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Abstract.
Background: Application of visual scoring scales for regional atrophy in Alzheimer’s disease (AD) in clinical settings is
limited by their high time cost and low intra/inter-rater agreement.
Objective: To provide automated atrophy scoring using objective volume driven from deep-learning segmentation methods
for AD subtype classification using magnetic resonance imaging (MRI).
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Methods: We enrolled 3,959 participants (1,732 cognitively normal [CN], 1594 with mild cognitive impairment [MCI],
and 633 with AD). The occupancy indices for each regional volume were calculated by dividing each volume by the size
of the lateral and inferior ventricular volumes. MR images from 355 participants (119 CN, 119 MCI, and 117 AD) from
three different centers were used for validation. Two neuroradiologists performed visual assessments of the medial temporal,
posterior, and global cortical atrophy scores in the frontal lobe using T1-weighted MR images. Images were also analyzed
using the deep learning-based segmentation software, Neurophet AQUA. Cutoff values for the three scores were determined
using the data distribution according to age. The scoring results were compared for consistency and reliability.
Results: Four volumetric-driven scoring results showed a high correlation with the visual scoring results for AD, MCI, and
CN. The overall agreement with human raters was weak-to-moderate for atrophy scoring in CN participants, and good-
to-almost perfect in AD and MCI participants. AD subtyping by automated scores also showed usefulness as a research
tool.
Conclusions: Determining AD subtypes using automated atrophy scoring for late-MCI and AD could be useful in clinical
settings or multicenter studies with large datasets.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common
form of dementia and involves a decline in mem-
ory, cognition, language, and activities of daily living.
With amyloid-targeting drugs currently on trial and
expected to be on the market soon, the identification
of AD biomarkers for adequate clinical interven-
tion is of growing interest to clinicians, researchers,
and public health service providers. To promptly
introduce precision-medicine treatments, increased
knowledge on the diverse subtypes of degenerative
dementia, including AD, is necessary. Moreover, for
the differential diagnosis of the degenerative demen-
tia subtypes, the range and combination of atrophy
findings across brain regions on brain magnetic res-
onance (MR) images are fundamental.

Brain magnetic resonance imaging (MRI) may
provide essential information for diagnosing the
etiology of dementia, also allowing to exclude sec-
ondary or reversible causes of dementia [1]. Thus,
several brain structures are known to present atrophy
earlier than others during the progression of AD, as
widely reported in several MRI studies [2, 3]. Pre-
vious studies have also reported that hippocampal
volume and cortical thinning in the entorhinal cor-
tex are highly sensitive measures of structural change
both in AD and mild cognitive impairment (MCI) [4,
5].

Brain atrophy scales, which are generally graded
visually by clinicians and radiologists, have been pro-
posed as an objective approach to quantify the degree
of atrophy. Brain atrophy scales if they could reflect
the actual clinical symptoms may be further utilized
to identify AD subtypes. Common visual rating scales
include the medial temporal atrophy (MTA) scale [6],

global cortical atrophy scale – frontal subscale (GCA-
F) [7], and posterior atrophy (PA) scale [8]. Prior
studies have also compared visual atrophy scores with
measured brain volume, cortical thickness, memory
performance, non-memory function, and disease pro-
gression [2, 9–17].

Automated atrophy scoring and MR image scoring
for identifying AD subtypes have several advantages
over the use of biomarkers extracted from the cere-
brospinal fluid and positron emission tomography
(PET) images. MRI is a non-invasive, more acces-
sible approach than other diagnostic approaches.
For example, cerebrospinal fluid biomarkers provide
a way to obtain Amyloid/Tau/Neurodegenerative
(A/T/N) biomarkers simultaneously; however, they
require an invasive procedure accompanied by cere-
brospinal fluid (CSF) lumbar tapping. The CSF
lumbar tapping procedure presents potential risks,
such as post-lumbar puncture headache, back dis-
comfort or pain, bleeding, and brainstem herniation.
PET images provide functional and early diagnostic
measurements non-invasively, and with higher relia-
bility; however, the disadvantages include the risks
associated with radiation exposure and high costs
[18]. In contrast, MR images can be obtained with-
out radiation exposure and have a relatively lower
cost than PET images [1].

Visual scoring, however, has low inter- and
intra-rater reliability and is a time-consuming and
labor-intensive task. Visual quantification of brain
volumes and measurement of cortical thickness can
differ, along with visual atrophy scale scoring, even
between neuroradiologists and dementia specialists.
These caveats can make it difficult for doctors to
trust the atrophy scales scored by others, and can also
be a barrier in integrating multi-rater or multi-center
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datasets. Hence, many efforts are ongoing to convert
conventional visual atrophy scoring into quantita-
tive measuring methods to help reduce the workload
and provide a higher degree of concordance. Further-
more, the utility of quantifiable and objective methods
could also be expanded to differentiate the four AD
subtypes of minimal atrophy, limbic-predominant,
hippocampal-sparing, and typical AD [19, 20].

The purpose of this study was to introduce an
automated rating approach for atrophy scales (MTA,
GCA-F, and PA scales) using volumetric measure-
ments. Integrable indices were used for quantification
and automation. We then validated our automated rat-
ing approach by comparing them with visual ratings
of MTA, GCA-F, and PA scales obtained from radi-
ologists. In addition, a comparison between human
raters and our method was provided, and appro-
priate cutoff values to differentiate between normal
and abnormal cases were described for each region.
Finally, we presented the implications of our method
for use in AD subtype classification based only on
volumetric atrophy information from MR images,
without the need to integrate any other modality data
or biomarkers.

METHODS

Study design overview

This study aimed to develop an automated atrophy
scoring system based on volumetric measurements
and utilized these scores for AD subtype classi-
fication. A total of 3,959 participants, including
cognitively normal (CN), MCI, and AD subjects,
were enrolled in the atrophy score development set.
Regional volumes were quantified, and occupancy
indices were calculated by normalizing each volume
against the sum of inferior lateral ventricular vol-
umes, which were then categorized into quintiles.
To validate our automated score, MR images from
355 participants across three different centers were
used. Visual assessments by neuroradiologists and
automated atrophy scoring using Neurophet AQUA
were compared for consistency and reliability, with
cutoff values determined based on age-related data
distributions and previous studies [21–23]. Subse-
quently, we compared the ability of identifying AD
subtypes using the atrophy scores by using previous
definitions [2] and comparing the neuroradiologists’
score-based subtypes and the automated score-based
subtypes. Our study flowchart is presented in Fig. 1.

Participants

In total, 3,959 participants were included in this
study for the development and validation groups in
seven different centers. The age range was between
20 and 110 years, and three diagnosis groups (CN,
n = 1,732; MCI, n = 1,594; and AD, n = 633) were
available. The validation dataset was also composed
of elderly participants, including CN, MCI, and AD
cases from three centers (The Catholic University
of Korea Yeouido St. Mary’s Hospital, SMG-SNU
Boramae Medical Center, and The Yonsei University
Severance Mental Health Hospital). For all centers,
the diagnosis groups were identified by all qualified
clinicians based on the National Institute on Aging
Alzheimer’s Association (NIA-AA) research criteria
for the probable disease group [24] for AD. Partici-
pants diagnosed with MCI according to Peterson’s
criteria reported memory impairment (considered
in the context of their age, education, and sex
by clinicians) or were reported to exhibit memory
impairments by a relative, with mostly intact function
of daily living and Clinical Dementia Rating (CDR)
of 0.5 [25–28]. The CN group had normal cognitive
function without any significant impairment in mem-
ory function assessed by word list memory, word list
recall, and word list recognition domains according
to their age, sex, and education status, and a CDR
score and Memory Box score of 0 [29].

This study has obtained Institutional Review Board
(IRB) approval from each individual center. The
development dataset was approved by Wonkwang
University Hospital (approval no. 2019-09-002-002),
the Catholic Aging Brain Imaging (CABI) database,
which holds brain MRI scans of patients enrolled
at the Catholic Brain Health Center, Yeouido St.
Mary’s Hospital, and Eunpyeong St. Mary’s Hospi-
tal at the Catholic University of Korea (approval no.
XC20RIDI0035V, PC20EISI0007, SC20RISI0198),
and Seoul National University Hospital (approval
no. D-2106-221-1233). The validation dataset was
approved by the IRB of Yonsei University Health
System (approval no. 1-2021-0025), Yeouido St.
Mary’s hospital (approval no. 2020-3348-0007), and
SMG-SNU Boramae Medical Center (approval no.
30-2020-325).

MR images acquisition and image processing

All brain MR images were collected using 3T 3D
T1-weighted images (T1-w) at individual centers.
Detailed parameters are described in Supplemen-
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Fig. 1. Flowchart of study pipeline. AD, Alzheimer’s diseases; MTA, medial temporal atrophy score; GCA-F, global cortical atrophy score
of the frontal lobe; PA, posterior atrophy score; HOC, hippocampus occupancy index; TOC, medial temporal lobe occupancy index; FOC,
frontal lobe occupancy index; POC, parietal lobe occupancy index; (–), normal; (+), abnormal.

tary Table 1. Brain volumes from the participants
were estimated using T1-w MR images with a
deep-learning-based MRI segmentation software,
Neurophet AQUA (Neurophet Inc., Seoul, Repub-
lic of Korea) version 2.1.4. Neurophet AQUA is
a brain MRI segmentation software based on the
deep-learning algorithm, the Split-attention U-net
(SAU-Net), as previously described [30]. Briefly,
regions of interest (ROIs) were defined based on
the Desikan–Killiany atlas as in FreeSurfer [31].
Neurophet AQUA was then trained with the ROI def-
initions reviewed and corrected by neuroradiologists.
The validation of the software was conducted through
comparison (dice overlap and the average symmet-
ric surface distance) on 22 major ROIs (in the two
hemispheres of cerebral gray matter, cerebral white
matter, cerebellum, lateral ventricle, caudate, accum-
bens, putamen, amygdala, hippocampus, pallidum,
and thalamus) and showed a higher performance
than that of well-known software FastSurfer [32] or
QuickNAT [33].

ROIs for volumetric estimation were based on the
radiologists’ visual assessment, referring to regions

decided based on discussion with psychologists.
Individual lobe definitions were as follows: medial
temporal lobe (entorhinal, parahippocampus, and
hippocampus), parietal lobe (inferior and superior
parietal, postcentral, precuneus, and supramarginal),
and frontal lobe (caudal and rostral middle frontal,
lateral and medial orbitofrontal, paracentral, pars
opercularis, pars orbitalis, pars triangularis, precen-
tral, superior frontal, and frontal pole) [2].

MR image visual assessment

Visual interpretation of the atrophy scale was
conducted by two radiologists (J.Y.K. and M.Y.L.)
in a blinded test without any patient information,
including diagnostic information, age, sex, or other
radiologists’ rating results. The atrophy score was
composed of three regional scores: MTA, PA, and
GCA-F. MTA scale scores are based on the degree
of atrophy in the medial temporal area, includ-
ing the hippocampus, parahippocampal gyrus, and
entorhinal cortex, divided by the size of inferior ven-
tricle. The PA scores in the posterior atrophy involve
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the posterior cingulate sulcus, precuneus, parieto-
occipital sulcus, and overall parietal cortex. Finally,
the GCA-F scores represent the frontal lobules sur-
rounding the central sulcus, frontal bone, and fissure
of Sylvius [34]. PA and GCA-F were composed of 0-
to-3 scales and considered the widening of the sulci
[35]. After the individual rating process was per-
formed, both radiologists determined the final visual
assessment result by discussion until an agreement
was reached.

Visual atrophy scores were converted into a binary
value considering age differences[21]. The MTA
score ranges from 0 to 4, GCA-F scores from 0 to
3, and PA scores from 0 to 3. The definition of an
abnormal MTA score varied according to age: abnor-
mal MTA scores were 1–3, 2–3, and 3 for the under
70 years, 70–80 years, and ≥80 years age groups,
respectively [21]. GCA-F and PA scores were defined
as abnormal when the value was above zero (GCA-F
or PA > 0) [34].

Development of automated atrophy scoring using
population distribution and abnormality.

To estimate the automatic regional atrophy scores,
we considered four occupancy indices [27]: the
frontal occupancy index (FOC), parietal occupancy
index (POC), temporal occupancy index (TOC), and
hippocampal occupancy index (HOC); using the fol-
lowing equation:

Occupancy indextarget region = mean(
Volumetarget region

Volumetarget region + VolumeInferior lateral ventericle

)
.

TOC, POC, and FOC were originated from the
HOC score, which is one of the features related
with hippocampal atrophy measurement. Once the
occupancy indices of the corresponding ROIs were
calculated, they were further categorized into quin-
tiles for automated regional atrophy scoring. These
quintile cutoffs were used for automatic regional
atrophy scoring from 0 to 4. All participants were
included in this analysis.

The automatic regional atrophy scores were then
further divided into normal and abnormal atro-
phy. The binary cutoff values according to age
for automatic regional atrophy scores were deter-
mined after investigating the distribution of four
occupancy indices (Fig. 2). The medial temporal
regional age cutoff value was set at 0 for participants
under 60 years of age, 1 for participants between
60 and 75 years of age, and 2 for those above 75
years of age. However, participants above 75 years

of age were assigned a lower cutoff value in the
frontal and posterior lobes (0 for those under 75
years, and 1 for those above 75 years). These age-
based cutoff values had been confirmed in previous
studies [21–23].

Subtyping in Alzheimer’s disease participants

In this study, AD cases were then divided into
four types (typical AD, limbic-predominant, mini-
mal atrophy, and hippocampal-sparing types) entirely
based on automated atrophy scoring. Those AD sub-
typing using volumetric features from MR images
which are independent from other clinical informa-
tion or neuropsychological status were suggested
previously [2]. In the previous study [2], the typi-
cal AD type was defined as participants with overall
atrophy pattern in the parietal, temporal, and frontal
cortices. The limbic-predominant type included those
participants with medial temporal lobe atrophy only
and normal posterior and frontal cortices. The min-
imal atrophy type included participants who did not
show any atrophy pattern in the lobes related to AD.
Within the minimal atrophy type, participants without
atrophy in the medial temporal cortices were catego-
rized into the hippocampal-sparing type. Following
those previous definitions for the subtypes, we uti-
lized our automated atrophy scoring of TOC, POC,
and FOC, which correspond to MTA, PA, and GCA-F.
For MTA, the TOC index was utilized instead of the
HOC index because the MTA score was estimated
using multiple correlations in the medial temporal,
hippocampus, and inferior horn of the lateral ventri-
cle [23]. In addition, we recruited patients with AD
and MCI who showed a CDR sum of boxes (SOB)
higher than 3.5 as a subtyping type.

Statistical analysis

We used a diverse statistical test to compare the
differences between each group for numeric variables
(an independent sample t-test, and one-way analysis
of variance (ANOVA) and the qualitative variables
(a chi-square test). After one-way ANOVA, the Bon-
ferroni correction was adopted for post-hoc analysis
[36] and a p-value <0.001 was considered signifi-
cant. Accuracy and Gwet’s AC2 [37] were conducted
to compare the visual ratings of the two radiologists
(JY. K and M.Y.L). Accuracy, sensitivity, and speci-
ficity are values that estimate the corrected sample
number compared to the total sample number. Gwet’s
AC2, a second-order agreement coefficient with ordi-
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Fig. 2. Distribution overview for four occupancy indices (TOC, HOC, POC, and FOC) according to age. For the <30, 31–49, 50–54, 55–59,
60–64, 65–69, 70–74, 75–79, and 80–100 age groups, the median age and median occupancy indices were plotted with quintiles (Q1, Q2,
Q3, and Q4 from the top to bottom as error bar). TOC, medial temporal lobe occupancy index; HOC, hippocampus occupancy index; POC,
parietal lobe occupancy index; FOC, frontal lobe occupancy index; CN, Cognitive normal; MCI, mild cognitive impairment; AD, Alzheimer’s
disease.

nal weighting applied, was shown to have a higher
inter-rater reliability coefficient and stable reliability
coefficient because it was established to overcome
the limitations of Cohen’s kappa [38] when score
properties were different between groups [39,40].
The probabilistic method for benchmarking, as sug-
gested by Gwet. The minimal inter-rater agreement
was 0.21–0.39 and 0.40–0.59, 0.60–0.79, 0.80–0.90,
and >0.90 as minimal, weak, moderate, strong, and
almost perfect [41, 42]. In addition, we used accuracy
and Gwet’s AC2 score as indicators of the agreement
between the two raters and the performance score
of the proposed atrophy scoring system compared to
the visual atrophy scores. All statistical analyses were
performed using R software version 3.6.3 and used
the following R packages: caret [43], irr [44], and
irrCAC [45] to compare the accuracy and inter-rater
reliability.

RESULTS

Patients demographics

The demographics of participants in the develop-
ment (N = 3,959) and validation (N = 355) datasets
are presented in Table 1. Patients in both datasets
showed similar mean age and sex distribution, while
the development dataset showed a wider age range
due to the inclusion of younger participants (<50
years, 206 participants, 1 AD, 8 MCI, and 197 CN)
(p = 0.003). There was no significant difference in the

Table 1
Demographics of the participants in the development and valida-

tion datasets

Development Validation
dataset dataset

Number of participants 3,959 355
Age, y 71.7 ± 12.3 73.1 ± 8.0
Female, % (N) 68.2% (2,702) 69.3% (246)

Cognitive type
AD, % (N) 16.0% (633)a 33.0% (117)a

MCI, % (N) 40.3% (1594) 33.5% (119)
CN, % (N) 43.7% (1732) 33.5% (119)

CN, cognitively normal group; AD, Alzheimer’s disease; MCI,
mild cognitive impairment. ap < 0.001 between CN and AD.

sex distribution between the development and valida-
tion datasets (p = 0.729). However, the cognitive-type
distribution showed a significant difference among
AD and CN patients (p < 0.001), but not among MCI
patients (p = 0.015). As expected, there were signif-
icant differences in age according to the diagnosis
group, both in the development dataset (p = 0.015)
and in the validation dataset (p < 0.001), with slightly
younger ages registered in the CN and MCI groups.

Correspondence between atrophy scores across
radiologists

The correspondence between the ratings of the two
radiologists estimated using the validation dataset
showed moderate similarity for all three atrophy
scores in Table 4. The accuracy of the atrophy
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scores between the two radiologists was 0.619, 0.627,
and 0.547 for MTA, GCA-F, and PA, respectively.
After dichotomizing the atrophy scores to normal
and abnormal groups using age-adjusted cutoffs, the
accuracy was improved to 0.834, 0.927, and 0.972,
respectively. While sensitivity was similarly high
across the three scores (0.791, 0.991, and 0.977),
specificity showed quite a different pattern between
MTA and PA or GCA-F (0.900, 0.207, 0.333, respec-
tively). In addition, Gwet’s AC2 was moderate in
MTA (0.673) and almost perfect in GCA-F and PA
(0.919 and 0.971).

Quantitative atrophy scoring using MR-driven
measurements

The distributions of the four regional occupancy
indices in our development dataset are shown in
Fig. 2. As expected, all the occupancy indices
decreased with age, since the volume of ROI also
decreases with age. In particular, AD patients showed
a faster decline in occupancy indices in TOC and
HOC, including MTA-specific regions, than MCI
or CN patients aged between 50 and 75 years. In
contrast, POC and FOC regions showed a relatively
moderate decline both with age and disease sever-
ity (Fig. 2). The four regional occupancy indices
showed significant differences among AD, MCI, and
CN patients (p < 0.001), and significantly decreased
with age (p < 0.001). As shown in Table 2, the mean
occupancy index significantly decreased from Q1 to
Q5 (p < 0.001). The largest difference was observed
for HOC (from 0.990 [Q1] to 0.742 [Q5]: –0.248),
and the smallest difference was observed for FOC
(from 0.999 [Q1] to 0.975 [Q5]: –0.024). Thresholds
for each occupancy index were determined by includ-
ing all CN participants and the age-specific cutoff
values suggested in previous studies [21–23].

Application of quantitative atrophy scoring

To demonstrate the clinical application of our
quantitative atrophy scoring system, the regional
atrophy score and the corresponding age-weighted
cutoff value were applied to our validation set. The
trend of the occupancy index in the validation set was
similar to that in the development set. The average of
four indices was negatively correlated with the visual
score, and the standard deviation increased with the
visual score. In the case of low occupancy indices,
we did not find any high atrophy scores determined
by the radiologists. In contrast, in the case of low
scores on the visual scale, a low occupancy index was
included for PA and GCA-F (Fig. 3 and Supplemen-
tary Table 2). In general, the association of GCA-F
with age was relatively gradual compared to that of
MTA or PA.

After converting the atrophy score to a
dichotomized abnormality score using age-
adjusted cutoffs, most of AD and MCI cases were
included in the abnormal group (Table 3). The
correspondence between the radiologists’ rating
and the automated score improved for all four
indices (Table 4). The highest accuracy and AC2
score corresponded to the score for the parietal
lobe (accuracy/AC2 : 0.876/0.853), while the low-
est values were registered for the temporal lobe
(accuracy/AC2 : 0.721/0.483). We selected the TOC
score from the medial temporal scoring index, and
discarded the HOC score in our further analysis
because of its lower accuracy, sensitivity, specificity,
and Gwet’s AC2 score.

Comparison of AD subtyping based on
radiologists’ score and volume-driven score

Atrophy scores derived from occupancy indices
and from radiologists’ rating were used to catego-
rize AD subtypes, as summarized in Table 5 and
Fig. 4. The minimal atrophy type was found in fewer

Table 2
Four regional occupancy indices summarized across quintiles for the development dataset including young and elderly cognitive normal

Q1 Q2 Q3 Q4 Q5

HOC 0.990 ± 0.005 0.969 ± 0.008 0.929 ± 0.015 0.870 ± 0.019 0.742 ± 0.081
TOC 0.995 ± 0.003 0.983 ± 0.005 0.959 ± 0.009 0.921 ± 0.013 0.829 ± 0.064
POC 0.999 ± 0.000 0.997 ± 0.001 0.993 ± 0.002 0.986 ± 0.003 0.966 ± 0.016
FOC 0.999 ± 0.000 0.998 ± 0.001 0.995 ± 0.001 0.990 ± 0.002 0.975 ± 0.012

Q1–Q5, Quintile range 1–5; HOC, hippocampus occupancy index; TOC, medial temporal lobe occupancy index; FOC, frontal lobe occupancy
index; POC, parietal lobe occupancy index.
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Fig. 3. Comparison of regional score data distribution between visual assessment (upper figures) and automated scores (bottom figures)
across regional occupancy indices. MTA, medial temporal atrophy score; GCA-F, global cortical atrophy score of the frontal lobe; PA,
posterior atrophy score; HOC, hippocampus occupancy index; TOC, medial temporal lobe occupancy index; FOC, frontal lobe occupancy
index; POC, parietal lobe occupancy index.

Table 3
Demographics across the occupancy index abnormality groups

TOCa HOCa

Normal Abnormal Normal Abnormal
N 118 237 116 239
Age (y) 70.5 ± 8.2 74.5 ± 7.6 70.1 ± 8.3 74.6 ± 7.5
Cognition types % (N)

AD 10.2 (12) 44.3 (105) 8.6 (10) 44.8 (107)
MCI 33.1 (39) 33.8 (80) 57.8 (67) 33.5 (80)
CN 56.8 (67) 21.9 (52) 33.6 (39) 21.8 (52)

POCb FOCb

Normal Abnormal Normal Abnormal
N 43 312 49 306
Age (y) 64.7 ± 7.5 74.3 ± 7.4 65.2 ± 7.5 74.4 ± 7.4
Cognition types % (N)

AD 4.7 (2) 36.9 (115) 6.1 (3) 37.3 (114)
MCI 23.3 (10) 34.9 (109) 26.5 (13) 34.6 (106)
CN 72.1 (31) 28.2 (88) 67.3 (33) 28.1 (86)

TOC, medial temporal lobe occupancy index; HOC, hippocampus occupancy index; POC, parietal lobe
occupancy index; FOC, frontal lobe occupancy index; AD, Alzheimer’s disease; MCI, mild cognitive
impairment; CN, cognitively normal. aNormal: Q0, Abnormal: Q1–Q5 for participants under 60 years;
Normal: Q0–Q1, Abnormal: Q2–Q5 for participants between 60 and 75 years; Normal: Q0–Q2, Abnor-
mal: Q3–Q5 for participants aged 75 years or above. bNormal: Q0, Abnormal: Q1–Q5 for participants
under 75 years; Normal: Q0–Q1, Abnormal: Q2–Q5 for participants over 75 years.

participants based on both the radiologists’ and the
quantitative scores, with one identification driven by
the radiologists and two by the occupancy indices.
Furthermore, patients with the minimal atrophy type
were younger than those in the cognitively nor-
mal control group (59.0 ± 5.7 and 63.0 years). The
hippocampal-sparing and typical AD types showed
significant age differences, Mini-Mental State Exam-
ination scores, and CDR SOB compared with the

control group (p < 0.001) in data-driven subtyping
results; however, age showed no significant dif-
ference in the radiologists-driven results. In the
subtyping results from the radiologists, the hip-
pocampal sparing type was older than the typical AD
type (p < 0.05). However, there were no significant
differences in sex, cognitive type, and apolipoprotein
E ε4 allele carrier status between the visual and vol-
ume scores predicted as reflecting the same subtype.
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Table 4
Comparison of sensitivity, specificity, accuracy, and Gwet’s AC2 score: 1) between raters, and 2) between methods (occupancy index and

visual assessment) after converting multiple scores to binary scores with disease group

Cognitive type
Visual rating AD MCI CN Total

Sen Spec ACC AC2 Sen Spec ACC AC2 Sen Spec ACC AC2 Sen Spec ACC AC2

MTA 0.812 1.000 0.863 0.751 0.808 0.891 0.840 0.688 0.737 0.855 0.798 0.600 0.791 0.900 0.834 0.673
GCA-F 1.000 1.000 1.000 1.000 0.991 0.300 0.933 0.924 0.980 0.059 0.850 0.820 0.991 0.207 0.927 0.919
PA – – 0.992 – 0.975 1.000 0.975 0.974 0.966 0.000 0.950 0.947 0.977 0.333 0.972 0.971

Occupancy index score vs. consensus visual rating

TOC vs. MTA 0.938 0.194 0.709 0.569 0.877 0.652 0.790 0.612 0.629 0.772 0.698 0.396 0.829 0.583 0.732 0.503
HOC vs. MTA 0.951 0.167 0.709 0.575 0.863 0.630 0.773 0.581 0.613 0.754 0.681 0.363 0.824 0.561 0.721 0.483
FOC vs. GCA-F 0.991 0.333 0.957 0.954 0.960 0.450 0.874 0.834 0.825 0.487 0.714 0.506 0.934 0.462 0.848 0.792
POC vs. PA 0.991 0.500 0.983 0.982 0.938 0.500 0.916 0.904 0.755 0.444 0.731 0.627 0.896 0.471 0.876 0.853

AD, Alzheimer’s disease group; MCI, mild cognitive impairment; CN, cognitive normal group; Sen, Sensitivity; Spec, Specificity; ACC,
Accuracy; AC2, Gwet’s AC2 score; MTA, medial temporal atrophy score; GCA-F, global cortical atrophy score of the frontal lobe; PA,
posterior atrophy score; HOC, hippocampus occupancy index; TOC, medial temporal lobe occupancy index; FOC, frontal lobe occupancy
index; POC, parietal lobe occupancy index.

Fig. 4. Comparison of Alzheimer’s disease (AD) subtype between visual assessment and automated scores. Age, CDR sum of boxes, and
MMSE scores were compared between four AD subtypes based on the quantitative approach (A–C) and visual scoring approach (D–F).
Occupancy and subtypes based on radiologists’ assessment exhibit a similar trend for age (A, D), CDR SOB (B, E), and MMSE scores
(C, F). The cognitively normal (CN) group is provided as a reference. ∗∗∗significantly different with p < 0.001. ∗significantly different with
p < 0.05. CN, Cognitive normal; MA, Minimal atrophy; HS, Hippocampal sparing; tAD, Typical Alzheimer’s disease; CDR SOB, Clinical
Dementia Rating Score Sum of Boxes.

DISCUSSION

We proposed an automated atrophy scoring
scheme based on quantified volumetric information
to provide objective and consistent scoring. In this
study, our automated atrophy scoring scheme incor-
porating the inferior lateral ventricle size showed

moderate-to-good agreement with the radiologists’
visual ratings and an enhanced correlation with age.
Furthermore, we showed that the cutoff value for
each atrophy score adjusted by age is better than that
without adjustment, because natural aging accompa-
nies brain atrophy to a certain degree. Our validation
dataset demonstrated the usefulness of our automated
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Table 5
Comparison of patients’ demographic information according to occupancy index-based atrophy and radiologist visual scores

Subtyping by atrophy score
CN Minimal Atrophy Hippocampal sparing Typical AD

N Auto. 119 2 11 108
Expert 1 36 84

Age (y) Auto. 70.0 ± 7.5 59.0 ± 5.7 76.1 ± 8.4a 76.8 ± 7.5a

Expert 63.0 ± NA 80.1 ± 6.7 75.1 ± 7.7
Diagnosis Auto. – 2/0 10/1 105/3
(AD/MCI) Expert 1/0 35/1 81/3
Sex (M/F) Auto. 32/87 (73.1%) 0/2 (100.0%) 2/9 (81.8%) 31/77 (71.3%)
(F %) Expert 0/1 (100.0%) 7/29 (80.6%) 26/58 (69.0%)
APOE E4 (%) Auto. 52/12/1 (20.0%) 1/1/0 (50.0%) 3/2/0 (40.0%) 39/20/5 (39.0%)a

E4 : 0/1/2 Expert 0/1/0 (100.0%) 10/3/1 (28.5%) 33/19/4 (41.0%)
CDR SOB Auto. 0.5 ± 0.6 6.0 ± NA 6.9 ± 3.5a 6.6 ± 2.9a

Expert 6.0 ± NA 6.2 ± 2.1a 6.8 ± 3.2a

MMSE Auto. 27.1 ± 2.4 16.5 ± 3.5 16.7 ± 6.1a 18.0 ± 5.1a

Expert 14.0 ± NA 18.4 ± 4.8a 17.6 ± 5.3a

HOC Auto. 0.919 ± 0.076 0.99 1 ± 0.003 0.932 ± 0.031 0.771 ± 0.117
Expert 0.988 ± NA 0.849 ± 0.071 0.762 ± 0.130

TOC Auto. 0.954 ± 0.046 0.995 ± 0.002 0.961 ± 0.019 0.852 ± 0.087
Expert 0.993 ± NA 0.911 ± 0.044 0.843 ± 0.097

FOC Auto. 0.995 ± 0.006 0.999 ± 0.0002 0.996 ± 0.002 0.982 ± 0.013
Expert 0.999 ± NA 0.990 ± 0.006 0.980 ± 0.014

POC Auto. 0.992 ± 0.008 0.999 ± 0.0003 0.994 ± 0.004 0.973 ± 0.018
Expert 0.999 ± NA 0.985 ± 0.008 0.971 ± 0.020

CN, cognitively normal group; AD, Alzheimer’s disease group; MCI, mild cognitive impairment; M/F, male/female; APOE E4, apolipoprotein
E ε4 allele; CDR SOB, clinical dementia rating sum of boxes; MMSE, Mini-Mental State Examination; HOC, hippocampus occupancy
index; TOC, medial temporal lobe occupancy index; FOC, frontal lobe occupancy index; POC, parietal lobe occupancy index. asignificant
difference with CN (p < 0.001).

scoring approach in classifying AD subtypes based
on MR-driven measurements. In addition, the results
of this study demonstrated that the patients in the AD
subtypes derived from our automated scoring method
share similar demographic characteristics, and that
our method shows reasonable classification results
as compared to a visual scoring approach.

The highest atrophy scores determined by experts
matched well the higher automated atrophy scores,
which had lower volumes. The high scores provided
by the radiologists consistently correlated with the
automated scores, while the low visual scores showed
some discrepancy due to the inclusion of high scores
from the automated scoring. Although HOC pre-
sented slightly lower correspondence against visual
scoring, both TOC and HOC, which are based on
different ROIs, shared a similar classification pattern
and could be used as MTA surrogates, as suggested
by previous studies [2, 22].

In general, our automated atrophy scores corre-
sponded well with the radiologists’ scores. Moreover,
our atrophy score was not significantly different from
the radiologist-driven visual assessment score in each
related region, that is, MTA, GCA-F, and PA. This
finding supports the hypothesis that volume-driven

atrophy scores could provide objective surrogates for
radiologists. This is consistent with previous studies
reporting a strong correlation between visual scoring
and brain measurements (of the cortical thickness and
hippocampal volume) when classifying AD subtypes
based on atrophy scores [2]. Typical AD showed
broad atrophy patterns in the frontal, parietal, and
temporal regions, including the hippocampus, while
the hippocampal-sparing type showed a statistically
significant difference only in hippocampal volume
compared to the CN group [2]. Previous AD subtyp-
ing using the cortical thinning pattern [46] was also
comparable to neuropsychological test results and
clinical characteristics. Taken together, these results
suggested that brain volume is highly related to cog-
nition and clinical symptoms.

We also showed that an age-specific cutoff value,
which was blinded to sex or any other clinical infor-
mation, could be important in determining the degree
of atrophy in the general population. This is because
we utilized a large population dataset with ages
ranging from 20 to 110 years. Furthermore, an age-
specific cutoff value was also implemented using
data including the heterogeneous cognitive states of
CN, MCI, and AD. We believe that our proposed
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automated atrophy scoring with the suggested age-
specific cutoff value is easily generalizable to a larger
population regardless of age, sex, and other clinical
information.

Our results indicate that AD subtypes determined
by volume-based atrophy scores showed trends sim-
ilar to those of clinical AD categorized using visual
atrophy rating scales. AD subtyping is mostly based
on tauopathy and atrophy pattern observations with
cognitive functional changes and clinical symptoms.
In our study, participants classified in the typical
AD type showed more severe atrophy in TOC and
HOC than CN participants, compared with other
subtypes. Both typical AD types, categorized either
automatically or based on radiologists’ assessment,
had smaller volumes in the medial temporal lobe
and hippocampal region than in the parietal or
frontal lobe [47–49]. Furthermore, participants in the
hippocampal-sparing type had a younger age distri-
bution than typical AD participants [50]. This finding
was similar to that for the clinical characteristics of
traditional AD subtypes and suggests that contiguous
AD subtypes related only to brain volume could be
applicable without other clinical criteria.

Visual assessment may be labor-intensive with
large inter- and intra-rater variations. In particular,
the challenge of reliable visual scoring of minimal-
to-moderate atrophy scores causes low inter-rater
correspondence. In our dataset, the visual scoring
results from two neuroradiologists showed moder-
ate agreement. To incorporate more consistent visual
scoring into our automated scoring system, we sought
to derive consensus scoring results from the two radi-
ologists. The final visual score was converted into a
binary score. There is a high correlation between the
concordance visual score and our data-driven atrophy
score without any agreement. This implies that atro-
phy scoring with visual assessment requires a high
ability from individual radiologists, and the auto-
mated volumetric score could support radiologists
with adequate reliability.

Compared with PET, MRI has several advan-
tages as it is inexpensive and does not require
radiation exposure. In addition to tauopathy and
neurodegeneration, a variety of biomarkers in AD
are systematically connected, and studies of MR
biomarkers need to be developed [51–55].

Limitations

One limitation of this study lies in the use of
MR-based measurements for AD classification. MR-

based atrophy features could only be used for
assessing the present situation or very-near future,
but not for early detection or for prevention. The AD
subtyping introduced in this study could be useful
for categorizing participants with advanced disease
status, such as late MCI and AD. In addition, our
study had small sample sizes to validate the sub-
typing results from MR-based automated atrophy
scoring. Our validation data only included three types
(hippocampal-sparing, minimal atrophy, and typical
AD) and did not include the limbic-predominant type,
which was suggested to also exist by the MRI-based
measurements [2, 46]. There were also only one or
two participants with minimal atrophy at younger
ages. Furthermore, disease progression or severity,
two of the most important features in AD, could not
be assessed due to the absence of longitudinal or amy-
loidosis and tauopathy datasets. Comparison with
conventional biomarkers, namely CSF amyloid-β, p-
tau, and t-tau levels, and amyloid, tau, and FDG PET,
should be pursued in future studies. Age-specific cut-
off values were comprehensively considered using
large-scale data from previous studies [21, 22, 34,
56–58], which were heterogeneous. In previous stud-
ies, age thresholds for the MTA score were considered
at 75 or 80 years [22, 56, 57]; however, Korean [21]
and Chinese [58] studies described younger and more
precise age ranges. In particular, the government’s
public health policy on dementia in Korea was sys-
tematically implemented in 2008 [59] based on the
prominent public health care system [60] that could
affect the careful observation of clinicians and the
attention of elderly people. Of course, changes in
brain volume could be affected by differences in race
or environment, and future studies should compare
more diverse populations. Finally, only two radiolo-
gists undertook the visual assessment, and there were
several difficulties, including the high time cost, cum-
bersome visual assessment task in each region and
across scales, and the uncertainty among radiologists.

CONCLUSION

This study suggested that our new automated atro-
phy scoring system could offer comparable results to
those obtained from human raters with multiple and
binary scores in the medial temporal, parietal, and
frontal lobes. In the future, an AD subtype study could
be conducted using a larger number of population
datasets.
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