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1  |  INTRODUC TION

With the increasing demand for mutton, consumers have become in-
creasingly concerned about meat quality. Studies show that feeding 
regimens are an important factor in animals' growth and meat qual-
ity. For instance, compared with the concentrate diet, grazed grass 
alters the fatty acid composition and volatile compounds in bovine 
muscle (Mezgebo et al., 2017). Rib steaks from pasture- fed beef de-
velop darker color and higher antioxidant capacity than those from 

grain- fed beef (Tansawat et al., 2013). Previously, we showed that 
feeding regimens altered meat quality by changing the muscle fiber 
types (Hou et al., 2020; Su et al., 2019), antioxidative capacity (Luo 
et al., 2019), and gut microbiota (Wang, Luo, et al., 2020). This study 
is a follow- up work to investigate the effective means to improve the 
meat quality of lambs based on the previously reported mechanisms.

Recently, probiotics have gained immense attention as an alter-
native to antibiotics (Atela et al., 2019). Probiotics have been shown 
to positively affect enteric diseases (Ayala- Monter et al., 2019), 
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Abstract
This study investigated the effects of probiotics on growth performance, meat quality, 
muscle fiber characteristics, volatile compounds, and antioxidant capacity in lambs. A 
total of 24 Sunit lambs were randomly allocated into two groups, each consisting of 
three replicates of four lambs. Throughout the experiment period, the lambs were 
fed with based diet (CON) and 10 g probiotics/d supplemented diet (PRO). Compared 
with the CON group, the number of lactic acid bacteria in fecal samples of PRO group 
was significantly increased (p < .05) and the coliforms were significantly decreased 
(p < .05). Dietary probiotics supplementation decreased pH24h, L*, and shear force 
(p < .05). The muscle fibers were switched from type IIB to type I, with a decrease 
in the mean cross- sectional area (CSA) (p < .05) of longissimus thoracis (LT) muscle. 
Also, probiotics altered the composition of meat volatile flavor compounds, such as 
nonanal, undecanal, 1- pentanol, 1- hexanol, and 2,3- octanedione. In addition, probiot-
ics increased the total antioxidative capacity (T- AOC) and catalase (CAT) activity of 
LT muscle, while it decreased superoxide dismutase (SOD) activity (p < .05). Overall, 
these results indicated that probiotics could be used as an effective feed additive by 
improving meat tenderness and flavor.
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digestive capacity (Soren et al., 2013), and immunity (Li et al., 2019). 
A study showed that 90- day- long dietary supplementations of pro-
biotic and yeast culture improved the immunological status of lambs 
(Mahmoud et al., 2020). Likewise, another study showed that pro-
biotics treatment improved the nutrients digestibility in postwean-
ing lambs (Saleem et al., 2017). Pigs fed with probiotic Pediococcus 
acidilactici showed improved sensory attributes (juiciness and ap-
pearance) of pork (Dowarah et al., 2017). Liu et al. (2016) reported 
that dietary probiotic supplementation increased the pH24h, flavor- 
related amino acids, and total polyunsaturated fatty acid, while 
decreased the drip loss and tenderness in chicken. It has been docu-
mented that probiotics could regulate muscle fiber properties, which 
were directly linked to meat quality (Gagaoua & Picard, 2020), and 
consequently probiotics may improve quality attributes. Based on 
the metabolic properties, muscle fibers are classified as type I (slow- 
twitch oxidative), type IIA (fast- twitch oxidative glycolysis), and type 
IIB (fast- twitch glycolysis) (Brooke & Kaiser, 1970a). In pigs, long- 
term probiotic supplementation altered the muscle fiber character-
istics, such as decreased myofiber diameter and cross- sectional area 
(Tian et al., 2021). In mice, probiotic feeding increased the number of 
slow muscle fibers in gastrocnemius muscle (Chen et al., 2016). Meat 
flavor deterioration is attributed to increased lipid oxidation, which 
can be managed by an antioxidant system (Jayathilakan et al., 2007). 
Probiotics also possess antioxidant properties (Yu et al., 2019), 
and therefore their use in animal feeding could be promoted. Tang 
et al. (2017) demonstrated the antioxidant capacity of probiotics to 
inhibit lipid peroxidation, chelate Fe2+, scavenge free radical, and 
improve GPx and SOD activities in vitro. A combination of Bacillus 
licheniformis and Saccharomyces cerevisiae improved the activity of 
SOD and GPx in lambs (Jia et al., 2018). Also, the yeast probiotic was 
shown to improve antioxidant enzyme activities in broiler chickens 
(Tagang et al., 2013) and mice (Li et al., 2019).

The existing data are insufficient about how probiotics affect 
meat quality in lambs. We hypothesized that probiotics supple-
mentation can improve meat quality by regulating the antioxidant 
capacity and muscle fiber characteristics. Accordingly, this study in-
vestigated the effect of dietary probiotics on the meat quality and 
meat flavor in lambs and explored the mechanism involving a change 
in muscle fiber characteristics and muscular antioxidative capacity.

2  |  MATERIAL S AND METHODS

2.1  |  Animals, diets, and experimental design

This study was conducted at a farm (longitude 108°22′ E, latitude 
41°88′ N) of the Bayan Nur City, Inner Mongolia Autonomous 
Region, China, from June to September, 2018. During the experi-
mental period, the average air temperature was −23.7°C, the lowest 
temperature 11°C, and the highest temperature 35°C. Twenty- four 
lambs (12 rams and 12 ewes) were used for the experiment. The 
lambs were farm- born and reared with their dams until weaning at 

about 90 days of age. The lambs with similar body weight were ran-
domly assigned to the control (CON) and probiotics (PRO) treatment 
groups. Each treatment included three replicate pens, each with four 
lambs. The ingredients and composition of basal diets are listed in 
Table 1. The CON group was fed a basal diet, while the basal diets for 
the PRO group were supplemented with 10 g probiotics/d. We used 
a commercially available probiotic supplement (Inner Mongolia Sci- 
Plus Biotech company, China) containing a mixture of Lactobacillus 
casei HM- 09 (1.5 × 109 CFU/g) and of Lactobacillus plantarum HM- 10 
(1.5 × 109 CFU/g). The study started after 7 days of adaptation to 
experimental conditions and lasted for 90 days. During the study 
period, animals were weighed once a month, and the average daily 
weight gain was calculated.

2.2  |  Sample collection

At the end of the study, lambs were transported (50 min by truck) 
and slaughtered at a Commercial abattoir, located 50 km away from 
the farm. After transportation, the lambs were retested for 9– 10 h 
following exsanguination without electrical stimulation. Before the 
slaughter, animals were fasted for 24 h with ad libitum water. Fecal 
samples, collected in sterile collection tubes on the last day of the 
study, were stored at 4°C for transport to the laboratory. Carcass 
weights were recorded. The backfat depth was determined be-
tween the 12th and 13th ribs. The LT sample was collected from 
the left side and refrigerated at 2– 4°C for meat quality analysis. 
Approximately, 150 g of LT sample, frozen at −20°C, was used for 
the analysis of volatile compounds. Meanwhile, ~10- g sample was 
immediately snap- frozen in liquid nitrogen and stored at −80°C for 
RNA extraction and enzyme activity measurement. For the histo-
chemical analysis, muscle samples were cryofixed in liquid nitrogen- 
cooled isopentane before storage at −80°C.

TA B L E  1  Ingredients and chemical composition of the basal diet

Item
Dry matter 
basis (%)

Corn straw 45

Corn 34.2

Soybean meal 9

Wheat bran 5.2

Cottonseed meal 4

Stone powder 0.6

CaHPO4 0.2

CaCO3 0.3

NaCl 0.6

Premixa 0.9

Total 100

aComposition (per kg of dry matter): 90,000 IU of vitamin A, 30,000 IU 
of vitamin D, 1000 IU of vitamin E, Fe 900 mg, Cu 150 mg, Mn 1 
200 mg, Zn 1 600 mg, I 4.5 mg, Se 0.6 mg, Co 0.8 mg.
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2.3  |  Coliform and lactic acid bacteria in feces

The coliform and lactic acid bacterial load of the fecal samples was 
determined using the pour plate method. Briefly, 1 g of sample was 
diluted with 9 ml of saline (0.85% NaCl) to prepare the gradients, 
which were plated against a selective medium for coliform and lactic 
acid bacteria. The plates were cultured at 37°C for 24 and 48 h. The 
data were expressed as the logarithm function with base 10.

2.4  |  Meat quality analysis

Meat quality was determined using the LT muscle sample. The post-
mortem pH values at 45 min and 24 h were measured by pH meter 
(pH- Star; Ingenieurbüro R. Matthäus, Ebenried); the pH meter was 
calibrated every four samples at 4°C using pH 4.6 and 7.0 stand-
ard buffers. For each sample, three measurements were recorded 
to calculate the average value. After a 30 min of blooming time, 
meat color (L*, a*, and b*) was evaluated using a CR- 410 chromom-
eter (Konica Minolta, Japan) using a mean of three random readings; 
the chromometer was calibrated with a standardized white tile, at 2° 
observer angle, 50 mm aperture size, and the illuminant D65. After 
24 h of carcass adaptation to 4°C, LT muscle was removed to meas-
ure the cooking loss and shear force. Each LT sample was weighed, 
placed in polyethylene bags, and then heated in 80°C water until the 
inner temperature reached 70°C (Li et al., 2006). The samples were 
cooled, blot dried, and weighed. The cooking loss was calculated as 
the percentage change of weight before and after cooking. Shear 
force was determined using a tenderness meter (Model C- LM3; 
Harbin) as described by Zhang et al. (2015). Briefly, the muscle sam-
ples were heated in 80°C water until the inner temperature reached 
70°C. After cooling, ten cores (1 cm diameter) were taken and each 
sample was analyzed in parallel to the longitudinal orientation of the 
muscle fiber.

2.5  |  Histochemical analysis

Transverse muscle sections (10 μm) were prepared using a cryomi-
crotome (MEV, SLEE, Germany) at −25°C. The sections were stained 
for myofibrillar adenosine triphosphatase (mATPase) to classify mus-
cle fibers, type I, type IIA, and type IIB fibers, according to Brooke 
and Kaiser (1970b). For statistical analysis, >1500 fibers/sample 
were detected for the image analysis (Laica QWin V3 Processing- 
Analysis Software, Leica).

2.6  |  Meat flavor analysis

2.6.1  |  E- Nose analysis

Meat volatile compounds were detected with the electronic nose 
device PEN3 (Airsense Analytics GmbH) (E- nose). Briefly, 5- g 

sample, placed in an airtight 50- ml glass vial, was incubated at 60°C 
for 40 min, followed by 1- h incubation at 25°C. The data were col-
lected for 120 s for each sample with a gas flow rate of 400 ml/min.

2.6.2  |  GC- MS

Evaluation of the volatile flavor compounds was performed follow-
ing the methodology of Vasta et al. (2011) with some modifications. 
Briefly, the muscle samples were trimmed of external visible fat. Five 
grams of raw meat was placed in the 15- mL PTFE septa capped vial. 
The headspace volatile compounds were extracted using the solid- 
phase microextraction (SPME) technique.

SPME fiber (DVB/CAR/PDMS 50/30 μm; 57328- U; Supelco, 
Bellefonte, USA) was exposed to each sample and placed in a vial 
for 40 min at 60°C. After adsorption, the fiber was inserted into the 
injection port at 250°C for 3 min for the GC (TRACE 1300, Thermo 
Fisher Scientific) analysis; the injector operated in the splitless mode. 
The oven temperature was held at 40°C for 5 min, followed by an in-
crease of 5°C/min to 200°C (held for 5 min), and then increased to 
250°C (held for 5 min) at an increase of 20°C/min. The carrier gas, 
Helium was used at a flow rate of 1.0 ml/min. The mass spectra were 
obtained at 70 eV, scanning the mass range 30– 400 m/z. Volatile fla-
vor compounds were identified by comparison with the library stan-
dard database (NIST MS Search 2.0). The results were expressed as 
the percentage of the respective compound against the total identi-
fied compounds. Also, the flavor compounds were ranked based on 
their relative odor activity value (ROAV) (Liu et al., 2008), and those 
with ROAV >1 were regarded as the key flavor compounds, whereas 
those with ROAV 0.1 to 1.0 were considered flavor modifiers.

2.7  |  Analysis of antioxidant enzyme activity

A quantity of 0.5 g of snap- frozen muscle sample was homogenized 
on ice in 4.5 ml of 0.85% saline, and then centrifuged (2500 × g, 
10 min, 4°C). The supernatant was used for the antioxidant sta-
tus using the commercially available assay kit (Nanjing Jiancheng 
Bioengineering Institute) for superoxide dismutase (SOD, A001- 3), 
catalase (CAT A007- 2), glutathione peroxidase (GPx, A005- 1), and 
total antioxidant capacity (T- AOC, A015- 1).

2.8  |  RNA isolation and real- time quantitative PCR 
(qRT- PCR)

Total RNA from muscle samples was extracted using the Trizol 
Reagent (TaKaRa, Dalian, China), following the manufacturer's in-
structions. The sample concentration, purity, and integrity were 
determined by a spectrophotometer (Beckman Coulter, DU800) 
and gel electrophoresis. The total RNA was reverse- transcribed 
into cDNA using the PrimeScript RT reagent kit (TaKaRa, Dalian, 
China) and the mRNA expression levels were determined using 
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qRT- PCR. The PCR reaction consisted of 12.5 μl SYBR Premix Ex 
Taq (Takara), 1 μl each of forward and reverse primers (sequence 
details in Table 2), 2 μl cDNA, and 8.5 μl DNase/RNase- free water. 
The thermocycling conditions were as follows: 95°C for 30 s, 35 cy-
cles at 95°C for 5 s, followed by 60°C for 30 s and 72°C for 30 s. 
Expressions of GAPDH, MyHC I, MyHC IIa, MyHC IIb, and MyHC IIx 
genes were measured using the 2−ΔΔCt method as described previ-
ously (Livak & Schmittgen, 2001).

2.9  |  Statistical analysis

Fixed effects included treatment, sex, and the interaction (treat-
ment × sex). A pen was considered an experimental unit and a ran-
dom term in the model. Principal component analysis (PCA) was 
implemented using the R program (v4.0.2) basis package “prcomp”. 
All experimental data were analyzed by ANOVA using GLM pro-
cedures of SPSS 22.0 software and were reported as means and 
pooled SEM. p < .05 was considered a significant difference to apply 
Duncan's significant difference test.

3  |  RESULTS AND DISCUSSION

3.1  |  Analysis of the contributing effect of 
probiotics supplementation, sex, and pen on meat 
profile

To analyze the contributing effect of probiotics supplementa-
tion, sex, and pen on meat characteristic profile, we performed a 
PCA analysis (Figure 1). Probiotics supplementation significantly 
contributed to PC1; the PRO and CON groups were visibly sepa-
rated, while the ewes and rams remained adjacent. Also, the pro-
biotic intervention accounted for the majority of indicator variance 
(R2 = .31, p < .01), which was not the case for sex and pen (p > .05). 
Therefore, hereon, we would focus only on the effect of probiotics 
supplementation.

3.2  |  Effect of dietary probiotics supplementation 
on the animal growth and carcass traits

Probiotics are viable microbial dietary supplements that can posi-
tively modify the intestinal flora for health benefits to the hosts 
(Tagang et al., 2013). Jiang et al. (2020) reported that Lactobacillus 
plantarum 299v supplementation in preweaning calves improved 
the diversification of the fecal bacterial community. A study showed 
that gut microbiota affects muscle cell metabolism through gut 
microbiota– skeletal muscle axis producing beneficial effects in ani-
mals (Lahiri et al., 2019).

Here, we show that the dietary probiotics supplementation sig-
nificantly increased (p = .001) the number of lactic acid bacteria 
(Table 3), which have a positive effect on promoting the availability 
and absorption of nutrients through intestinal villi (Ayala- Monter 
et al., 2019). On the contrary, the number of coliforms in PRO group 
was significantly decreased (p = .017). This is consistent with the 
previous study which showed that lambs fed with Lactobacillus casei 
had a lower abundance of coliforms (Ayala- Monter et al., 2019). It 
seems that lactic acid bacteria limits the dissemination of pathogenic 
bacteria by upregulating the inhibitory mechanisms and competitive 
exclusion (Vieco- Saiz et al., 2019). These results suggested that 
dietary probiotics supplementation could modify the gut microbi-
ota, particularly in promoting the abundance of lactic acid bacteria. 
Notably, the gain in body weight (initial, final, and average), carcass 
weight, and backfat depth were not significantly affected by the 
probiotics supplementation (p > .05), indicating overall no effect 
on the growth of lambs (Table 4). Similarly, Ataşoğlu et al. (2010) 
reported that probiotics supplementation in goats had no signifi-
cant effects on animal weight. Another study on lambs with yeast 
supplementations showed no improvement in average daily weight 
gain (ADG), final body weight, and carcass yield (Hernández- 
García et al., 2015). However, we noticed significant effects of sex 
(p < .001) and treatment × sex interaction (p = .020) on carcass 
weight (Table 4). This is consistent with previous studies showing in-
creased carcass weights in rams than in ewes (De Araújo et al., 2017; 
Pérez et al., 2007).

Gene Accession no. Primer sequence (5′−3′)
Product 
length, bp

GAPDH NM_001190390.1 F: CTCAAGGGCATTCTAGGCTACACT 180

R: GACCATGAGGTCCACCACCCTGT

MyHC Ⅰ AB058898 F: AAGAACCTGCTGCGGCTG 250

R: CCAAGATGTGGCACGGCT

MyHC Ⅱa AB058896 F: GAGGAACAATCCAATACAAATCTATCT 173

R: CCCATAGCATCAGGACACGA

MyHC Ⅱb XM_027974883.1 F: GACAACTCCTCTCGCTTTGG 247

R: GGACTGTGATCTCCCCTTGA

MyHC Ⅱx AB058897 F: GGAGGAACAATCCAATGTCAAC 178

R: GTCACTTTTTAGCATTTGGATGAGTTA

TA B L E  2  Primers used for real- time 
quantitative PCR
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3.3  |  Effect of probiotics supplementation on meat 
quality and muscle fiber characteristics

3.3.1  |  Meat quality

Next, we evaluated the effect of probiotics supplementation on 
meat quality (Table 5). A significant treatment × sex interaction ef-
fect on pH24h was observed (p = .019). Dietary probiotics supple-
mentation significantly increased (p < .001) pH24h and rams showed 
higher (p = .034) pH24h than ewes. The muscle pH is a vital index 
that reflects the speed of muscle glycogen degradation after slaugh-
ter (Wang, Li, et al., 2020). Our results were in agreement with the 
study of Abdulla et al. (2017) who also showed a decrease in post-
mortem pH24h of breast muscle in broiler chickens after probiotic 
treatment. However, another study reported an increase in pH24h 
in rams (Facciolongo et al., 2018). Meanwhile, the lambs of the PRO 
group showed a lower (p = .002) L* value and shear force while 
treatment × sex interaction significantly affected (p = .039) the L* 
value. The pH45min, a*, b*, and cooking loss were not significantly af-
fected by probiotics (p > .05). Khliji et al., (2010) reported that the 
acceptable threshold value of lamb meat for a* and L* is ≥9.5 and 
≥34, respectively. In the present study, probiotics supplementation 

reduced the L* value to 33.89 from 35.13, which could be a slight 
concern for consumer acceptability for meat color. Kim et al. (2018) 
showed that the dark portion of meat is relatively rich in oxidative 
fiber than the light portion, suggesting that the color lightness of 
muscle is associated with the fiber types. Notably, a* value in both 
the CON (17.59) and PRO (18.05) group was >14.5, which was an 
acceptable threshold for consumers (Khliji et al., 2010). Thus, the 
redness of lamb meat remained above satisfactory level irrespec-
tive of probiotics treatment. Hopkins et al. (2006) suggested that the 
consumers' acceptable shear force of sheep is ≤27 N. We found that 
though the probiotics treatment decreased the shear force value, 
the meat was still tough and above the acceptable threshold value. 
A previous report showed a positive effect of probiotics on meat 
tenderness. Chang et al. (2018) reported that dietary probiotics de-
creased shear force in the longissimus muscle of pigs. In chickens 
too, feeding probiotics reduced muscle shear force (Liu et al., 2016; 
Yang et al., 2010).

3.3.2  |  Muscle fiber characteristics

Next, we evaluated the mean CSA fiber, muscle fiber type, and 
MyHC mRNA levels to determine the effect of probiotics suppli-
cation on the muscle fiber characteristics. The photomicrographs 
of mATPase staining (Figure 2) and muscle fiber characteristics 
(Table 6) revealed that probiotics supplementation significantly 
increased the density of fibers (p = .009) while decreasing the 
mean CSA fiber (p = .029) in lambs. Jeong et al. (2010) reported 
that muscle with lower CSA and higher fiber density is much 
softer and tender. A study on bovine skeletal muscles showed 
that the shear force and CSA were positively correlated (Kim 
et al., 2016), suggesting that small- diameter muscle fibers with 
larger density could improve tenderness. Consequently, the im-
proved meat tenderness under probiotics treatment can be partly 
attributed to the decreased mean CSA of muscle fiber. However, 
probiotics did not affect (p > .05) the number composition of 
the three muscle fiber types. Also, no difference (p > .05) was 
observed in the area composition of IIA and IIB fiber types be-
tween the two groups. Treatment × sex interaction significantly 
affected the number composition of type I (p = .048) fibers. Also, 
sex (p = .001) and treatment × sex interaction (p = .011) had a 
significant effect on the area composition of type IIB fibers. 
Importantly, the dietary probiotics supplementation significantly 
increased the area composition (p = .044) and cross- sectional area 

F I G U R E  1  Principal component analysis of all affecting 
indicators. Samples in the same groups are connected with lines, 
and colored circles cover the isolates near the center of gravity 
for each group. Blue: CON group, yellow: PRO group, circle: ewe, 
triangle: ram
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R² Pr(>F)
Treatment 0.306 0.004
Sex 0.091 0.116
Pen 0.052 0.798

Item CON PRO Ram Ewe SEM

p- value

T S T × S

coliforms 7.54a 6.83b 7.18 7.19 0.091 .017 NS NS

lactic acid bacteria 4.66b 5.27a 4.93 5.00 0.067 .001 NS NS

Note: a,bMeans with different superscripts in the same row denote significant differences (p < .05).
Abbreviations: CON, control group; NS, not significant; PRO, probiotics group; S, sex; SEM, 
standard error of the mean; T × S, probiotics treatment × sex; T, probiotics treatment.

TA B L E  3  Effect of dietary probiotics 
supplementation and sex on the 
abundance of coliform and lactic acid 
bacteria
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(p = .032) of type I fibers in the LT muscle of lamb. Meanwhile, a 
lower (p = .008) cross- sectional area of type IIB fibers was ob-
served in the PRO group. Notably, meat lightness is negatively 
correlated with type I fibers and positively correlated with type 
IIB fibers (Kim et al., 2013). Oxidative fiber, which is rich in my-
oglobin (Liu et al., 2012), is a better determinant of lamb meat 
lightness than meat pH24h (Calnan et al., 2016). We suggest that 
probiotics- induced variation of meat lightness in lambs could be 
related to a change in muscle fiber type. The qRT- PCR results 
(Table 7) revealed that probiotics supplementation did not affect 
(p > .05) the MyHC IIa and MyHC IIx mRNA levels, but upregu-
lated MyHC I (p = .009) and downregulated MyHC IIb (p = .047). 
Tian et al. (2021) reported that supplementation with Lactobacillus 
reuteri 1 altered muscle fiber characteristics by regulating the 

expression of transcriptional peroxisome proliferator- activated 
receptor α coactivator- 1 (PGC- 1α) and myogenic differentiation 
antigen (MYOD). Collectively, these results suggest that probiot-
ics supplementation improves meat tenderness by decreasing the 
CSA of muscle fiber and changing IIB fiber to I fiber.

3.4  |  Effect of dietary probiotics supplement 
on the meat flavor and antioxidative capacity

3.4.1  |  Meat flavor

E- nose has been successfully used for the authenticity and fresh-
ness evaluation of meat products (Wang, Li, Ding, et al., 2019; Ye 

TA B L E  5  Effect of probiotics supplementation and sex on meat quality in longissimus thoracis of lambs

Item CON PRO Ram Ewe SEM

p- value

T S T × S

pH45min 6.38 5.98 6.24 6.12 0.098 NS NS NS

pH24h 5.77a 5.41d 5.64b 5.53c 0.035 <.001 .034 .019

L* (lightness) 35.20a 33.69b 34.60ab 34.23b 0.290 .002 NS .039

a* (redness) 17.59 18.05 17.95 17.68 0.302 NS NS NS

b* (yellowness) 2.93 3.20 3.03 3.10 0.170 NS NS NS

Shear force (N) 79.33a 71.80b 75.41 75.72 2.602 .041 NS NS

Cooking loss (%) 41.91 41.20 41.90 41.21 1.180 NS NS NS

Note: a,b,c,dMeans with different superscripts in the same row denote significant differences (p < .05).
Abbreviations: CON, control group; NS, not significant; PRO, probiotics group; S, sex; SEM, standard error of the mean; T × S, probiotics 
treatment × sex; T, probiotics treatment.

F I G U R E  2  Serial sections of 
longissimus thoracis stained with ATPase. 
CON, control group; PRO, probiotics 
group

TA B L E  4  Effect of probiotics supplementation and sex on growth performance and carcass traits of lambs

Item CON PRO Ram Ewe SEM

p- value

T S T × S

Initial body weight (kg) 16.17 15.59 16.45 15.31 0.368 NS NS NS

Final body weight (kg) 31.17 30.66 30.65 31.18 1.123 NS NS NS

Average daily gain (kg/d) 0.17 0.17 0.15 0.18 0.011 NS NS NS

Carcass weight (kg) 13.56a 13.28 ab 14.48a 12.40b 0.341 NS <.001 .020

Backfat depth (mm) 4.34 4.27 4.47 4.14 0.270 NS NS NS

Note: a,bMeans with different superscripts in the same row denote significant differences (p < .05).
Abbreviations: CON, control group; NS, not significant; PRO, probiotics group; S, sex; SEM, standard error of the mean; T × S, probiotics 
treatment × sex; T, probiotics treatment.
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et al., 2014). We also used E- nose to assess the overall odor pro-
files of lambs. As shown in the radar plot (Figure 3), the LT muscle 
in the PRO group had a lower overall odor intensity compared with 
the CON group. The responses of the E- nose sensors are shown 
in Table 8. Compared with the CON group, the response values 
of W5S (p = .001), W1W (p = .008), and W2W (p = .002) were 
lower in the PRO group, indicating higher abundances of nitro-
gen oxides, sulfur, and aromatic compounds in the CON group. 
Although W6S (p = .041) and W3S (p < .001) sensors showed 
lower response values for the muscle samples, the response was 
still higher in the PRO group than in the CON group, suggesting 
higher levels of hydrogen and long- acyclic alkane in LT muscle of 
probiotics supplemented lambs. The sensor response varied due 
to the change in the concentration of meat volatile components 
under probiotics treatment.

Next, we analyzed the composition and proportion of the vol-
atile flavor compounds in the LT muscle by GC- MS (Table S1). A 
total of 31 volatile compounds were identified in the two groups, 
of which seven were affected by probiotics treatment. The volatile 

compounds were ranked based on the ROAV and content to evalu-
ate their contribution to meat flavor (Table 9).

Aldehydes are important flavor compounds originating from the 
oxidative degradation of lipid and amino- acid Strecker reaction and 
have been shown to contribute to the lamb meat flavor (Del Bianco 
et al., 2020; Gkarane et al., 2018; Kerth et al., 2019). Nonanal, deca-
nal, octanal, (E)- 2- decenal, heptanal, and hexanal were the key fla-
vor compounds in both groups (Table 9). Notably, nonanal content 
was significantly lower (p < .05) in the PRO group than in the CON 
group. Nonanal is a PUFA derived lipid peroxidation product (Ortuño 
et al., 2016), which contributes to soapy, hay, and sweet odor of the 
meat. Benzaldehyde, (E)- 2- octenal, and (E)- 2- nonenal were absent in 
the lambs supplemented with probiotics. Benzaldehyde, with high 
odor threshold (ROAV <1), does not significantly contribute to the 
meat flavor of the CON, instead, PUFA (C18:2n−6) derived (E)- 2- 
octenal and (E)- 2- nonenal were the key flavor compounds (ROAV >1) 
(Elmore et al., 2005). Also, the contents of undecanal showed signif-
icant differences for probiotics treatment (p = .001), sex (p = .037), 
and treatment– sex interaction of both (p = .037).

TA B L E  6  Effect of dietary probiotics supplementation and sex on muscle fiber characteristics in longissimus thoracis of lambs

Item CON PRO Ram Ewe SEM

p- value

T S T × S

The density of fibers (/mm2) 692.70b 828.90a 740.63 780.97 32.728 .009 NS NS

Mean CSA fibers (μm2) 1435.09a 1230.18b 1340.97 1324.30 60.740 .029 NS NS

Fiber number composition (%)

Type I 8.18b 8.59ab 8.74a 8.03ab 0.235 NS NS .048

Type IIA 30.71 32.40 32.33 30.78 1.154 NS NS NS

Type IIB 61.88ab 60.51b 59.16b 63.24a 0.479 NS .001 .011

Fiber area composition (%)

Type I 6.17b 7.10a 6.86 6.41 0.312 .044 NS NS

Type IIA 34.40 37.68 37.21 34.87 1.454 NS NS NS

Type IIB 56.61 55.55 55.86 56.30 1.519 NS NS NS

Cross- sectional area (μm2)

Type I 1095.55b 1176.88a 1124.70 1147.73 30.110 .032 NS NS

Type IIA 1459.80 1495.74 1503.48 1452.06 63.300 NS NS NS

Type IIB 1439.52a 1137.87b 1318.90 1258.49 70.603 .008 NS NS

Note: a,bMeans with different superscripts in the same row denote significant differences (p < .05).
Abbreviations: CON, control group; NS, not significant; PRO, probiotics group; S, sex; SEM, standard error of the mean; T × S, probiotics 
treatment × sex; T, probiotics treatment.

Item CON PRO Ram Ewe SEM

p- value

T S T × S

MyHC I 0.79b 1.22a 1.08 0.94 0.093 .009 NS NS

MyHC IIa 1.14 1.37 1.28 1.23 0.084 NS NS NS

MyHC IIx 0.94 0.82 0.91 0.84 0.037 NS NS NS

MyHC IIb 0.97b 1.05a 0.98 1.02 0.044 .047 NS NS

Note: a,bMeans with different superscripts in the same row denote significant differences (p < .05).
Abbreviations: CON, control group; NS, not significant; PRO, probiotics group; S, sex; SEM, 
standard error of the mean; T × S, probiotics treatment × sex; T, probiotics treatment.

TA B L E  7  Effect of probiotics 
supplementation and sex on mRNA level 
of MyHC isoform gene in longissimus 
thoracis of lambs
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Alcohols, with a high odor threshold value, were considered 
to have less influence on the meat flavor, while unsaturated alco-
hols, with a lower threshold value, greatly contribute to the meat 
flavor (Zhuang et al., 2016). 1- octen- 3- ol and 2- octen- 1- ol, derived 
from the C18:2n- 6, were identified as the key flavor compounds in 
both groups. Especially, the 1- octen- 3- ol, with the highest ROAV 

(ROAV = 100), imparted meat flavors such as mushroom and 
smoke aroma (Table 9). The content of 1- pentanol and 1- hexanol, 
also derived from C18:2n- 6 (Elmore et al., 2005), were signifi-
cantly lower (p < .05) in the PRO group (Table S1). Also, some 
volatile alcohol compounds, such as 2,4- dimethyl- cyclohexanol, 
terpinen- 4- ol, and 3- decyn- 2- ol, were identified only in the PRO 
group, while 2- hexadecanol was specific to the CON group. 
Interestingly, 2- hexadecanol content also varied between rams 
and ewes (p = .011).

Ketones, with a lower threshold value, contribute to lamb odor. 
The content of 2,3- octanedione, derived from lipid oxidation, was 
significantly affected (p < .05) by probiotics treatment (p < .001) 
and treatment × sex interaction (p = .013) (Table S1) (Gkarane 
et al., 2018). Hydrocarbons were also the products of lipid peroxi-
dation. The content of methyl- cyclopentane was significantly higher 
(p < .001) in the PRO group than in the CON group (Table S1), which 
is consistent with the results of E- nose analysis (W6S; Table 8). 
Furthermore, the content of methyl- cyclopentane was significantly 
affected by sex (p = .023) and treatment– sex interaction (p = .044). 
The content of allyl 2- ethyl butyrate was lower in the PRO group 
than in the CON group (p < .001).

In general, based on ROAV analysis, 1- octen- 3- ol, nonanal, de-
canal, octanal, (E)- 2- decenal, heptanal, hexanal, and 2- octen- 1- ol 
were identified as the key flavor compounds, most of which were 
frequently reported as characteristic volatile compounds in lamb 
meat (Karabagias, 2018; Wang et al., 2021; Luo et al., 2019). 
Importantly, these volatile flavor compounds were mainly pro-
duced from lipid oxidation and may be affected by the muscular 
antioxidant activity.F I G U R E  3  Radar plot of the sensors' responses for the lamb 

meat sample
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Item CON PRO Ram Ewe SEM

p- value

T S T × S

W1C 0.76 0.79 0.77 0.78 0.010 NS NS NS

W5S 3.19a 2.12b 2.86 2.46 0.188 0.001 NS NS

W3C 0.93 0.93 0.93 0.93 0.004 NS NS NS

W6S 1.18b 1.20a 1.19 1.19 0.005 0.041 NS NS

W5C 0.97 0.98 0.97 0.97 0.004 NS NS NS

W1S 4.38 4.01 4.26 4.13 0.188 NS NS NS

W1W 2.54a 1.40b 1.94 2.00 0.076 .008 NS NS

W2S 3.20 2.63 3.07 2.77 0.209 NS NS NS

W2W 1.61a 1.29b 1.46 1.45 0.060 .002 NS NS

W3S 1.54b 1.73a 1.62 1.65 0.016 <.001 NS NS

Note: a,bMeans with different superscripts in the same row denote significant differences (p < .05).
Sensor sensitivity and general description: W1C: aromatic compounds; W5S: reacts to nitrogen 
oxides; W3C: ammonia, aromatic compounds; W6S: mainly hydrogen; W5C: short- acyclic alkanes, 
aromatic compounds, and nonpolar organic compounds; W1S: methyl group; W1W: sulfur 
compounds; W2S: alcohol, partially sensitive to aromatic compounds; W2W: aromatic compounds, 
sulfur organic compounds; W3S: long- acyclic alkane.
Abbreviations: CON, control group; NS, not significant; PRO, probiotics group; S, sex; SEM, 
standard error of the mean; T × S, probiotics treatment × sex; T, probiotics treatment.

TA B L E  8  Effect of probiotics 
supplementation and sex on the 
responses of the E- nose sensors in 
longissimus thoracis of lambs
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3.4.2  |  Antioxidative capacity

Lipid and oxygen synthesize peroxides through a free- radical chain 
mechanism, which is the pathway for the formation of most vola-
tile compounds in meat (Arshad et al., 2018). However, extensive 
lipid peroxidation lead to the formation of peroxidized products 
and objectional flavors (Prache et al., 2021). Antioxidant system can 
scavenge free radicals to delay or slow the rate of oxidation, which 
is the most important defense mechanism of lipid oxidation (Chan 
et al., 1994). Probiotics, involving enzymatic and nonenzymatic anti-
oxidant mechanisms, act as natural antioxidants against reactive ox-
ygen species (ROS) (Dowarah et al., 2017). Tang et al. (2018) reported 
the in vitro antioxidant potential of Lactobacillus plantarum. In vivo, 
probiotics can enhance the levels of T- AOC, SOD, and GPx while re-
ducing the content of malondialdehyde (MDA) in mice (Li et al., 2019; 
Wang, Li, Chai, et al., 2019). In this study, dietary probiotics supple-
mentation had no effect (p > .05) on GPx activity but decreased SOD 
activity (p < .001), while increasing CAT (p = .01) and T- AOC activi-
ties (p = .013) (Table 10). These results indicated that probiotics sup-
plementation improved the antioxidative capacity in the muscle of 

lambs. Probiotics, colonizing the intestine, act as an antioxidant and 
maintain the redox balance in the gut (Tang et al., 2017), suggest-
ing that probiotic may modulate the muscle antioxidative capacity 
via the gut microbiota– skeletal muscle axis. Rizwan et al. (2016) re-
ported compared with fast- twitch fibers, slow- twitch fibers showed 
higher activities of antioxidant enzymes, including SOD, CAT, and 
GPx. Thus, in current study, the increase of slow- switch fibers in-
duced by probiotics supplementation may enhance the antioxidant 
capacity in lambs. Many studies demonstrated that the antioxidant 
capacity is closely related to meat quality. Chen et al. (2018) found 
a negative correlation between T- AOC and L* value in pigs. Another 
study showed that dietary antioxidants supplement changed the 
volatile compounds profile in pigs, such as lowering the level of vola-
tile aldehydes (Wojtasik- Kalinowska et al., 2016). In this study, we 
found that probiotics supplementation reduced the number of alde-
hydes and the content of nonanal and undecanal, which may be re-
lated to improved antioxidant capacity in the PRO group. Therefore, 
dietary probiotics supplementation induced improved antioxidant 
ability may partly influence the color and flavor of the meat, and the 
exact mechanism needs further investigation.

Compounds
Threshold 
value (ng/g) Odor descriptors

ROAV

CON PRO

Pentanal 12 Green, floral, burning 0.68 0.64

Hexanal 10 Green, grassy 7.90 9.71

Benzaldehyde 350 Nutty, almond, burnt sugar 0.02 ND

Heptanal 3 Jasmine, mint, burnt fat, green 11.88 14.91

(E)- 2- Octenal 3 Wet ground, bitter, grass, meat, coffee 2.42 ND

Octanal 0.7 Citrus- like, green, nutty, fatty 40.66 51.85

(E)- 2- Nonenal 0.08 Fatty, tallow 44.33 ND

Nonanal 1 Wax, fat, citrus- like, soapy, hay/sweet 93.77 76.46

(E)- 2- Decenal 0.3 Hay, fatty, tallow, orange 23.36 21.86

Decanal 0.1 Soap, orange peel, tallow 82.18 80.86

Undecanal 5 Grassy, rain, dirt 1.38 0.93

Dodecanal 1.5 Onion, green, yeast, vomit ND 5.81

1- Pentanol 4000 Fuel oil, fruit, balsamic, sweet 0.02 0.012

1- Hexanol 500 Woody, cut grass, chemical- winey, 
fatty, fruity

0.09 0.064

1- Heptanol 520 Fragrant, woody, oily, green, fatty 0.07 0.08

1- Octen- 3- ol 1 Mushroom, smoke 100 100

2- Octen- 1- ol 4 Green citrus 4.46 4.25

2- Ethyl- 1- 
hexanol

25,000 Resin, flower, green <0.01 <0.01

1- Octanol 126 Fatty, waxy, oily, walnut, burnt 0.49 0.48

2- Heptanone 140 Sweet flowers, spicy, rancid almonds 0.07 0.07

Note: Odor threshold and descriptions were obtained from Gkarane et al. (2018); Sun et al. (2014) 
and Zhuang et al. (2016).
Abbreviations: CON, control group; ND, not detected; PRO, probiotics group; ROAV, relative odor 
activity value.

TA B L E  9  The ROAV of the volatile 
flavor compounds in longissimus thoracis 
of lambs
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4  |  CONCLUSIONS

In conclusion, dietary probiotics supplementation favorably modu-
lates the gut microbiota. In line with the hypothesis, dietary probi-
otics supplementation improves the tenderness of lamb by altering 
the mean CSA of muscle fiber, and switching the IIB type to I type. 
The increase of slow- twitch oxidative fiber lowers the lightness of LT 
muscle in lamb. Moreover, probiotics- induced antioxidative capac-
ity alters the composition of volatile compounds which improve the 
lamb meat flavor. Therefore, the results of this study suggest that 
probiotics is a promising feed additive to promote gut microbiota, 
while improving meat tenderness and flavor.
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