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Abstract
Seizure	prediction	may	be	 the	solution	 for	epileptic	patients	whose	drugs	and	
surgery	do	not	control	 seizures.	Despite	46 years	of	 research,	 few	devices/sys-
tems	underwent	clinical	 trials	and/or	are	commercialized,	where	 the	most	re-
cent	 state-	of-	the-	art	 approaches,	 as	 neural	 networks	 models,	 are	 not	 used	 to	
their	 full	 potential.	 The	 latter	 demonstrates	 the	 existence	 of	 social	 barriers	 to	
new	methodologies	due	to	data	bias,	patient	safety,	and	legislation	compliance.	
In	the	form	of	literature	review,	we	performed	a	qualitative	study	to	analyze	the	
seizure	prediction	ecosystem	 to	 find	 these	 social	barriers.	With	 the	Grounded	
Theory,	we	draw	hypotheses	from	data,	while	with	the	Actor-	Network	Theory	
we	considered	that	technology	shapes	social	configurations	and	interests,	being	
fundamental	in	healthcare.	We	obtained	a	social	network	that	describes	the	eco-
system	and	propose	research	guidelines	aiming	at	clinical	acceptance.	Our	most	
relevant	conclusion	is	the	need	for	model	explainability,	but	not	necessarily	in-
trinsically	interpretable	models,	for	the	case	of	seizure	prediction.	Accordingly,	
we	argue	that	it	is	possible	to	develop	robust	prediction	models,	including	black-	
box	systems	 to	 some	extent,	while	avoiding	data	bias,	ensuring	patient	 safety,	
and	still	complying	with	legislation,	if	they	can	deliver	human-		comprehensible	
explanations.	Due	 to	 skepticism	and	patient	 safety	 reasons,	many	authors	ad-
vocate	 the	 use	 of	 transparent	 models	 which	 may	 limit	 their	 performance	 and	
potential.	Our	study	highlights	a	possible	path,	by	using	model	explainability,	on	
how	to	overcome	these	barriers	while	allowing	the	use	of	more	computationally	
robust	models.
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1 |  INTRODUCTION

Despite	antiepileptic	drugs	and	surgical	treatments,	more	
than	20	million	people	suffer	from	uncontrolled	epileptic	
seizures,	 bringing	 social	 and	 economic	 impact.	 Patients	
may	suffer	from	discrimination	and	stigma	along	with	sig-
nificant	health	care	needs,	loss	of	productivity,	and	death.	
A	 solution	 for	 uncontrolled	 seizures	 might	 come	 from	
prediction,1–	4	 as	 its	 timely	 anticipation	 opens	 the	 way	
to	 several	 seizure	 control	 strategies,	 such	 as:	 (a)	 closed-	
loop	systems	that	trigger	drug	delivery	or	electrical	brain	
stimulation;	 (b)	warning	devices	 that	 inform	the	patient	
to	prevent	accidents	(eg,	falling	from	stairs)	and/or	to	self-	
administer	rescue	medication.5–	7

Although	 seizure	 prediction	 research	 started	 in	 the	
1970s	 through	 electroencephalogram	 (EEG)	 analysis,8–	10	
few	 predictive	 devices11	 and	 closed-	loop	 systems12	 have	
been	clinically	approved	for	trial.	Additionally,	these	were	
based	on	"detection	features	alone"	(line-	length,	bandpass,	
and	energy-	related),13	which	may	be	less	robust	than	cur-
rent	 state-	of-	the-	art	approaches.9	 In	 fact,	an	overview	of	
current	 research	 uncovers	 the	 existence	 of	 major	 multi-
disciplinary	 barriers.9,14	 For	 instance,	 to	 develop	 a	 trust-
ful,	robust,	and	commercial	solution	one	needs	to	handle	
expectations	and	beliefs	from	all	actors	of	this	ecosystem:	
technology	and	data	scientists,	clinicians,	industry,	legis-
lation,	ethics,	and	patients.14–	17

In	the	form	of	review,	we	inspected	the	seizure	predic-
tion	literature	to	understand	the	social	difficulties,	based	
on	 the	 Grounded	Theory	 (GT)18	 and	 the	 Actor-	Network	
Theory	(ANT).19	GT	is	a	standard	methodology	applied	in	
qualitative	 research	 where	 researchers	 draw	 hypotheses	
from	data:	unlike	most	quantitative	methods,	data	collec-
tion	is	not	part	of	a	process	to	test	a	preexisting	hypothesis.	
In	short,	it	is	the	identification,	and	iterative	refinement	of	
relevant	subjects	from	data.18,20	ANT	main	characteristics	
are	its	focus	on	inanimate	entities	and	subsequent	effects	
on	social	processes.	Technology	emerges	from	social	inter-
ests	and	configures	social	interactions	instead	of	handling	
technology	as	an	external	force.	Thus,	ANT	can	be	useful	
for	studying	 information	technology	 implementations	 in	
healthcare	settings.19

We	present	here	a	social	network21	that	describes	the	re-
lations	between	all	actors.	By	using	encapsulation,	we	can	
deliver	a	more	general	overview	while	deepening	techni-
cal	aspects	that	can	be	accessed	individually.	Furthermore,	
we	explored	how	and	why	this	ecosystem	operates	like	it	
does,	which	helped	to	unravel	paths	that	may	lead	to	the	
successful	development	of	new	seizure	prediction	devices.	
Our	 main	 conclusion	 is	 that	 trust	 plays	 a	 fundamental	
role	in	increasing	the	number	of	clinically	approved	stud-
ies	 and	 subsequent	 commercial	 devices.	 The	 absence	 of	
an	explanation	 for	black-	box	decision	models,	 especially	

when	they	fail,	leads	researchers	to	question	and	mistrust	
its	use,	and	thus	rising	skepticism.	This	is	the	reason	why	
some	authors	argue	the	use	of	only	interpretable	models.22

However,	 for	 the	 specific	 case	 of	 seizure	 prediction,	
we	believe	that	efforts	should	focus	on	explainability	(and	
not	necessarily	on	intrinsically	interpretable	models)	as	it	
is	 sufficient	 to	 reinforce	 trust,	 patient	 safety,	 ethics,	 and	
compliance	 with	 applicable	 law	 and	 industry	 standards.	
Explainability	may	be	 the	key	aspect	 that	allows	 the	en-
trance	of	promising	deep	learning	approaches	in	clinical	
practice,	as	these	hold	great	potential.	Note	that	interpret-
ability	 and	 explainability	 are	 different	 concepts.23	While	
the	 former	 regards	 the	 extent	 to	 which	 a	 system	 output	
can	be	predicted	by	a	given	input,	which	is	clear	by	using	
intrinsically	 interpretable	 models	 with	 a	 reduced	 set	 of	
features,	explainability	concerns	how	to	explain	the	deci-
sions	that	were	made.

By	 providing	 a	 social	 understanding	 and	 guidelines	
for	effective	communication	between	actors,	we	hope	this	
work	 contributes	 toward	 new	 clinically	 trusted	 method-
ologies,	 particularly	 for	 the	 work	 of	 those	 who	 develop	
software	seizure	prediction	approaches,	so	that	they	have	
a	higher	chance	of	clinical	acceptance.	Conversely,	it	may	
also	help	clinicians	 to	understand	this	software	research	
area.	Although	these	guidelines	may	have	been	implicitly	
used	 by	 the	 academic	 community	 for	 several	 years,	 we	
believe	 that	 their	 formalization	 is	 interesting	and	partic-
ularly	useful.

2 |  MATERIALS AND METHODS

We	 can	 divide	 the	 used	 methodology	 into	 five	 stages	
(see	Figure 1).	Firstly,	we	choose	studies	from	the	litera-
ture	 that	 we	 considered	 significantly	 relevant	 and	 that	

Key points

•	 This	paper	aims	at	providing	 solutions	 for	 re-
searchers	 to	 develop	 new	 prediction	 method-
ologies	with	higher	rates	of	clinical	acceptance

•	 We	built	a	social	network	of	the	seizure	predic-
tion	ecosystem	to	obtain	an	overall	view	while	
grasping	the	existing	social	barriers

•	 Our	greatest	finding	is	a	possible	answer	to	the	
clinical	use	of	deep	learning	approaches

•	 It	is	possible	to	develop	clinically	accepted	deep	
learning	approaches,	to	some	extent,	if	authors	
deliver	human-	comprehensible	explanations
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addressed	 seizure	 prediction	 models,	 patients'	 point	 of	
view,	legislation,	and	algorithm	explainability.

Secondly,	based	on	the	latter,	we	developed	a	social	net-
work	model	until	reaching	saturation	or	more	specifically,	
until	we	did	not	find	more	actors	or	relations.	Additionally,	
when	actors	and	relations	emerged	from	referenced	stud-
ies	in	the	selected	papers,	we	also	inspected	those	to	cer-
tify	that	saturation	occurred.	Thirdly,	we	refined	the	social	
network	 with	 our	 knowledge	 derived	 from	 seizure	 pre-
diction,	 where	 we	 redefined	 relations	 and	 encapsulated	
actors.	 Fourthly,	 we	 studied	 the	 obtained	 network	 and	
discussed	the	future	of	seizure	prediction	and	possible	de-
vices	for	patients.	In	this	discussion,	we	attempted	to	list	
several	questions	that	we	found	relevant.	Other	topics	and	
studies	also	arose	in	this	discussion	with	all	authors	and	
reviewers,	which	led	us	to	select	more	papers	(please	see	
in	 File	 S1	 the	 “Paper	 Route”	 section	 to	 understand	 how	
all	papers	were	selected).	Finally,	we	chose	four	guidelines	
we	found	crucial	for	the	faster	progress	toward	new	clini-
cally	accepted	studies.

2.1 | Choosing initial literature

Our	 starting	 materials	 were	 the	 published	 literature	
on	 seizure	 prediction,	 as	 this	 research	 field	 has	 almost	
46  years	 of	 existence.	 We	 chose	 three	 surveys8,13,14	 that	
provided	an	overall	vision	of	past,	present,	and	future	of	
seizure	prediction.	These	present	a	critic	view	of	the	area.	

Additionally,	 we	 chose	 a	 survey16	 on	 seizure	 detection	
and	 prediction	 devices,	 and	 one	 article17	 presenting	 the	
Drug-	Resistant	Epilepsy	(DRE)	patients’	view	on	seizure	
intervention	devices.	Finally,	as	we	have	a	biomedical	en-
gineering	background	and	machine	learning	background,	
we	 chose	 a	 book	 on	 interpretable	 machine	 learning,29	
available	online,	as	we	were	previously	aware	of	some	of	
the	 importance	of	 interpretability/explainability.	Despite	
our	 awareness	 to	 the	 importance	 of	 interpretability/
explainability	 importance,	 note	 that	 we	 did	 not	 know,	
beforehand,	which	would	be	the	one	required	(interpret-
ability	or	explainability)	for	this	specific	case.	These	ma-
terials	were	analyzed	in	the	order	they	are	referenced	in	
this	paragraph.	We	consider	that	this	stage	(choosing	the	
initial	literature)	may	be	the	one	leading	to	greater	discus-
sion	among	seizure	prediction	experts.

2.2 | Network creation

We	created	a	social	network	because	it	provides	a	power-	
model	for	social	structure.	The	concept	of	a	network	here	
is	 a	 set	 of	 points	 (actors,	 who	 can	 be	 individuals	 or	 col-
lective)	 connected	 by	 lines	 (relations).	 Our	 goal	 was	 to	
describe	 these	 relations	 and	 explain	 the	 patterns	 found.	
Constructing	 a	 network	 is	 not	 a	 theoretically	 neutral	
task,	 as	 it	 depends	 on	 the	 intellectual	 judgement	 of	 the	
researcher.21	 To	 help	 us	 structure	 the	 network	 develop-
ment,	we	based	our	literature	analysis	in	GT	and	ANT.	We	

F I G U R E  1  The	five-	stage	methodology	followed	in	this	work.	Icons	obtained	from	Refs	[24–	28]
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provide	some	of	the	iterations	of	the	developed	network,	
in	 "Social	network	 iteration	and	 refinement	details"	 sec-
tion	from	File	S1.

Grounded	theory	is	an	inductive	process	that	has	con-
tributed	 to	 a	 large	 acceptance	 of	 qualitative	 methods	 in	
several	social	sciences.18	Its	 fundamental	premise	 is	 that	
researchers	 must	 develop	 a	 theory	 from	 empirical	 data.	
Thus,	 its	 overall	 process	 consists	 in	 the	 codification	 of	
gathered	data	and	identification	of	emerging	themes,	and	
consequent	 development	 throughout	 further	 data	 col-
lection.30	Coded	data	are	 commonly	 short	 statements	or	
words	that	capture	the	meaning	of	phrases	and	are	used	to	
index	data	and	group	ideas.

Additionally,	we	used	concepts	of	ANT	simultaneously	
with	 GT.	 Thus,	 we	 did	 not	 use	 GT	 to	 search	 traditional	
themes,	but	rather	to	search	for	socio-	technical	actors	and	
their	relations.	With	these,	we	built	a	social	network.	The	
GT	 analysis	 was	 iterative	 and	 performed	 until	 reaching	
saturation.	More	particularly,	it	stopped	when	new	actors	
or	relations	were	not	found.18

Although	 GT	 develops	 theories	 from	 rigorous	 data	
gathering,	 the	 research	 process	 requires	 a	 certain	 sensi-
tivity.18,31	We	 stress	 that	 the	 researcher	 experience	 heav-
ily	influences	the	data	codification	and	the	emergence	of	
themes	and	ideas.	Therefore,	main	criticism	on	this	 the-
ory	 is	 the	 possible	 introduction	 of	 bias,	 given	 that	 truly	
inductive	analysis	may	not	be	achievable.	We	are	limited	
by	prior	knowledge	and	or	applications.	Due	 to	 this,	we	
stress	our	background	experience	in	developing	machine	
learning	 pipelines	 for	 healthcare,	 particularly	 in	 seizure	
prediction.18

Actor-	Network	theory	is	a	sociological	approach	to	un-
derstand	humans	and	their	interaction	with	technology	
in	specific	settings.	Its	main	characteristic	is	symmetry,	
which	 treats	 equally	 human	 and	 nonhuman	 objects.32	
It	 is	a	 framework	based	on	 the	 following	concepts19,33:	
(a)	 actors,	 the	 participants	 in	 the	 network	 which	 are	
human	and	nonhuman	objects;	(b)	heterogeneity,	each	
actor	 importance	 is	 given	 by	 the	 web	 of	 relations;	 (c)	
quasi-	objects,	the	successful	outcomes	which	pass	from	
actor	 to	actor	within	 the	network;	 (d)	punctualization,	
a	similar	concept	 to	abstraction	 in	object-	oriented	pro-
gramming,	referred	here	as	encapsulation;	(e)	obligatory	
passage	point,	situations	that	have	to	occur	for	all	actors	
to	satisfy	the	interests	of	 the	network;	and	(f)	 irrevers-
ibility,	wherein	healthcare	is	not	likely	to	occur	due	do	
the	importance	of	developing	robust	and	effective	stud-
ies	to	maintain	patient	safety.

At	 its	 heart,	 ANT	 tackles	 the	 notion	 of	 an	 organiza-
tional	identity.33	Thus,	we	used	it	to	guide	our	analysis	to	
investigate,	 understand,	 and	 explain	 the	 processes	 that	
influence	 and	 lead	 to	 the	 development	 of	 clinically	 ap-
proved	studies	for	seizure	prediction.34	Some	criticisms19	

on	 ANT	 are	 that	 it	 may	 be	 too	 descriptive.	 Moreover,	 it	
fails	in	delivering	any	definitive	explanation	or	approach	
that	 best	 handles	 the	 studied	 actors	 and	 relations.	 Due	
to	 this,	 we	 applied	 the	 social	 network	 concept	 to	 make	
it	 more	 intuitive.	 Other	 limitations	 of	 ANT	 is	 that	 it	
fails	 to	 handle	 human	 intentions,	 morals,	 backgrounds,	
and	 previous	 experiences	 of	 human	 actors.	 This	 was	
one	 of	 the	 reasons	 why	 we	 highlight	 the	 importance	 of	
explainability.	 Nevertheless,	 we	 are	 aware	 that	 a	 given	
explanation	 will	 depend	 on	 these.	 Although	 we	 did	 not	
tackle	 these	 directly,	 rigorous	 explainability	 evaluation	
on	 the	 application	 and	 human	 levels	 might	 account	 for	
them.

2.3 | Network refinement

After	the	social	network	reached	saturation,	we	encoun-
tered	a	complex	structure	with	many	actors	and	relations.	
The	 network	 could	 not	 be	 delivered	 in	 that	 form,	 as	 it	
was	not	intuitive.	Thus,	we	decided	to	refine	the	network	
based	 on	 our	 prior	 seizure	 prediction	 experience.	 This	
process	was	also	motivated	by	the	mentioned	dependence	
on	 researcher	 sensitivity,	 and	 punctualization	 (encapsu-
lation)	 concept.	 We	 believe	 that	 our	 inexperience	 in	 so-
cial	sciences	could	have	derived	some	of	these	problems.	
These	 could	 have	 been	 overcome	 differently	 by	 experi-
enced	researchers	in	social	sciences,	as	they	have	a	higher	
understanding	of	ANT	stages	such	as	inscription,	transla-
tion,	and	framing.

As	previously	stated	in	this	paper,	we	redefined	certain	
relations	such	as	the	ones	that	concern	brain	assumptions,	
confounding	 factors,	 performance,	 and	 trust.	 We	 per-
formed	these	until	reaching	saturation.	We	also	grouped	
the	actors	in	colors	concerning	themes	we	found	intuitive:	
signal	acquisition	and	life-	related	(blue),	studies	(orange),	
people	and	exchanging	beliefs	(yellow),	prospective	appli-
cations	(green),	and	brain	dynamics	that	trigger	seizures	
and	how	to	capture	its	data	(red).

2.4 | Network study

Then,	 we	 discussed	 the	 network	 to	 make	 it	 robust	 and	
detect	 possible	 conflicts,	 irregularities,	 and	 missing	 ac-
tors/relations.	 Note	 that	 ANT	 investigates	 the	 descrip-
tion	of	the	relations,	how	a	network	comes	to	being,	and	
how	 it	 temporarily	 holds.	 The	 addition	 or	 removal	 of	
an	 actor	 significantly	 affects	 the	 network.	 Thus,	 it	 may	
fail	when	dealing	with	changes	by	focusing	on	a	stability	
situation.

As	 the	 seizure	 prediction	 experience	 from	 authors	
contributes	 to	 this	 work,	 we	 stress	 that	 the	 outcome	
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might	differ	among	researchers.	Others	may	include	dif-
ferent	 initial	 articles	 and	 or	 perform	 differently	 on	 data	
codification,	 network	 refinement,	 and	 encapsulation.	
Additionally,	it	is	relevant	to	remember	that	the	network	
is	 permanently	 evolving	 as	 our	 social	 reality	 is	 always	
changing	and	is	complex.19

Due	to	the	particular	importance	of	assumptions	state-
ment	 on	 brain	 dynamics,	 we	 also	 discussed	 them	 until	
reaching	 consensus.	 To	 be	 more	 precise,	 one	 researcher	
performed	 the	 initial	 codification	 and	 created	 the	 net-
work.	Then,	the	network	was	presented	to	all	team	mem-
bers	separately.	Each	member	discussed	the	network	with	
the	 researcher	 that	 performed	 the	 initial	 codification.	
These	 discussions	 had	 as	 many	 iterations	 as	 necessary	
until	 all	 disagreements	 were	 solved.	 Finally,	 based	 on	
the	social	network,	we	questioned	ourselves	on	probable	
paths	 for	 seizure	 prediction	 future	 where	 several	 ques-
tions	arose.

2.5 | Guidelines development

At	 last,	 we	 agreed	 on	 four	 guidelines	 that	 may	 lead	 to	
progress	 in	 this	area.	These	were	based	on	 the	obtained	
network,	 its	 development,	 and	 seizure	 prediction	 future	
discussion.

2.6 | Interactive presentation

In	 the	 end,	 we	 developed	 an	 interactive	 presentation	
provided	 in	 File	 S2	 Interactive	 Presentation	 and	 in	 File	
S3	Interactive	Light	Presentation.	It	allows	the	reader	to	
explore	 the	 ecosystem	 and	 to	 better	 understand	 the	 en-
capsulation	of	the	network.	We	also	present	there	a	sim-
plified	 version	 of	 a	 seizure	 prediction	 product	 process,	
from	presurgical	monitoring	acquisition	until	prospective	
application	development.	Also,	the	reader	is	allowed	to	in-
teractively	explore	the	whole	ecosystem.

3 |  RESULTS

We	present	here	a	summarized	version	of	the	seizure	pre-
diction	 ecosystem,	 which	 is	 shown	 chronologically,	 and	
our	proposed	guidelines.	In	File	S1,	we	provide	the	social	
network	 in	 an	 interactive	 presentation,	 where	 encapsu-
lation	 aspects,	 other	 details,	 and	 a	 step-	by-	step	 product	
design	explanation	are	more	intuitive.	Thus,	the	reader	is	
allowed	to	 interactively	explore	 the	whole	ecosystem.	In	
addition,	we	also	focus	here	on	the	findings	that	relate	to	
clinical	trials,	explainability,	and	interpretability.

3.1 | Seizure prediction ecosystem

Figure  2	 depicts	 the	 obtained	 social	 network,	 which	 de-
scribes	the	relations	between	actors.	Actors	(x)	and	rela-
tions	(x- y)	are	named	with	numbers	and	grouped	in	colors	
to	provide	a	better	understanding.	We	will	explain	these	
relations	 throughout	 this	 section	 while	 deepening	 parts	
that	require	more	detail.	In	the	end,	we	provide	guidelines	
to	help	authors	design	their	research.

We	begin	with	a	DRE	patient	(1).	Years	after	diagnosed	
with	 DRE,	 a	 patient	 is	 referred	 to	 an	 epilepsy	 center	 to	
undergo	presurgical	monitoring	(5).	The	EEG	signal	(4)	is	
acquired	to	inspect	brain	activity	to	localize	the	epileptic	
focus.	If	easily	localized,	removing	the	epileptic	region	is	
a	possible	solution.8,35	These	data	will	be	stored	and	con-
stitute	retrospective	data	(7).	Most	of	the	databases	avail-
able	to	perform	academic	studies	(8)	concerns	presurgical	
monitoring	conditions.

Studies	 try	 to	 capture	 and	 understand	 brain	 dynam-
ics	with	the	goal	of	predicting	seizures	(8···4).	Inevitably,	
we	make	several	assumptions	(see	"Assumptions"	section	
in	File	S1	 for	more	 information)	when	we	design	a	new	
study.	These	may	result	from	the	used	mathematical	mod-
els,	available	data	and	other	limitations,	or	even	reflect	the	
researcher	knowledge	concerning	brain	dynamics	(8···4).	
These	 studies	 must	 also	 envision	 a	 real	 application	 sce-
nario	by	simulating	a	prospective	scenario	(8···15).	To	do	
this,	 studies	 must	 then	 comply	 with	 some	 requirements	
(9),	have	appropriate	design	parameters	 (10)	 concerning	
the	real	application,	propose	a	discriminative	model	(11),	
and	discuss	its	performance	(12).	Model	design	(19)	is	one	
of	the	most	explored	sections	(we	include	here	preprocess-
ing,	feature	extraction,	and	model	training).	A	model	can	
be	 characterized	 according	 to	 computational	 complexity	
(18)	and	abstraction	level	(20).

To	 start	 a	 clinical	 trial,	 we	 also	 need	 trust	 (13).	 Data	
scientists	 and	 clinicians	 need	 to	 find	 a	 given	 methodol-
ogy	trustworthy.	We	need	to	ensure	patient	safety,	model	
robustness,	 and	 avoid	 bias.	Thus,	 high	 performance	 is	 a	
necessary	condition	(12→13),	but	it	is	not	enough.	We	also	
need	to	explain	our	model's	decisions	(19→13),	to	ensure	
safety	and	model	effectiveness.	Note	that,	for	the	case	of	
seizure	prediction,	we	need	 to	know	how	 to	explain	 the	
model's	decision,	but	we	may	not	necessarily	need	intrin-
sically	 interpretable	models,	as	seen	 in	 the	next	sections	
with	the	Neurovista	Advisory	System.11

For	 clinical	 trials,	 we	 argue	 the	 possibility	 of	 using	
complex	prediction	models,	 including	black-	box	systems	
to	some	extent,	if	authors	provide	efforts	on	avoiding	data	
bias,	ensuring	patient	safety,	and	explaining	their	models’	
decisions.	 Furthermore,	 explanations	 not	 only	 increase	
trust	 and	 mitigate	 skepticism	 on	 artificial	 intelligence	
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F I G U R E  2  The	relations	between	the	major	actors	of	epilepsy	seizure	prediction	ecosystem.	All	actors	are	numbered	to	provide	an	
intuition	regarding	the	first	steps	to	consider	when	developing	seizure	prediction	systems.	G1,	G2,	G3,	and	G3	are	the	proposed	guidelines
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algorithms,	but	 they	can	also	deliver	new	knowledge	on	
brain	dynamics	(19···4).

Concerning	 legislation	 (17),	 the	 2018	 General	 Data	
Protection	Regulation	(GDPR)15	and	the	more	recent	2021	
European	Union	Medical	Devices	Regulation	(EU	MDR)36	
also	promote	the	delivery	of	model	explanations	(not	nec-
essarily	intrinsically	interpretable	models).	Article	22	and	
rule	11	from	GDPR	and	EMD,	respectively,	are	clear	exam-
ples.	Current	legislation	should	be	seen	as	a	reinforcement	
of	safe	methodologies,	that	considers	patient's	needs	and	
well-	being	 (13→17).	 When	 data	 scientists	 and	 clinicians	
trust	the	proposed	methodology,	the	ethics	committee	can	
accept	a	clinical	trial	(13→3).	In	this	case,	patients	are	in-
vited	to	participate	in	clinical	trials	(16→3).

After	 the	 ethics	 committee	 approval	 and	 patients’	
agreement	to	volunteer,	a	clinical	trial	starts.	The	prospec-
tive	data	(14)	later	becomes	retrospective	(7)	and	is	used	
in	an	indefinite	number	of	studies.	With	the	prospective	
data,	we	can	use	intervention	in	real-		time.	By	timely	an-
ticipating	a	seizure,	we	can	trigger	an	intervention.	To	do	
this,	 we	 need	 to	 guarantee	 that	 the	 false-	positive	 inter-
ventions	are	not	harmful	to	the	patient	(16→15)	and	com-
munity.	The	 intervention	 must	 also	 comply	 with	 all	 the	
industry	standards	and	safety	measures	(17).	It	must	have	
fast	processing,	do	not	have	hardware	problems,	and	be	of	
easy	placement	and	removal.

3.2 | Studies guidelines

By	 describing	 and	 discussing	 all	 relations,	 we	 inferred	
four	 guidelines	 that	 may	 help	 authors	 in	 guiding	 their	
research	 on	 seizure	 prediction.	 Figure  3	 depicts	 a	 pro-
duction	process	of	a	hypothetical	device.	Firstly,	authors	
perform	 studies	 with	 retrospective	 data,	 in	 which	 they	
evaluate	 performance	 and	 the	 quality	 of	 given	 explana-
tions.	Clinicians	and	data	scientists	trust	models'	decisions	
when	 these	 are	 human-	comprehensible,	 also	 increasing	
the	confidence	of	the	volunteering	patients.	In	this	case,	
an	ethics	committee	may	have	strong	reasons	to	approve	
a	prospective	study	with	an	intervention	system.	Finally,	
the	built	device	reaches	its	goal:	improve	the	life	of	DRE	
patients.

The	first	guideline	(G1)	concerns	undertaken	assump-
tions	on	brain	dynamics,	which	differ	between	studies	due	
to	available	data	and	used	methodology.	Authors	should	
state	 their	assumptions	regarding	brain	dynamics	before	
presenting	 the	mathematical	 tools	used	 in	data	analysis.	
Experienced	researchers	may	understand	what	is	at	stake.	
However,	others	may	benefit	 from	the	assumption	state-
ment	 by	 gaining	 faster	 insight,	 enabling	 easier	 compari-
son	 among	 studies,	 and	 understanding	 limitations.	 For	
instance,	authors	claim	that	tackling	confounding	factors	
increases	 performance,	 but	 believing	 in	 a	 direct	 causal	

F I G U R E  3  A	product	process	for	a	seizure	prediction	prospective	application,	while	showing	our	guidelines	concerning	designing	
academic	studies
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relation	may	be	naive.	Reducing	confounding	factors	does	
not	increase	performance	per	se	but	rather	improve	the	ex-
perimental	design	and	study	requirements	by	 improving	
assumed	brain	dynamics	(8···4),	namely	in	model	design	
and	problem	definition.	Similarly,	to	confounding	factors,	
aspects,	such	as	problem	definition	and	system	design	pa-
rameters,	encounter	the	same	problem.

The	 second	 guideline	 (G2)	 concerns	 stating	 the	 pro-
spective	applications	envisioned	with	the	designed	exper-
iment	(8···15).	It	helps	readers	and	authors	understanding	
what	is	at	stake	concerning	system	parameters,	the	type	of	
data,	and	envisioned	intervention.	For	instance,	most	sei-
zure	prediction	studies	report	optimal	Seizure	Occurrence	
Periods	 (SOP)	 periods	 for	 30-	60  minutes.	 Nevertheless,	
the	Responsive	Neurostimulation®	 (RNS®)	System	 is	pro-
grammed	 to	 make	 electrical	 discharges	 up	 to	 5000  ms12	
Possibly,	for	closed-	loop	systems,	these	SOP	intervals	are	
too	long	to	deliver	an	effective	intervention.	Additionally,	
many	authors	use	short	Seizure	Prediction	Horizon	(SPH)	
intervals	in	scalp	EEG	studies.36	In	these	cases,	an	SPH	of	
10  seconds	 or	 even	 1  minute	 is	 not	 enough	 to	 intervein	
after	an	alarm,	such	as	reaching	a	secure	place	or	taking	
rescue	medication.	For	example,	diazepam	rectal	gel	(the	
only	Food	and	Drug	Administration	(FDA)	drug	approved	
for	seizure	cluster,	and	which	might	be	tested	as	preven-
tion)	takes	5–	10 minutes	to	work,37	while	oral	diazepam	
or	 lorazepam	 takes	 15  minutes.38	 This	 guideline	 would	
stimulate	discussion	regarding	study	limitations,	as	well.

The	third	guideline	(G3)	is	related	to	the	use	of	meth-
odologies	 that	 have	 been	 clinically	 approved	 as	 a	 gold	
standard	for	comparison.	Reporting	only	sensitivity,	spec-
ificity,	 and	 prediction	 above	 chance-	level	 might	 be	 lim-
ited,	 as	 these	 metrics	 strongly	 depend	 on	 data	 and	 may	
not	explicitly	 show	progress.	Thus,	authors	 should	com-
pare	 their	 approaches	 with	 the	 ones	 already	 clinically	
approved.	This	comparison	should	not	only	be	based	on	
performance	but	also	explainability.	The	latter	leads	us	to	
our	 most	 important	 guideline,	 (G4):	 researchers	 should	
focus	 on	 explainability	 (19)	 to	 promote	 trust	 among	 ex-
perts.	It	would	be	interesting	to,	at	least,	present	a	concrete	
example	of	model	decisions	throughout	time.	This	way,	it	
would	demonstrate	how	a	model	could	explain	its	predic-
tions	to	an	expert	as	a	data	scientist/clinician	(application	
level),	and	a	patient	(human	level).

3.3 | The importance of how 
explaining decisions

After	proper	studies	comparison,	one	can	ask	what	a	good	
performance	is,	or	even	inquire	about	the	minimum	per-
formance	 that	 justifies	 the	 design	 of	 a	 clinical	 trial.	 We	
believe	 that	 a	 proper	 methodology	 is	 the	 one	 which	 we	

trust.	In	literature,	trust	seems	to	be	represented	by	litera-
ture	convergence	and	reproducibility	where	studies	report	
high	 performance	 (12→13)	 and	 comply	 with	 consensual	
study	requirements	(9···13).	By	analyzing	data	from	longer	
recordings	and/or	a	higher	number	of	patients,	 trust	 in-
creases	 as	 the	 testing	 data	 are	 more	 likely	 to	 represent	
real-	life	conditions.14

High-	level	abstraction	models	may	have	the	potential	
to	handle	complex	dynamics	but	require	strong	efforts	to-
wards	 providing	 explanations	 (19···20).	 Current	 clinical	
knowledge	on	physiology	should	be	the	source	of	expla-
nations	as	well	as	the	basis	for	new	findings	(19···4).	As	an	
explanation	is	an	exchange	of	beliefs,39	its	acceptance	may	
differ	among	patients,	clinicians,	and	data	scientists.

Although	a	given	methodology,	eventually,	makes	 in-
correct	 decisions,	 we	 can	 still	 trust	 it	 if	 one	 can	 explain	
its	decisions	(19→13).	A	great	skepticism	concerning	ma-
chine	learning	and	high-	level	abstraction	models	may	be	
due	to	the	difficulty	in	delivering	explanations	about	mod-
els'	 decisions.29	 Although	 authors	 and/or	 clinicians	 are	
more	willing	 to	 trust	black-	box	models	when	 they	make	
correct	 decisions,	 wrong	 ones	 lead	 to	 mistrust	 because	
there	is	no	human-	comprehensible	explanation.13

The	phase	IV	Neuropace	RNS®	system12	(NCT00572195)	
can	 use	 up	 to	 two	 independent	 detections,	 which	 are	
highly	configurable	and	adjusted	by	the	physician,	which	
ensures	patient	safety.	Each	detection	performs	a	threshold	
decision,	based	on	a	given	extracted	feature	(line-	length,	
bandpass,	and	area),	by	comparing	the	current	window	of	
analysis	with	another	considered	to	have	interictal	activity.	
We	believe	this	is	the	most	simple	and	explainable	strategy	
we	can	obtain.	One	can	fully	understand	the	underlying	
mechanisms	behind	each	decision.	The	phase	I	NeuroVista	
Seizure	Advisory	System11	 (NCT01043406)	 is	more	com-
plex,	 using	 a	 preprocessing	 step,	 extracting	 similar	 and	
intuitive	 features	 (line-	length,	Teager-	Kaiser	energy,	and	
average	energy),	and	training	a	machine	 learning	model	
that	produced	a	measure	of	seizure-	risk	which	concerns	
a	 seizure-	susceptibility	 state	 (also	 known	 as	 proictal).	
This	model	uses	as	input	the	best	16	features	(from	a	set	
of	16	channels	X	6	filter/normalization	options	X	3	analy-
sis	methods),	and	it	involved	10	layers	(creating	different	
decision	surfaces),	being	 inspired	 in	k-	nearest	neighbors	
(k-	NN)	and	decision	tree	classifiers,	where	each	layer	con-
siders	 a	 different	 seizure-	risk	 related	 to	 its	 proximity	 to	
a	seizure	event.	This	algorithm	is	more	complex	and	not	
fully	transparent.	In	other	words,	we	do	not	understand	its	
underlying	mechanisms,	despite	using	k-	NN	and	decision	
tree	 classifiers	 (which	 may	 be	 intrinsically	 interpretable	
when	using	a	reduced	set	of	features).	Calculating	seizure	
risk	in	a	16-	dimension	feature	space	that	is	furthered	di-
vided	into	210	partitions	(decision	surfaces)	is	not	human-	
comprehensible.	Nevertheless,	 the	extracted	 features	are	



   | 255PINTO et al

clinically	intuitive,	and	the	model	decision	can	produce	a	
very	human-	intuitive	output	explanation	on	the	obtained	
seizure	risk.	It	simultaneously	compares	the	current	win-
dow	of	analysis	with	several	data	distributions	whose	time	
proximity	to	a	seizure	(and	therefore,	seizure	risk)	is	con-
sidered.	By	performing	multiple	data-	distribution	classifi-
cations,	it	may	be	more	robust	to	data	bias	and	noise.	The	
authors	also	ensured	patient	safety:	firstly,	they	accessed	
model	 performance	 on	 preacquired	 patient-	specific	 data	
and	secondly,	only	patients	with	satisfactory	performance	
received	the	advisory	system.

These	 two	clinical	 trials	demonstrate	 that,	despite	all	
the	scientific	community	efforts	to	develop	complex	mod-
els	 and	 consequent	 increase	 in	 performance,	 it	 may	 be	
necessary	 for	 a	 fully	 explainable	 model	 to	 provide	 trust.	
Additionally,	 the	 Seizure	 Advisory	 System	 clinical	 trial	
demonstrates	the	possibility	of	using	models	that	are	not	
necessarily	 intrinsically	 interpretable,	 if	 they	 produce	
human-	comprehensible	 explanations	 while	 ensuring	
patient	 safety,	 handling	 data	 bias,	 and	 achieving	 model	
robustness.

4 |  DISCUSSION

Despite	being	useful	for	clinicians	and	patients	to	under-
stand	this	ecosystem,	this	study	is	directed	to	researchers	
that	 develop	 prediction	 approaches,	 so	 that	 they	 have	 a	
higher	 chance	 of	 clinical	 acceptance.	 Providing	 a	 com-
prehensible	 overview	 of	 all	 the	 ecosystems	 was	 difficult	
due	 to	 our	 data	 science/clinical	 background.	 Hence	 the	
natural	bias/emphasis	on	academic	studies.	Although	we	
previously	 mentioned	 our	 limitations	 toward	 qualitative	
research	tools,	we	stress	its	importance	in	the	discussion	
as	it	constitutes	a	study	limitation.

We	 analyzed	 literature	 regarding	 seizure	 prediction	
that	has	been	published	over	the	last	46 years.	In	the	fu-
ture,	 we	 plan	 to	 undergo	 interviews	 to	 provide	 possible	
paths	 and	 subguidelines	 from	 the	 obtained	 ones.	 In	 the	
"Questions	about	the	seizure	prediction	future"	section	in	
File	S1,	we	present	a	series	of	questions	 that	arose	 from	
describing	this	ecosystem	which	we	would	like	to	tackle	
and	that	deserve	our	attention.

Our	greatest	limitation	was	the	patient	role,	as	we	did	
not	properly	 include	his/her	agency.	We	strongly	believe	
that	we	(the	academic	community)	are	still	 far	from	un-
derstanding	 what	 is	 it	 like	 to	 be	 a	 patient:	 the	 patients'	
expectations	are	largely	different	than	the	ones	from	cli-
nicians	 and	 data	 scientists.	 In	 the	 future,	 we	 need	 to	 be	
more	aware	of	the	active	role	that	a	patient	can	have.	The	
case	of	Dana	Lewis	and	Hugo	Campos	are	clear	examples,	
where	the	patients	might	be	able	to	track	their	data,	an-
alyze	 it,	 and,	 therefore,	 better	 control	 their	 closed-	loop	

systems.40,41	 Dana	 Lewis	 created	 the	 “Do-	It-		 Yourself	
Pancreas	System”	(#DIYPS),	founded	the	open-	source	ar-
tificial	pancreas	system	movement	(#OpenAPS),	and	ad-
vocates	patient-	centered,	-	driven,	and	-	designed	research.	
She	created	#DIYPS	to	make	her	continuous	glucose	mon-
itor	(CGM)	alarms	louder	and	developed	predictive	algo-
rithms	 to	 timely	 forecast	necessary	actions	 in	 the	 future	
(https://diyps.org/about/	dana-	lewis/).	Hugo	Campos	was	
diagnosed	 with	 hypertrophic	 cardiomyopathy:	 a	 disease	
in	which	the	heart	muscle	becomes	abnormally	thick	and	
that	 can	 be	 fatal.	 He	 received	 an	 implantable	 defibrilla-
tor,	which	is	a	device	that	electro	stimulates	the	heart	in	
case	 of	 dangerous	 arrhythmias.	 Simply	 put,	 after	 losing	
his	 health	 insurance,	 he	 bought	 a	 pacemaker	 program-
mer	on	eBay	and	learned	how	to	use	it	with	a	two-	week	
course.	 Hugo	 Campos	 is	 now	 a	 data	 liberation	 advocate	
and	leader	in	the	e-	patient	movement	(https://medic	inex.
stanf	ord.edu/citiz	en-	campo	s/).	In	fact,	article	22	of	GDPR	
2018	not	only	provides	patients	with	the	right	to	have	an	
explanation	for	any	algorithm	decision	but	also	gives	them	
the	right	to	question	those	decisions.	Please	note	that	we	
are	aware	of	the	complexity	of	these	issue,	as	we	present	
here	 an	 oversimplification	 of	 it.	 We	 believe	 that	 patient	
accountability	and	its	relationship	with	clinical	account-
ability	will	be	largely	discussed	in	the	future.

Despite	oriented	to	seizure	prediction,	obtained	guide-
lines	 and	 relations	 may	 be	 easily	 translated	 to	 different	
healthcare	problems.	Other	conditions	may	benefit	from	a	
real-	life	intervention,	such	as	the	case	of	deep	brain	stimu-
lation	in	Parkinson's	disease.42	Computer-	aided	diagnosis/
prognosis	software	tools	face	similar	problems	on	ethics,	
explainability,	 and	 trust	 given	 the	 high	 risk	 associated	
with	model	decisions	in	healthcare.

About	 guidelines,	 G1	 allows	 improving	 methodology	
comparison	 while	 delivering	 a	 deeper	 understanding	 of	
study	limitations	to	clinicians	(regarding	assumptions	on	
the	underlying	physiological	mechanisms).	For	instance,	
it	 is	 interesting	 to	 note	 that,	 despite	 most	 authors	 with	
retrospective	 data	 use	 the	 preictal	 concept	 as	 a	 point	 of	
no	return,	the	two	clinically	approved	studies	use	seizure	
susceptibility	 instead,	 which	 shows	 potential	 for	 seizure	
forecasting.	Forecasting	is	different	from	prediction,	as	it	
shifts	away	from	whether	a	seizure	will	occur	or	not	and	
focuses	instead	on	identifying	periods	of	a	high	probability	
of	seizure	occurrence.43	Despite	this	study's	particular	em-
phasis	on	seizure	prediction,	we	firmly	believe	that	these	
guidelines	and	conclusions	can	be	adapted	and,	thus,	hold	
for	 seizure	 forecasting	 (see	 "Forecasting	 Extrapolation"	
section	from	File	S1).

G2	increases	author	comprehension	on	the	limitations	of	
signal	acquisition	methods	and	patient	consequences	asso-
ciated	with	the	obtained	specificity.	Furthermore,	increases	
in	model	performance	at	the	cost	of	developing	systems	with	

https://diyps.org/about/dana-lewis/
https://medicinex.stanford.edu/citizen-campos/
https://medicinex.stanford.edu/citizen-campos/
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unreal	parameters	may	be	questionable.9,36	Although	large	
seizure	occurrence	windows	may	translate	in	higher	perfor-
mance,	the	interval	to	accept	true	alarms	is	larger.	For	the	
case	of	a	warning	system,	we	need	to	consider	the	levels	of	
stress	and	anxiety-	induced	on	patients	or	the	consequences	
of	frequent	intake	of	rescue	medication.44–	46	We	also	need	
to	understand	how/if	closed-	loops	intervention	systems	can	
be	used	with	significantly	long	occurrence	periods.12	We	be-
lieve	that,	by	considering	an	increase	in	performance	as	one	
of	the	primary	goals	of	research,	authors	develop	method-
ologies	that	may	lack	practical	application.	Although	some	
studies	may	have	a	primary	goal	to	increase	knowledge	on	
brain	 dynamics,	 researchers	 should	 clearly	 state	 limita-
tions	toward	real	application.	Based	on	this,	we	encourage	
authors	 to	 study	 the	 consequences	 for	 the	 patients	 stem-
ming	from	the	development	of	a	given	seizure	intervention	
system,	 through	 the	 definition	 of	 a	 maximum	 number	 of	
false	alarms	For	the	warning	device	case,	the	literature	has	
pointed	to	a	maximum	of	0.15	in	FPR/h48	and	a	minimum	
of	 90%	 sensitivity.17	 For	 more	 details	 and	 to	 better	 under-
stand	what	an	acceptable	performance	for	a	clinical	setting	
could	be,	see	the	“An	acceptable	performance	for	a	clinical	
setting”	subsection	in	File	S1.

Concerning	 legislation	 and	 industry	 standards,	 we	 un-
derstand	these	as	keepers	of	best	practices	on	patient	safety	
and	trust	among	all	actors.	Holistic	understanding	of	trust,	
explainability,	and	performance	when	developing	a	seizure	
prediction	 methodology	 may	 be	 the	 crucial	 aspect	 of	 this	
ecosystem.	In	2007,	Mormann	et	al8	declared	that	algorithms	
were	 still	 too	 limited	 in	 performance	 to	 justify	 enrolling	
in	clinical	 trials	using	responsive	stimulation.	Despite	 this	
paper	being	one	of	the	most	influential	in	seizure	prediction,	
the	first	clinical	trial	(a	warning	system)11	started	only	three	
years	later,	in	March	2010	and	was	published	in	2013.	With	
this,	we	claim	the	following:	despite	some	authors	advocat-
ing	 performance	 limitations	 to	 justify	 clinical	 trials,	 these	
were	performed	 in	 the	past	and	continue	 to	be.	Thus,	 the	
idea	of	a	limited	performance	to	justify	a	clinical	trial	may	
be	misleading.	Clinical	trials	continue	to	be	performed	(as	in	
the	case	of	SeizeIT2,	which	ended	in	2021)	because	research-
ers	and	ethical	committees	find	them	necessary,	existing	a	
favorable	benefit/risk	ratio.	There	is	an	ongoing	necessity	to	
perform	clinical	trials,	especially	to	avoid	publication	bias.	
In	the	literature,	it	is	easy	to	find	prediction	performances	
that	are	overestimated	as	authors,	in	some	cases,	only	report	
the	 best	 results.	When	 a	 methodology	 appears	 promising,	
there	is	the	need	to	test	it	in	different	datasets	and	contexts.

Moreover,	the	first	clinical	trial	using	responsive	stimu-
lation	(phase	III	RNS®	System	Pivotal	Study,	NCT00264810)	
started	 in	 2005,	 which	 also	 led	 to	 the	 phase	 IV	 clinical	
trial	 (RNS®	 System	 Long-	term	 Treatment	 (LTT)	 study,	
NCT00572195)	that	started	in	2006.	All	current	generation	
of	clinically	approved	studies	and	intervention	devices	use	

the	detection	of	features	alone,13	which	demonstrates	the	
importance	of	explainability.	Other	examples	are	present	
in	the	literature	that	arose	during	discussion,	as	 in	2014,	
Teixeira	 et	 al47	 tested	 the	 Brainatic,	 which	 is	 a	 real-	time	
scalp	 EEG-	based	 seizure	 prediction	 system,	 approved	 by	
the	Clinical	Ethical	Committee	at	the	Centro	Hospitalar	e	
Universitário	de	Coimbra.	It	computed	22	univariate	fea-
tures	per	electrode,	and	it	used	noninterpretable	models,	
such	 as	 support	 vector	 machines,	 multilayer	 perceptron	
and	radial	basis	function	neural	networks.	Based	on	this,	
we	concluded	that	an	increased	performance	is	not	the	sin-
gle	criterion	for	a	positive	ethics	committee	decision.	This	
shows	that	there	is	room	for	improvement,	possibly	by	ex-
ploring	more	complex	but	still	explainable	systems.	For	in-
stance,	the	RNS®	system	might	benefit	from	a	more	robust	
approach	to	capture	dynamics	before	a	point	of	no	return.8	
Toward	 this,	 more	 studies,	 such	 as	 the	 one	 by	 Sisterson	
et	al,48	need	to	be	performed	to	assess	the	algorithm	effec-
tiveness	of	responsive	neurostimulation.	Conclusively,	as	
these	methods	have	been	clinically	accepted	and	since	a	
gold-	standard	comparison	method	is	missing,	they	should	
be	used	as	such,	both	for	performance	comparison	and	de-
cision	explanation.

Computational	power	has	increased	in	the	past	years,	
which	 allowed	 deep	 learning	 approaches	 in	 several	
areas.	 Seizure	 prediction	 is	 no	 exception.13,49	 As	 these	
approaches,	 along	 with	 rigorous	 preprocessing50	 have	 a	
higher	potential	to	handle	brain	dynamics,	and	as	intrin-
sically	interpretable	models	may	not	be	a	requirement	to	
undergo	a	clinical	trial,	we	believe	there	is	an	urgent	de-
mand	for	developing	explainability	methods	that	work	on	
top	of	black-	box	models.

There	might	be	a	tendency	to	argue	that	by	requiring	
an	explanation,	the	model	will	be	limited	in	terms	of	per-
formance	 (hypothetically	 12→19).	 However,	 we	 strongly	
believe	that	explanations	may	enhance	the	model's	func-
tioning,	 by	 tackling	 the	 incompleteness	 of	 problem	 for-
malization.	 In	 medical	 contexts,	 for	 example,	 a	 correct	
decision	 only	 solves	 our	 problem	 partially29,51	 and	 may	
also	be	context	dependent,	as	ethical	issues	may	arise	(eg,	
choosing	between	to	save	a	life	and	prolong	the	suffering	
of	 a	 patient).	 We	 want	 to	 simultaneously	 deepen	 brain	
dynamics	 understanding,	 detect	 data	 bias,	 and	 improve	
model	robustness.	It	is,	therefore,	important	to	understand	
possible	 trade-	offs	 between	 potentially	 related	 aspects,	
that	 might	 not	 be	 easily	 recognized.	 All	 of	 these,	 when	
considered	 in	 an	 explanation,	 improve	 our	 understand-
ing,	which	represents	a	way	to	promote	patient	safety	and	
increases	the	chance	of	social	acceptance	concerning	ma-
chine	learning	use.51–	53

These	 guidelines	 and	 used	 methodology	 can	 be	
applied	 to	 other	 healthcare	 settings	 using	 computer-	
assisted	 diagnosis/prognosis.	 However,	 we	 are	 aware	
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that	 guideline	 G4	 may	 differ	 among	 situations.	 When	
predicting	 hospital	 mortality	 after	 acute	 coronary	
events,	for	example,	there	are	established	score	models	
and,	therefore,	using	intrinsically	interpretable	models	
might	 be	 required	 to	 better	 integrate	 existing	 clinical	
knowledge.54	In	the	case	of	seizure	prediction,	obtain-
ing	interpretability	can	become	even	harder	because	(a)	
there	is	no	clinical	annotation	on	the	preictal	period8	and	
(b)	the	EEG	is	still	far	from	being	fully	understood.13,14	
Therefore,	it	might	be	hard	to	replicate	a	methodology	
as	there	is	no	standardized	protocol	to	manually	iden-
tify	 the	 preictal	 period.	 When	 discussing	 case	 studies	
with	 clinicians	 on	 the	 EEG	 signal,	 we	 have	 observed	
that	 they	 often	 tend	 to	 point	 to/annotate	 spikes-	and-	
wave	 discharges,	 activity	 increase,	 and	 rapid	 changes	
in	the	signal	morphology	and	associate	these	to	seizure	
events	or	seizure	susceptibility.	We	suggest	that	a	possi-
ble	way	"to	engage	in	the	clinical	discussion,"	would	be	
by	using	complex	models	such	as	Convolutional	Neural	
Networks	 to	 capture	 complex	 dynamics,	 and	 then	 by	
delivering	 (pointing)	 to	 the	 EEG-		 detected	 events	 that	
were	 considered	 for	 a	 given	 decision.	This	 type	 of	 ex-
planation	 could	 be	 performed	 by	 using,	 for	 example,	
Local	 Interpretable	 Model	 Agnostic	 Explanations,55	
and	 should	 be,	 beforehand,	 evaluated	 at	 the	 applica-
tion	level	of	explainability,	by	discussing	these	detected	
events	with	clinicians.	This	way,	we	might	try	to	emu-
late	 the	process	of	analysis	of	 the	EEG	of	an	epileptic	
patient	typically	conducted	by	a	clinician.	Additionally,	
the	use	of	such	models	may	also	unravel	new	patterns	
(EEG	morphologies)	that	have	not	yet	been	associated	
with	epileptic	manifestations.

Indeed,	we	can	see	our	body	as	a	black-	box	system.	In	
the	case	of	antidepressants,	 for	example,	there	is	still	no	
explanation	for	the	delayed	effect	of	antidepressant	drugs	
and	what	neurochemical	changes	reverse	the	many	differ-
ent	symptoms	of	depression	and	anxiety.56	Simply	put,	we	
know	the	inputs	(medication)	and	the	outputs	(the	change	
in	the	patients)	but	we	do	not	fully	understand	the	under-
lying	 mechanisms.	 Nevertheless,	 these	 drugs	 are	 widely	
used	because	they	are	effective,	and	their	risk-	benefit	bal-
ance	is	favorable.	Thus,	we	believe	that	the	application	of	
Machine	 Learning	 and	 the	 consequent	 requirements	 on	
interpretability/explainability	will	depend	on	the	context	
and	the	available	medical	knowledge.	For	the	specific	case	
of	 seizure	 prediction,	 we	 argue	 the	 clinical	 use	 of	 deep	
learning	 approaches,	 if	 researchers	 put	 efforts	 in	 ensur-
ing	patient	safety	in	each	stage	of	each	study	and	clinical	
trials.	 If	 researchers	can	ensure	a	good	risk-		benefit	bal-
ance	 for	 the	 patient	 (for	 instance,	 by	 providing	 human-	
comprehensible	explanations)	and	patients	are	willing	to	
volunteer,	 it	 may	 even	 be	 unethical	 to	 forbid	 the	 use	 of	
these	new	methodologies.

As	future	work,	we	pretend	to	tackle	the	most	relevant	
questions	that	arose	during	the	previous	stage	by	under-
going	interviews	with	clinicians,	data	scientists,	 lawyers,	
and	patients.
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