

removed and each preparation restimulated with anti-CD3/28

beads (1:10), IL-2 (12.5 U/ml), IL-1b and IL-6 (20 ng/ml) for 3

days. This low dose of IL-2 was chosen since others have reported

this amount is required for IL-1b to convert nTregs to Th17 cells

[39]. High dose IL-2 was avoided because this dose would stabilize

Foxp3 expression [54], and thus mask the inhibitory effects of IL-

1b and IL-6 on Foxp3+ Treg cells. Neither additional atRA nor

TGF-b was added to the iTregs.

Suppressive assays of CD4+ Treg cells in vitro and in vivo
The T cells were labeled with CFSE as previously described[8].

Various ratios of CD4+ conditioned T cells were added to CD25

depleted T cells (T responder cells) and stimulated with soluble

OKT3 (20 ng/ml) for 96 hours in the presence of irradiated (30

Gy) non-T cells (1:1 ratio). Cell division was monitored by levels of

CFSE dilution. The model to assess suppressor activity in vivo was

to protect mice from a rapidly fatal GVHD as described

previously[36]. Twenty million/0.2 ml CD25 depleted human

PBMC were injected IV into NOG mice sublethally irradiated

with 200cGy. Five6106 conditioned Treg or T control CD4+ cell

subsets stimulated with or without IL-1b and IL-6 were mixed

with 206106 PBMC and transferred to the mice. Other mice

received 56106 naive CD4+CD45RA+ cells + PBMC. The

animals were examined and weighed every two days for evidence

of GVHD. The mice were bled 2 weeks after cell injection and

human IgG in recipient sera was measured by an ELISA using a

human immunoglobulin assay kit (Bethyl, Montgomery, IL).

Histological examination of human mononuclear cell
engraftment in NOG mice

Since animals that received PBMC 6 non-Treg CD4+ cells died

between 14 and 16 days, another series of mice given similar cells

were all sacrificed at 15 days for a comparative histologic

evaluation of mice that received Treg or non-Treg cells. Peripheral

blood obtained by cardiac puncture, spleen, liver kidney, lung,

intestine and skin were harvested from recipient mice. Samples

were either fixed in formalin for histologic analysis, or collagenase

digested and subjected to Ficoll/Hypaque centrifugation to study

engrafted human mononuclear cells. After formaldehyde fixation,

paraffin sections were stained with hematoxylin and eosin. The

sections were scanned with a Duoscan T2000XL microscope, and

photos were taken with a Nikon 80i digital Camera.

Flow cytometric analysis
Single cells suspensions were stained with conjugated anti-

human lymphocyte antibodies indicated above. Percentages of

human CD4, CD8, NK and B cells in mouse tissues were

determined by gating on human anti-CD45+ cells. All analytic

flow cytometry was done on a modified dual laser LSRScan (BD

Immunocytometry Systems, San Diego, CA). For the membrane

bound TGF-b staining, each previously primed CD4+ cell subset

was restimulated with anti-CD3/CD28 beads (1:1) for 72 h, and

stained with anti-TGF-b or isotype control at 37uC for 4 h.

Statistical analysis
Differences in animal Kaplan-Meier survival curves were

analyzed by the log-rank test. Differences in proliferation and

phenotypes of T cells, FOXP3 expression, and serum IgG levels

were analyzed using the 2-tailed Student t test using Prism 4

software (San Diego, CA).

Supporting Information

Figure S1 Stability of homing receptors on Tregs
induced with atRA and TGF-b. AtRA/TGF-b-iTregs and

expanded nTregs were rested for 2 days and restimulated with

anti-CD3/28 beads for 3 days. The cells were then stained for

CCR4 and CCR7 and examined by flow cytometry for expression

of these chemokine receptors. This result was observed in three

separate experiments.

(TIF)

Figure S2 Suppressive activity by Tregs induced with
atRA and TGF-b can be abolished by anti-TGF-b
antibody. The various primed T cell subsets shown were tested

in an in vitro suppressive assay as described in Figure 5. In this

experiment the suppressive activity was abolished by anti-TGF-b.

(TIF)

Figure S3 Engraftment human cells in NOG mice 15
days after transfer CD4+ cells activated with TGF-b and
expanded nTreg cells. Hematoxylin and eosin sections of

organs from the mice indicated were prepared as described above

and compared with sections from control mice injected with PBS.

The result shown is representative of studies in three mice.

(TIF)

Figure S4 Effect of IL-1b and IL-6 on the phenotype of
iTregs and expanded nTregs. A) Histograms of Foxp3

expression by iTregs and nTregs at the conclusion of the primary

cultures and other markers after the Tregs were re-stimulated for 3

days6 IL-1b and IL-6. This experiment was repeated twice with

similar results.

(TIF)
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