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Abstract: Surface electromyography (sEMG) is a valuable technique that helps provide functional
and structural information about the electric activity of muscles. As sEMG measures output of
complex living systems characterized by multiscale and nonlinear behaviors, Multiscale Permutation
Entropy (MPE) is a suitable tool for capturing useful information from the ordinal patterns of sEMG
time series. In a previous work, a theoretical comparison in terms of bias and variance of two MPE
variants—namely, the refined composite MPE (rcMPE) and the refined composite downsampling
(rcDPE), was addressed. In the current paper, we assess the superiority of rcDPE over MPE and
rcMPE, when applied to real sEMG signals. Moreover, we demonstrate the capacity of rcDPE in
quantifying fatigue levels by using sEMG data recorded during a fatiguing exercise. The processing
of four consecutive temporal segments, during biceps brachii exercise maintained at 70% of maximal
voluntary contraction until exhaustion, shows that the 10th-scale of rcDPE was capable of better
differentiation of the fatigue segments. This scale actually brings the raw sEMG data, initially
sampled at 10 kHz, to the specific 0–500 Hz sEMG spectral band of interest, which finally reveals
the inner complexity of the data. This study promotes good practices in the use of MPE complexity
measures on real data.

Keywords: multiscale; permutation; entropy; downsampling; electromyography; fatigue

1. Introduction

Electromyography is a relevant technique for providing functional and structural
information about neuromuscular activities [1]. This technique also sheds light on motor
learning [2] and neurological disorders [3]. Beyond this fundamental utility, surface
electromyography (sEMG) application domains are diverse: there is the case of sports and
ergonomics, whether performing isometric or dynamic exercises [4,5], as well as in clinical
and technological applications.

The sEMG signal genesis consists of the activation of a large number of elementary
functional entities called motor units (MU) [6]. A MU is composed of “the motoneuron
and its adjunct muscle fibres” [7]. This MU activation called recruitment is one of the two
modalities of the force control. The other one takes place by means of the rate coding [8,9].

MU activation is performed by a variety of motor units action potential (MUAP) [1]
with different shapes whose mixture is the origin of sEMG. All of these constituting
elements are governed by nonlinear interactions between each other, which makes the
global dynamic behaviors difficult to predict from the elementary constituents. This confers
to sEMG signals a notable level of complexity, including stochastic and deterministic
components [10].

Numerous works using the sEMG technique have focused on changes in neuro-
muscular control in relation to the study of fatigue [11,12]. However, few works have
explored complexity-based indicators [13]. The authors in [13] have presented a review
of the complexity methods used in sEMG muscle fatigue studies. They noticed that some
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complexity-based indicators could efficiently detect manifestations of muscle fatigue. How-
ever, they highlighted the need for improvement of the reliability and sensibility of these
indicators as well as the optimization of the parameter choice for the methods.

It is therefore interesting to evaluate more thoroughly and precisely the level of
sEMG complexity by means of complexity-based measures. The entropy-based complexity
measures have proven to be efficient tools for addressing complexity of such signals [14–17].
For example, in the recently published paper [17], the authors argued that the modified
sample entropy measure appeared to be more sensitive to muscle fatigue and could yield
more consistent results compared to the classical measures. The Permutation Entropy
(PE) is also particularly a suitable tool for capturing useful information from the ordinal
patterns of sEMG time series [15,18].

In [19], a study was achieved during dynamic contractions through an established
protocol for fatiguing the deltoid muscle. This study demonstrated that the PE of sEMG
signals had an interesting discriminant capacity between muscle fatigue, transition-to-
fatigue and non-fatigue. This PE capacity slightly over-performed the classical sEMG
median frequency feature. However, a limitation presented in [20] is that PE is confined to
a single time scale; whereas, biological systems need to operate across multiple temporal
scales. PE, therefore, does not capture all temporal interactions of the physiological control
processes [21].

As an alternative to PE, the multiscale permutation entropy (MPE) [22] is a PE-based
technique that allows exploring multiple time scales. This enhances detection of regularity
and changes in muscle activity that can otherwise remain obscured by the fine resolution
of the sampling frequency used for data acquisition. In [23], a fatigue study was addressed
using MPE. It showed a significant difference between fatigue and non-fatigue cases: lower
values of MPE were observed in fatigue cases.

Numerous PE variants that explore multiscaling were introduced in the literature,
including refined composite downsampling PE (rcDPE) [24] and refined composite MPE
(rcMPE) [25]. The superiority of the rcDPE on MPE and rcMPE was theoretically established
in [24] by means of theoretical derivations of the estimator performance (bias and variance).
We propose to go one step further and to study the performance of these techniques in a
real context.

Therefore, the novelty of this article lies in the performance comparison of rcDPE, MPE
and rcMPE estimators in the context of a fatigue study. All these considered techniques
are applied to sEMG data acquired on the biceps brachii during a fatiguing static isometric
contraction exercise. As the theoretical study presented in [24] demonstrated rcDPE
prevailing over other techniques, we expect rcDPE to outperform both MPE and rcMPE in
quantifying the fatigue level. Moreover, we particularly seek for the best scale value that
allows for better discrimination of fatigue segments, and we discuss the link between this
particular scale and the spectral analysis theory.

The paper is organized as follows. Section 2 presents a brief review of the background
theory, including the definitions of PE, MPE and their refinements with a short insight in
the statistical characterization. Section 3 details the experimental setup for data collection as
well as teh statistical tests used for evaluating performance of the complexity estimators. In
Section 4, the performance results are presented and discussed when applied to sEMG sig-
nals acquired under fatigue exercise. Section 5 sums up the study by proposing guidelines
for the use of multiscale entropy estimators in the frame of sEMG fatigue studies.

2. Theoretical Framework

This section covers the necessary background for the PE-based methods. The original
formulation of PE in [15] is presented as well as that of both MPE and Downsampling PE
(DPE) and their refinements [22,24]. Subsequently, we provide a brief summary of the MPE
statistical moments, which we originally developed in [26,27].
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2.1. Permutation Entropy

Let us consider a real, weakly stationary and uniformly sampled signal
x = [x0, x1, . . . , xN−1]

T , where N is the sample number and T is the transpose symbol.
For a given embedding dimension d and a given time delay τ, we represent the sub-
sequence xn, xn+τ . . . , xn+(d−1)τ by the coded sequence 1, 2, 3, . . . , d. The ordinal pattern
of this sub-sequence is defined as the permutation of the coded sequence by sorting the
sub-sequence values in an increasing order. For example, the possible ordinal patterns for
d = 2 and τ = 1 are 12 (xn < xn+1) and 21 (xn+1 < xn).

The probability distribution of patterns can be estimated by counting the sub-sequences
of same pattern inside the signal x [15]. Therefore, let us design by yi the number of pat-
terns of type i in the signal,

yi = #{n| n < N − (d− 1)τ, (xn, xn+τ . . . , xn+(d−1)τ) is of pattern type i}. (1)

An estimate p̂i of the true pattern probability pi can be obtained using yi:

p̂i =
yi

N − (d− 1)τ
, (2)

Based on the probability mass function (pmf) formed by the pattern probability estimations
of all possible patterns i, an estimation of the PE, denoted by Ĥ, can be obtained using
Shannon’s entropy definition [15]:

Ĥ = −
d!

∑
i=1

p̂i ln p̂i. (3)

Since the maximum entropy value is reached with the uniform distribution (d! possible
patterns with equal probabilities pi =

1
d! ), a normalized version of (3) that guarantees an

entropy value between zero and one is defined as follows:

Ĥ =
Ĥ

ln(d!)
=
−1

ln(d!)

d!

∑
i=1

p̂i ln p̂i. (4)

PE is easy to implement and fast to compute, and it is invariant to nonlinear monotonous
transformations [15]. This is an interesting property when the signals are subject to outliers.
However, one should pay attention to the minimum signal length required to ensure suffi-
cient pattern counts in (2) in order to provide an accurate estimation of the pattern distri-
bution. Several recommendations were proposed for selecting the minimum signal length:
N � d! [15] or other less severe formulations, such as N ≥ 5d! [28] or N > (d + 1)! [29].

Since the PE technique only deals with a single set of data points, τ spaces apart,
multiscale PE approaches were proposed to take into account the information content on
long-range correlations.

2.2. Multiscale Permutation Entropy

We first present the MPE as it was introduced in [22]. We then recall MPE variants:
composite MPE (cMPE) and refined composite MPE (rcMPE).

2.2.1. MPE formulation

The MPE procedure described in [22] can be considered as a two-step procedure [30]:
(a) a moving average filter and (b) a downsampling. First, the signal x is partitioned in
consecutive non-overlapping segments of size m. The average of each segment is then
computed as

x(m)
j =

1
m

jm

∑
i=m(j−1)+1

xi, (5)
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where (j, m) ∈ N2. The obtained sequence x(m) = [x(m)
1 , . . . , x(m)

N/m]
T is called a coarse-

grained signal. Finally, the MPE is the PE of the coarse-grained signal x(m) calculated for
different time scales m.

The coarse-graining procedure is useful for capturing trends or recurring patterns
that are usually hidden in the ordinal comparisons between adjacent points of raw data.
However, the main MPE drawback lies on its sensitivity to signal length as N decreases.
The MPE bias and variance theoretically obtained in [24,27] show that the estimation of
MPE is less reliable especially when the scales increase. The general constraint N/m� d!
must be fulfilled.

2.2.2. Composite MPE

By changing the starting element of the coarse-graining procedure, one can build a set
of m different coarse grained signals x(m)

k as depicted in Figure 1. The jth sample of the kth

coarse-grained signal for scale m is given by

x(m)
k,j =

1
m

jm+(k−1)

∑
i=m(j−1)+k

xi. (6)

For each composite coarse signal x(m)
k , the pmf of the d! patterns denoted by p̂(m)

k is

estimated, and the PE of x(m)
k denoted by Hk(p̂(m)

k ) can be evaluated as

Hk(p̂(m)
k ) = −

d!

∑
i=1

p̂(m)
k,i ln p̂(m)

k,i , (7)

where p̂(m)
k,i is the ith component of p̂(m)

k .
Finally, for each m scale value, the cMPE is the average of the m obtained PE:

HcM =
1
m

m

∑
k=1

Hk(p̂(m)
k ). (8)

Thanks to the shifting of the starting element and the larger number of coarse signals
obtained, the composite approach counts new patterns that were not considered using the
original MPE version. This allows the cMPE procedure to partially overcome the length
constraints of the original MPE.

2.2.3. Refined Composite MPE

For the purposes of building better empirical pattern probability distribution [31],
the rcMPE uses a procedure that is different from the cMPE. Given a scale m, the rcMPE
counts ordinal patterns for each composite signal x(m)

k , and it estimates their corresponding

pattern probability p̂(m)
k . A single and more robust pattern probability estimate ̂̄p(m) can be

defined using an averaging procedure:

̂̄p(m)
=

1
m

m

∑
k=1

p̂(m)
k . (9)

At this point, the rcMPE is obtained by a unique entropy calculation using (9):

HrcM = −
d!

∑
i=1

̂̄p(m)
i ln ̂̄p(m)

i , (10)

where ̂̄p(m)
i is the ith component of ̂̄p(m).
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Figure 1. Principles of the composite coarse-graining procedure (m = 3). Nonoverlapping segments of size m are obtained

from the raw signal. This leads to the original MPE estimation procedure using the single x(m)
1 data vector. By shifting the

initial positions, a set of coarse signals x(m)
1 , x(m)

2 , and x(m)
3 is obtained. This leads to variant MPE estimation procedures

using the set of m data vectors x(m)
k , with k = 1, . . . , m.

By construction, the composite coarse-graining procedure produces signals with
redundant information. This redundancy can impact the MPE statistics by increasing the
bias and variance of the statistical properties of the raw signals [27]. In the following,
we will refer to this effect as an artifact cross-correlation: by sharing common elements,
the coarse signals are highly correlated, which can shadow the inherent dynamics of the
raw signals.

In what follows, we present alternative PE variants that are exempt from this redun-
dancy: downsampling PE (DPE), composite DPE (cDPE) and refined cDPE (rcDPE).

2.3. Downsampling Permutation Entropy

Recall that a time delay τ was introduced in the sub-sequence definition (1). The value
τ = 1 was considered until now. By taking τ 6= 1, this time delay can be defined as a
downsampling parameter [32] giving rise to the DPE measurement. In what follows, two
DPE variants that improve the original DPE are reported.

2.3.1. Composite DPE

By changing the starting element k of the downsampled procedure as shown in
Figure 2, one can build a set of different downsampled signals x(τ)k with k = 1, . . . , τ [33]:

x(τ)k,j = xk+τ(j−1). (11)

In the following, these obtained signals are called composite signals. For each composite
signal, the pmf of the d! patterns can be obtained as p̂(τ)

k . For each value of τ, the cDPE is
defined as the average of the PE of the obtained composite signals:

HcD =
1
τ

τ

∑
k=1

Hk(p̂(τ)
k ), (12)

with Hk being estimated in the same way as in (7), changing m by τ.
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Figure 2. Principles of the composite downsampling procedure (τ = 3). Downsampled signals are obtained by taking data
points spaced by τ. By shifting the initial positions between 1 and τ, a set of downsampling signals is obtained without any
common data points.

2.3.2. Refined Composite DPE

In [24], the combination of composite downsampling with a refined approach was
proposed. Similarly to (10), the rcDPE is obtained by a unique entropy computation using

a single pattern probability distribution ̂̄p(τ),

HrcD = −
d!

∑
i=1

̂̄p(τ)i ln ̂̄p(τ)i . (13)

̂̄p(τ)i is the ith component of ̂̄p(τ), which is the average estimation for each pattern prob-
ability over the composite downsampled signals. The pattern probabilities obtained by
the cDPE and rcDPE procedures are different than the cMPE and rcMPE except for signals
consisting of uncorrelated noise with uniform pattern distribution. This comes from the
fact that we may have p(τ) 6= p(m).

2.4. Statistical Performance of cMPE, rcMPE, cDPE and rcDPE

The authors in [34,35] did not mention artifact cross-correlation and did not discuss
the statistical properties of the MPE, cMPE and rcMPE approaches. Thus, revisiting these
concepts from this perspective was addressed in [24]. The explicit moments (bias and
variance) of MPE, cMPE, DPE, cDPE and their respective refined versions was presented
in [24].

Since redundancy between composite signals introduces an artifact cross-correlation
effect, this makes exact derivations of the moments of the estimators of cMPE and rcMPE
difficult. Conversely, we were able to enunciate the explicit moments of cDPE and rcDPE
in [24], since the artifact cross-correlation effect is not present for the downsampled signals.

The explicit results in [24] demonstrated a decrease of the second term in the variance
expression as a function of the scale values or the downsampling factor when applying
the refined strategy. Moreover, the downsampling operation led to an approximated
expression of the variance instead of an inequality expression for multiscale strategy.

Additionally, applying classical multiscale procedure to the composite signal construc-
tion is equivalent to applying a linear filter step before PE computation. This filtering step,
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which is not achieved in the case of downsampling procedure, may have a large impact on
the estimators. For more details, readers can report to our previous work [36] where the
linear filter’s intrinsic PE was characterized, and its contribution was separated from the
signal’s ordinal information.

In the following, we will focus on MPE, rcMPE and rcDPE to investigate the superiority
of the new rcDPE estimator on real datasets over the known MPE and rcMPE ones.

3. Methods

This section is dedicated to the performance comparison of MPE, rcMPE and rcDPE
estimators on real datasets of sEMG signals acquired in a fatigue exercise. We first detail
the experimental setup necessary to data collection. We then explain the data preparation
to be used with the considered PE-based techniques. Finally, we present the statistical test
we used to evaluate the performance of these techniques.

3.1. Experimental Setup

Data were collected during a previous study conducted by the signal team of the
PRISME laboratory, in which ten healthy subjects (three women and seven men, ages
24 ± 1.5 year, all right-handed) participated in this study. They were fully informed about
the experimental procedures, and every subject gave their signed consent.

An isometric ergometer was specifically designed for this experiment in order to
perform an isometric flexion contraction of the elbow in a standardized position. Each
subject was seated and belted at the waist and strapped at the shoulders. By means of a
support, the right arm was horizontally rested (abducted perpendicularly from the body).
The hand was in a neutral position (midway between supine and prone positions) with the
elbow joint angle setting at 100° of extension and controlled with an electronic goniometer.

The force was measured by means of a strain gauge (0–2000 N force range, ZF, Scaime,
France) and conditioned to reach a 1000-Hz frequency bandwidth (CMJCE analog con-
ditioner, Scaime, France). The gauge was connected by a cable to a wrist-cuff attached
proximal to the styloid process. The force level produced was displayed on a screen by
means of a cursor. It was also possible to display a target for the force level to be imposed
during the fatigue test.

The sEMG signals were recorded from the short head of the biceps brachii by means
of electrodes located on the muscle belly halfway between the motor innervation point
and the tendon after shaving and cleaning the skin. Raw sEMG signals were amplified by
bipolar isolated amplifier (a common mode rejection ratio of 150 dB, 2–600 Hz band-pass
filter). Force and sEMG signals acquisition were synchronized by an analog-to-digital card
(PCI 6023E, National Instrument, Austin, TX, USA) at a 10 kHz sampling frequency.

The protocol consisted of three parts involving isometric elbow flexion contractions.
Step 1 was a standard warm-up of low intensity and very short duration contractions.
In step 2, after two minutes of rest, three maximal contractions of less than 3 s were
performed in order to determine the maximal voluntary contraction (MVC), which allowed
the contraction intensity level of the fatigue test to be set, and then 3 min rest was imposed
between contractions. In step 3, the fatigue test was performed by the subject. They were
asked to maintain contractions until exhaustion at 70% MVC. By exhaustion, we refer to
the point at which the subject was no longer able to maintain a constant level of force.

3.2. Data Setup and Entropy Techniques

We explore the considered PE-based techniques as a function of the fatigue factor by
carrying out calculations on the data sets obtained with sustained force until exhaustion.
Each recorded signal obtained during this work is split into four non-overlapping segments
of equal length, labeled as windows (W1, W2, W3, W4), in chronological order (0–25%,
25–50%, 50–75% and 75–100% time to exhaustion, respectively).
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MPE, rcMPE and rcDPE techniques were applied to each segment. We tested different
values of scale (m) from 1 to 100 in one-step increments. We also checked different dimen-
sion values (d): 3, 4 and 5. Since the recorded signals were around 274,000 data samples,
the maximum dimension of analysis was set at d = 5, and the length criterion adheres to
the aforementioned discussion on classic MPE (Section 2.2.1). For practical purposes, the
downsampling parameter for rcDPE was set at τ = m.

3.3. Statistical Tests

The average of each considered entropy estimator was calculated on ten values for each
of the conditions presented in this study: scale, dimension and fatigue step. The difference
between methods, their parameters (scale and dimension) as well as the difference between
the segments were evaluated by using gross results from segment W1 to W4 under the
fatigue condition. For the fatigue (delta step) condition, five combinations were taken into
account: [W1 −W2; W1 −W3; W1 −W4; W2 −W3 ; W3 −W4].

The statistical analysis was performed by means of the Statistica 7.1 Software (Stat Soft.
Inc., Tulsa, OK, USA). Given that samples are drawn by normality and equal variances
in all groups (evaluated by the Lilliefors and the Levene tests [37], respectively), statistics
were conducted by means of three-way repeated measures analysis of variance (ANOVA).

The repeated measure was the step fatigue (or the delta step fatigue) and corresponded
to the first factor. The other two factors were the method (MPE, rcMPE and rcDPE) and
the dimension (3, 4 and 5). When a significant difference was observed, the Bonferroni
comparison procedure was used in order to isolate the differing groups. All significance
thresholds were fixed at α < 0.05.

4. Results & Discussion

We first present and compare the results of the considered methods and their settings
when applied to sEMG signals acquired under fatigue exercises. We then discuss these
results and compare them to the existing literature of fatigue studies.

4.1. Comparison between Methods and Their Settings

Figure 3 displays the results obtained using the three methods: MPE, rcMPE and
rcDPE. In the left column of this figure, four curves are plotted,and each curve corresponds
to the mean MPE plotted as a function of time scale m at dimension d = 3 for four window
segments (W1 to W4). Two behaviors can be observed in these curve kinematics.

A rapid increase is first noticed in the shorter time scales (from m = 1 to m ≈ 60),
followed by a steady state (m > 60) for the three considered PE-based techniques. The four
curves belonging to the four segments differ below this value m = 60 and are superimposed
above it. Regarding the methods, the curve profiles are similar, although both of the two
refined composite methods show smoother lines in comparison to MPE.

The right column of Figure 3 displays the difference of the mean entropy values
calculated using pairwise of the fatigue steps W1 −W3, W2 −W4 and W1 −W4. This
difference (∆MPE) is plotted as a function of the scale m. This representation allows us to
refine the scale selection that serves as the best differentiation between segments. Indeed,
the curves present a significant difference for values of m ranging from 8 to 15.

As this range remains unchanged regardless of the method applied, we can deduce
that it corresponds to the optimal scale range of analysis for this particular dataset. This
range remains unchanged even if a higher embedding dimension is selected as illustrated
in Figure 4. Therefore, we keep the m = 10 for the subsequent steps in our analysis.

Additionally, when comparing the entropy variation values depicted in
Figures 3f and 4b,d, we notice that the maximum dimension used (d = 5) yielded the
highest differences between segments. We did not use dimensions higher than five in order
to maintain the MPE bias below acceptable levels due to the signal length constraints [27].
This restriction does not apply to rcMPE and rcDPE, where we can use higher dimen-
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sions [27]. However, we should pay attention to the increasing computational costs if
higher dimensions are used.
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Figure 3. Left column: mean entropy values as a function of scale m for the fatigue steps (from W1

to W4). Right column: variation in entropy mean values as a function of scale m on the pairwise
differences between steps of fatigue (only W1 −W3, W2 −W4, and W1 −W4 are shown). From top to
bottom: MPE (a,b), rcMPE (c,d) and rcDPE (e,f). All values at dimension d = 3.

According to the ANOVA statistics, the rcDPE method better distinguishes between
the fatigue activity segments at isometric contraction compared with the two other consid-
ered methods as illustrated in Figure 5a. Indeed, the method factor, shown in Figure 5a,
has a significant effect on the ∆MPE value (F(2, 486) = 4.091, p = 0.0077). The rcDPE
produces notable differences by comparison with the other two methods MPE (p = 0.017)
and rcMPE (p = 0.025).

The importance of the embedding dimension in the differentiation between entropy
values is highlighted in Figure 5b as well. As shown in Figure 5b, the dimension factor
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has a significant effect on the ∆MPE value (F(2, 486) = 94.837, p < 0.001); the dimension
d = 5 produces higher differences than d = 4 (p < 0.001) or d = 3 (p < 0.001). However,
no evidence of interaction between factors has been reported.
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Figure 4. Left column: mean entropy values as a function of scale m for the fatigue steps (from W1

to W4). Right column: variation in entropy mean values as a function of scale m on the pairwise
differences between steps of fatigue (W1 −W3, W2 −W4, and W1 −W4). Dimension values, from top
to bottom: d = 4 (a,b) and d = 5 (c,d).
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Figure 5. Effective hypothesis decomposition for fatigue isometric contraction for the following
factors: (a) PE-based methods and (b) dimension. The vertical lines denote 95% confidence intervals
for the ANOVA F distribution.

4.2. Physiological Fatigue Study

The physiological application was managed using the rcDPE technique by selecting the
dimension d = 4 and scale m = 10 for the sustained fatigue exercise condition. We remind
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that ten subjects have participated to this study. Figure 6 displays the rcDPE variation
plotted against the segment rank of fatigue level. It can be noticed from Figure 6 that there is
a significant rcDPE decrease with time progression to exhaustion that occurred throughout
all stages (p < 0.001). Additionally, repeated ANOVA measurements concerning the fatigue
factor revealed statistically significant effects of the rcDPE (F(3, 27) = 72.3, p < 0.001).

1st 2nd 3rd 4th

Fatigue Step ( exhaustion time)

0.55

0.6

0.65

0.7

0.75

0.8

0.85
rc

D
P

E
**

d=4 m=10

Figure 6. Range boxplots for rcDPE measurements from isometric contractions with dimension
d = 4. Four activity windows from sustained 70% MVC at scale m = τ = 10. From the repeated
ANOVA test measurements, all the pairwise comparisons are statistically significant (p < 0.001),
shown globally with **.

4.3. Discussion

We first discuss the impact of PE parameters when applying PE-based techniques to
sEMG signals. We are therefore able to propose optimal parameters values based on the
observed results under fatigue conditions. Second, we explain the benefits of the rcDPE
method. Third, we discuss the optimal parameters at the light of spectral analysis theory
when applied on sEMG data. We finally make connections to the existing literature of
fatigue studies.

It must be noted that, in the current discussion, we neglect the bias of the considered
PE estimators even at high time scales since the signal length constraint can be assumed
to be satisfied [24,27]. Indeed, the selected dimension is below five, and the length of
the collected sEMG data is above N = 274,000 samples. This high signal length yields a
small MPE variance, which contributes little to the overall observed variability between
subjects [24].

4.3.1. Optimal Parameter Settings

Based on the observed results (Figures 3f and 4b,d), we notice that choosing a time
scale that is either low or too high would affect the experiment. Indeed, choosing a time
scale that is too small would make the differences between methods almost indistinguish-
able, whereas a time scale that is too high would make all of the methods useless since they
cannot distinguish sEMG complexity from noise.

Moreover, for the sEMG signals recorded under fatigue exercise, we found the time
scale with the most pronounced difference between segments was around m = 10 (or
τ = 10). Since the original sampling frequency used for the experiment was fs = 10 kHz,
the effective sampling rate after coarse-graining or downsampling is fs = 1 kHz, which
only captures information in the range 0–500 Hz as a consequence of Shannon’s theorem.
We thus expect that the most adequate sampling rate for PE calculations will be close to
1000 Hz.
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4.3.2. Benefits of the rcDPE Estimator

The benefits of rcDPE can be explained by the combination of the composite procedure
with downsampling. Indeed, the composite procedure increases the number of time series
from the raw data. Then, the averaging steps (8) or (9) help to reduce the noise impact on
the estimators and highlight coherent structures. Thus, applying the composite strategy
may lead to a reduced sensitivity to noise of the estimators.

In the case of the coarse-graining procedure, the averaging benefit is limited due to the
presence of cross-correlation artifacts. These artifacts are artificially induced by redundant
elements due to the coarse-graining procedure itself. This explains the results of Figure 5a
showing no difference between MPE and rcMPE in terms of fatigue level discrimination,
even if a smoothing effect is present in Figure 3d compared with Figure 3b.

In the case of the downsampling procedure, this artifact cross-correlation effect is not
present. Therefore, as long as the Shannon theorem is fulfilled (no information is loss),
downsampling combined with the composite procedure increases the number of time
series from the raw data, by generating components free of cross-correlation artifacts. This
helps to decrease the variance of cDPE and rcDPE estimators, which is in agreement with
the theoretical statistical properties previously established in [24,27]. This also explains
the results of Figure 5a showing differences between (MPE, rcMPE) and rcDPE in terms of
fatigue level discrimination.

4.3.3. Link with Spectral Analysis Theory

Regarding the spectral theory, PE measures can be categorized into two classes with
respect to the scaling effects.

As a first class, the MPE measure is achieved by a coarse-graining procedure on
nonoverlapping segments of size m. The effect of this scaling operation is equivalent
to a classical filtering of the data using an m-constant coefficients filter followed by an
m-downsampling operation. For example, by choosing m = 10, multiscaling acts as a
10-tap constant value finite impulse response filter with a cutoff frequency of fc ≈ 445
Hz, and the sampling frequency is fs = 10 kHz. Even if this natural lowpass filter can
prevent spectral aliasing, it is still a poor quality filter [38], and the information loss can
impact the rcMPE performance. We deeply discussed the effect of this linear intrinsic filter
preprocessing in our previous paper [36].

As a second class, the DPE measure is achieved by a single downsampling operation.
We kept this original definition in the paper while being aware of the spectral aliasing.
Downsampling without any prefiltering produces spectral aliasing, and many authors
do not mention this. In our study, the aliasing effect can be neglected up to time scale 10
through two points.

Firstly, in our experiments, we carefully acquired data with very limited high-frequency
noise using high-quality sensors and high-performance instrumentation under controlled
laboratory conditions. Secondly, the physiological sEMG activity lies below 300 Hz regard-
less of the muscles investigated. This is the frequency range where sEMG information is
produced by the muscle fiber contractions [39].

Figure 7 displays the semilog plot of the average and standard deviation of power
spectral densities (PSD) calculated using the acquired sEMG signals of ten studied subjects.
The linear representation of the PSD is also depicted in Figure 8. Both figures illustrate the
low level of noise in the high frequency band.
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Figure 7. PSD averaged over the ten studied subjects (thick line) with the standard deviation (thin
lines) in x-axis semilog representation. Integrated normalized PSDs are in unity.
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Figure 8. PSD for the ten subjects in a linear representation. The thick line is the averaged curve over
the ten subjects. Integrated normalized PSDs are in unity.

In order to numerically support this claim, we evaluated the power ratio defined
as the ratio between the integrated PSD in the sEMG band [0;500 Hz] and the noise band
[500;5000 Hz]. This ratio is 29.5 dB, which highlights a negligible noise level compared to
power of the sEMG spectral band of interest. Therefore, the spectral aliasing due to the
downsampling with τ ≤ 10 can be neglected.

Based on this, and since the downsampling with τ = 10 reduces the sampling fre-
quency to 1 kHz, we can assume that the sEMG activity information will be concentrated in
the frequency bandwidth of interest without noticeable distortion. At τ > 10, the spectral
aliasing begins to be noticeable, which destroys the real frequency structures, thus making
rcDPE inappropriate at such scales. Both estimators tend to white information measure
especially when m > 20.

The link to the spectral analysis theory is, therefore, of high importance for an informed
and correct interpretation. As a general rule of thumb when working with sEMG signals in
the context of a biceps brachii fatigue study at a static isometric 70% MVC contraction level,
we recommend the use of a time scale that adjusts the coarse (or downsampled) signals
close to 1000 Hz with at least an embedding dimension close to d = 4.

Generally, these PE parameter values (d and τ for rcDPE or m and for rcMPE and
cMPE) will not be standard and will depend on the particular characteristics of the dataset
and the application domain. They should be adjusted until a maximum difference between
groups is reached, provided that Shannon’s theorem is respected. Notably, the recommen-
dation is to limit the observed data inside their full frequency band of interest in order to
achieve higher sensitivity with the rcMPE or rcDPE methods.

4.3.4. Physiological Findings Compared to Existing Fatigue Studies

Regarding our contribution to physiological fatigue studies, the entropy decrease
observed (Figure 6) may be explained by physiological modifications that are performed
during the sustained isometric exercise. Indeed, during such an exercise, peripheral
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disturbance in muscle contraction has been noted and linked to fatigue phenomena [40].
In particular, an increase in the duration of action potential was observed [41] as well
as a consequent increase in the time duration of the MUAP [42]. The lengthening of the
time duration may make the probability distribution of ascending or descending patterns
increase, thus, unbalancing the distribution, which leads to lower entropy values.

Moreover, MU firing rate synchronization may also explain the entropy reduction with
the increased fatigue level. Indeed, during such a fatigue exercise, it has been reported that
MU firing rate synchronization increases continuously until exhaustion [43]. This change
can reduce variations in the sEMG signals as reported in the study by Gabriel et al. [44].

This observed entropy declination with fatigue is also in agreement with another study
presented in [10]. The experimental setup described in [10] was similar to the current study:
the same muscle model, isometric contraction, different levels of strength and fatigue test,
whereas the method employed to measure entropy was the multiscale Sample Entropy,
which differs from the methods considered in the current paper.

However, the decrease in entropy reported in [10] was only observed from the last
part of the sustained exercise. In our current study, this decrease started at the beginning
of the muscular exercise, and this dynamic, therefore, seems to be more in line with the
dynamic of electrophysiological disturbances noted at the beginning of sustained force
activities [40].

There are two possible reasons for the difference observed between dynamics of the
entropy decline in [10] and in our current paper. First, the numerical stability of the Sample
Entropy is sensitive to the tolerance parameter r = 0.6 and the embedding dimension
d = 2. These parameters were exhaustively obtained through a grid search optimization of
a probabilistic cost at scale 1 (m = 1). Higher scales were not explored.

The second noticeable reason comes from the additional data preprocessing in [10]:
the raw data acquired at a frequency sampling 1000 Hz were downsampled by a factor
four to yield an effective sampling rate of 250 Hz, and the downsampled data were filtered
using a lowpass filter. This implies that the authors did not explore the totality of the
spectral bandwidth 0–500 Hz of sEMG signals as we did.

Now, regarding the considered Multiscale PE (left columns of Figures 3 and 4), we
found that two regimes stand out: an increasing entropy for low time scales and an
approximately constant entropy (a plateau) for higher time scales. Other studies have also
reported the presence of such regimes when using multiscale entropy [10,16,23].

In our study, the critical time scale in between the two regimes can be roughly iden-
tified in the range of 60 to 80 for the considered sEMG data sets. Given the sampling
frequency of 10 kHz, this is equivalent to a time value in the range of 0.006 to 0.008 s. This
time value is coherent with the study presented in [16] where the authors employed a
multiscale Renyi entropy and highlighted the beginning of a plateau for time scales beyond
0.01 s. The study in [16], however, addressed the endurance of the low back muscles erector
spinae using sEMG signals recorded during a modified version of the isometric fatigue test.

In [10], the critical time scale was identified as the intersection of two piecewise-linear
regression of the multiscale sample entropy, and this was approximately equal to m ≈ 13,
which corresponds to a time value equal t 0.05 s given the 250 Hz sampling frequency.

5. Conclusions

This paper addresses a fatigue study using MPE and its refinements (cMPE, rcMPE
and rcDPE) for characterizing the complexity behavior of EMG signals.

The rcDPE, which theoretically exhibits the smallest bias and variance with uncorre-
lated noise signals according to [27], performed better in differentiating the fatigue level.
This was confirmed in the present study where the highest variations in sEMG entropy
were the values during a fatiguing exercise of the biceps brachii voluntary static contraction
maintained at 70% of MVC until exhaustion.

Most importantly is the scale m = 10 value at which the rcDPE variations were the
highest. This scale value is equivalent to down-sampling data from 10 to 1 kHz leading to
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the conclusion that limiting the observed data in their frequency band of interest (in the
[0;500] Hz in the case of sEMG data) provides higher sensitivity. Moreover, the changes in
the entropy values as a function of fatigue level that we observed are in agreement with
the existing literature dedicated to fatigue studies [10,23].

From our findings, we can make some recommendations for the general use of mul-
tiscale entropy estimators in the frame of sEMG fatigue studies: The rcDPE method is
recommended because it cancels correlation artifacts introduced by the coarse-graining
procedure of multicale procedure. The choice of the τ parameter bringing the sEMG signal
into its full frequency bandwidth prevails for concentrating data information, without any
information loss, thus, yielding higher sensitivity to the complexity measures.

We thus propose researchers follow these guidelines that promote good practices in
the use of MPE complexity measures. The final objective is to correctly and better exploit
the potential of such measures in letting real data express their inner complexity. Lastly,
the biological interpretation of the time scale deserves further comments.

We know the information content inside sEMG lies in the range of 20–500 Hz [39],
which is the most appropriate sampling frequency for measurements is fs = 1000 Hz (due
to Shannon’s sampling theorem), as shown by the Fatigue signal dataset. By having the
original signal sampled at fs = 10 kHz with scale m = 10 (or τ = 10), we captured only
the desired range where the information is meaningful.

This study can be extended to other entropy estimators with refined composite down-
sampling versions in order to cancel the artificial correlations between composite signals
introduced by to the composite coarse graining procedure independently of the natu-
ral autocorrelation of the data. The behaviors of these entropy estimators to composite
downsampling procedures are worthy of study in this experimental frame.

Author Contributions: Conceptualization, P.R., M.J. and O.B.; formal analysis, A.D. and O.B.;
funding acquisition, P.R. and O.B.; investigation, P.R. and O.B.; project administration, O.B.; resources,
P.R. and O.B.; software, A.D.; visualization, A.D.; writing—original draft preparation, P.R., M.J., A.D.
and O.B.; writing—review and editing, P.R., M.J. and O.B. All authors have read and agreed to the
published version of the manuscript.

Funding: This research has been funded by the University of Orléans (France) and the Consejo
Nacional de Ciencia y Tecnología (CONACyT—Mexico).

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Institutional Pedagogical and Ethical Committee of
“Institut National de Formation Supérieure en Sciences et Technologies du Sport (INFS/STS) de Dély
Ibrahim, Alger”, Algeria (2004).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Acknowledgments: This work was supported by the University of Orléans and the PRISME labora-
tory. This work was also supported by CONACyT, Mexico, with scholarship 439625.

Conflicts of Interest: The authors declare no conflict of interest.



Entropy 2021, 23, 1655 16 of 17

Abbreviations
The following abbreviations are used in this manuscript:

PE Permutation Entropy
MSE Multiscale Entropy
MPE Multiscale Permutation Entropy
cMPE composite Multiscale Permutation Entropy
rcMPE refined composite Multiscale Permutation Entropy
cDPE composite Downsampling Permutation Entropy
rcDPE refined composite Downsampling Permutation Entropy
sEMG surface ElectroMyoGraphy
MU Motor Unit
MUAP Motor Unit Action Potential
MVC Maximal Voluntary Contraction
ANOVA ANalysis Of VAriance
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