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Abstract

Time is of the essence in evaluating potential drugs and biologics for the treat-
ment and prevention of COVID-19. There are currently 876 randomized clinical
trials (phase 2 and 3) of treatments for COVID-19 registered on clinicaltrials.gov.
Covariate adjustment is a statistical analysis method with potential to improve
precision and reduce the required sample size for a substantial number of these
trials. Though covariate adjustment is recommended by the U.S. Food and Drug
Administration and the European Medicines Agency, it is underutilized, espe-
cially for the types of outcomes (binary, ordinal, and time-to-event) that are com-
mon in COVID-19 trials. To demonstrate the potential value added by covariate
adjustment in this context, we simulated two-arm, randomized trials compar-
ing a hypothetical COVID-19 treatment versus standard of care, where the pri-
mary outcome is binary, ordinal, or time-to-event. Our simulated distributions
are derived from two sources: longitudinal data on over 500 patients hospital-
ized at Weill Cornell Medicine New York Presbyterian Hospital and a Centers
for Disease Control and Prevention preliminary description of 2449 cases. In sim-
ulated trials with sample sizes ranging from 100 to 1000 participants, we found
substantial precision gains from using covariate adjustment-equivalent to 4-18%
reductions in the required sample size to achieve a desired power. This was the
case for a variety of estimands (targets of inference). From these simulations,
we conclude that covariate adjustment is a low-risk, high-reward approach to
streamlining COVID-19 treatment trials. We provide an R package and practical

recommendations for implementation.
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1 | INTRODUCTION

This paper builds on our report (Benkeser et al., 2020) writ-
ten in response to a request by the U.S. Food and Drug
Administration (FDA) for statistical analysis recommen-
dations for COVID-19 treatment trials. We aim to help
inform the choice of estimand (ie, target of inference) and
analysis method to be used in COVID-19 treatment trials.
To this end, we describe treatment effect estimands for
binary, ordinal, and time-to-event outcomes. Importantly,
the interpretability of these estimands does not rely on cor-
rect specification of models. For binary outcomes, we con-
sider the risk difference, relative risk, and odds ratio. For
ordinal outcomes, we consider the difference in means, the
Mann-Whitney (rank-based) estimand, and the average of
the cumulative log odds ratios over levels of the outcome.
For time-to-event outcomes, we consider the difference in
restricted mean survival times, the difference in survival
probabilities, and the ratio of survival probabilities.

For each estimand, we give a corresponding covariate-
adjusted estimator that (1) leverages information from
baseline variables and (2) is robust to model misspecifi-
cation. We introduce a new covariate adjustment method
for ordinal outcomes, but use existing methods for binary
and time-to-event outcomes. By incorporating baseline
variable information, covariate-adjusted estimators often
enjoy smaller variance compared to estimators that ignore
this information, thereby resulting in reductions in the
required sample size to achieve a desired power.

To evaluate the performance of covariate-adjusted esti-
mators, we simulated two-arm, randomized trials compar-
ing a hypothetical COVID-19 treatment versus standard
of care. Our simulated distributions are derived from two
sources: longitudinal data on over 500 patients hospital-
ized at Weill Cornell Medicine New York Presbyterian Hos-
pital prior to March 28, 2020 and a preliminary description
of 2449 cases reported to the Centers for Disease Control
and Prevention (CDC) from February 12 to March 16, 2020.
We focused on hospitalized, COVID-19 positive patients
and specified distributions for binary, ordinal, and time-to-
event outcomes based on information collected on inten-
sive care unit (ICU) admission, intubation with ventila-
tion, and death. We conducted simulations using all three
estimands when the outcome is ordinal, but only evalu-
ated the risk difference when the outcome is binary and
the restricted mean survival time and risk difference when
the outcome is time to event.

After our aforementioned report (which contains some
of our simulation results for ordinal and time-to-event
outcomes), the FDA released a guidance for industry on
COVID-19 treatment and prevention trials (FDA, 2020).
The guidance contains the following statement, which
is similar to our key recommendation regarding covari-

ate adjustment: “To improve the precision of treatment
effect estimation and inference, sponsors should consider
adjusting for prespecified prognostic baseline covariates
(eg, age, baseline severity, comorbidities) in the primary
efficacy analysis and should propose methods of covariate
adjustment.”

There is already an extensive literature on the theory
and practice of covariate adjustment, for example, Yang
and Tsiatis (2001), Tsiatis et al. (2008), Zhang et al. (2008),
Moore and van der Laan (2009a), Austin et al. (2010),
Zhang and Gilbert (2010), and Jiang et al. (2019). However,
covariate adjustment is underutilized, particularly for tri-
als with a binary, ordinal, or time-to-event outcome. Since
many COVID-19 treatment trials focus on these types of
outcomes, our goal is to demonstrate the potential benefits
of covariate adjustment in these contexts. Recent examples
of COVID-19 treatment trials include a trial of dexametha-
sone with 28-day mortality as the primary outcome (The
RECOVERY Collaborative Group, 2020) and three trials of
remdesivir with the following primary outcomes: clinical
status on day 14 using a 7-point ordinal scale (Goldman
et al., 2020), time to clinical improvement (Wang et al.,
2020), and time to death (Beigel et al., 2020).

The remainder of this paper is organized as follows.
A brief background on covariate adjustment in random-
ized trials is provided in Section 2. Section 3 describes
estimands and estimation strategies when the outcome is
binary, ordinal, or time-to-event. Section 4 describes the
methods underlying the simulation study, and Section 5
presents the simulation study results. Section 6 presents
our recommendations for COVID-19 treatment trials. A
brief discussion is given in Section 7.

2 | BACKGROUND ON COVARIATE
ADJUSTMENT IN RANDOMIZED TRIALS

The ICH E9 Guidance on Statistical Methods for Analyzing
Clinical Trials (FDA and EMA, 1998) states that “Pretrial
deliberations should identify those covariates and factors
expected to have an important influence on the primary
variable(s), and should consider how to account for these
in the analysis to improve precision and to compensate for
any lack of balance between treatment groups.” The term
“covariates” refers to baseline variables. Adjusting for
prespecified, prognostic baseline variables (ie, variables
that are correlated with the outcome) is called covariate
adjustment. The primary goal of covariate adjustment is
to improve precision in estimating the marginal treatment
effect (Tsiatis et al., 2008). Examples of such marginal
treatment effects, called estimands, are given in Section 3.

Though there appears to be a general agreement among
regulators (EMA, 2015; FDA, 2019) that when the outcome
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is continuous, analysis of covariance (ANCOVA) may be
used to appropriately adjust for baseline variables, there
is a dearth of specific guidance for ordinal and time-to-
event outcomes, which are of keen interest in COVID-19
treatment trials. Even for binary outcomes, for which one
possible adjustment method (Ge et al., 2011) was cited in
the recent FDA COVID-19 guidance (FDA, 2020), there
has not been any study showing how much precision gain
is to be expected by using covariate adjusted, rather than
unadjusted, methods in the context of COVID-19 treat-
ment trials. In this work, we evaluate the performance of
covariate-adjusted estimators (hence, simply adjusted esti-
mators) for binary, ordinal, and time-to-event outcomes.
We explain the intuition for how covariate adjustment can
lead to precision gains in Appendix A of the Supporting
Information.

3 | ESTIMANDS AND ANALYSIS
METHODS

Throughout, we assume that treatment is assigned
independently of baseline variables. All estimands are
intention-to-treat in that they are contrasts between
outcome distributions under assignment to treatment and
under assignment to control. We let A denote study arm
assignment, taking on the value O for a control group and
1 for a treatment group. We let Y denote the outcome of
interest and X denote a vector of baseline covariates.

We assume that participant data vectors are inde-
pendent, identically distributed (i.i.d.) draws from an
unknown, superpopulation distribution; this assumption
is commonly made in statistical analyses of randomized
trials. Our goal is to draw inferences about the superpopu-
lation distribution.

3.1 | Binary outcomes

We consider three estimands, though our simulation stud-
ies only involve the first. All probabilities below are
marginal (as opposed to conditional on baseline variables).
The outcome is coded as “good” (1) or “bad” (0). In what
follows we let (A, Y) denote a random treatment-outcome
pair.

Estimand 1: Risk Difference. Difference between prob-
ability of bad outcome comparing treatment to con-
trol arms, thatis, P(Y =0|A=1)—P(Y =0|A =
0).

Estimand 2: Relative Risk. Ratio of probability of bad
outcome comparing treatment to control arms, that
is, (Y =0|A=1)/P(Y =0| A =0).

Estimand 3: Odds Ratio. Ratio of odds of bad outcome,
comparing treatment to control arms, that is,
odds(Y =0|A =1)/odds(Y =0|A =0), where
odds(Y =0|A=a)=P(Y =0|A=a)/P(Y =
1| A = a)foreacha €{0,1}.

Estimators of each estimand 1-3 above can be con-
structed from estimators of the probability of a bad out-
come for each study arm; for example, the risk differ-
ence can be estimated by the difference between the arm-
specific estimators. The unadjusted estimator of P(Y =
0| A = a)is the sample proportion of bad outcomes among
patients assigned to arm A = a. A covariate-adjusted esti-
mator of this quantity can be based on the standardiza-
tion approach of Ge et al. (2011), as indicated in the FDA
COVID-19 guidance (FDA, 2020). This estimator is iden-
tical to that of Moore and van der Laan (2009a) and for
the risk difference it is a special case of estimators from
Scharfstein et al. (1999). First, a logistic regression model is
fit for the probability of bad outcome given study arm and
baseline variables. Next, for each participant (from both
arms), a predicted probability of bad outcome is obtained
under each possible arm assignment a € {0,1} by plug-
ging in the participant’s baseline variables and setting arm
assignment A = 0 and A = 1, respectively, in the logistic
regression model fit. Lastly, the covariate-adjusted estima-
tor of P(Y = 0| A = a) is the sample mean over all partici-
pants (pooling across arms) of the predicted probability of
bad outcome setting A = a.

3.2 | Ordinal outcomes

We consider three estimands when the outcome is ordinal,
with levels 1, ..., K. Without loss of generality, we assume
that higher values of the ordinal outcome are preferable. In
what follows, we let (4, Y) and (A4, Y) denote independent
treatment-outcome pairs.

Estimand 1: Difference in means (DIM). For u(-) a
prespecified, real-valued transformation of an out-
come, the estimand is defined as

DIM: E{u(Y) | A = 1} — E{u(Y) | A = 0}.

In most settings, this transformation will be mono-
tone increasing so that larger values of the ordi-
nal outcome will result in larger, and there-
fore preferable, transformed outcomes. Transfor-
mations could incorporate, for example, utilities
assigned to each level, as has been done in some
stroke trials (Chaisinanunkul et al., 2015; Nogueira
et al., 2018).



wo | \wiL ey DIOMelries

BENKESER ET AL.

‘A JOURNAL OF THE INTERNATIONAL BIOMETRIC SOCIETY

Estimand 2: Mann-Whitney (MW) estimand. This esti-
mand reports the probability that a random individ-
ual assigned to treatment will have a better outcome
than a random individual assigned to control, with
ties broken at random. The estimand is defined as

MW:P(Y > Y|A=1,A=0)
1 .~ _
+5P(Y=YA=1,4=0).

Estimand 3: Log-odds ratio (LOR). We consider a non-
parametric extension of the LOR (Diaz et al., 2016)
defined as the average of the cumulative log odds
ratios over levels1to K — 1 of the outcome, namely

K-1
1 odds(Y < j|A=1)
LOR: —— Y1 .
K—1j§; Og{odds(YSlezo)

In the case that the distribution of the outcome
given study arm is accurately described by a pro-
portional odds model of the outcome against treat-
ment (McCullagh, 1980), this estimand is equal to
the coefficient associated with treatment.

All three estimands are smooth summaries of the
treatment-specific cumulative distribution functions
(CDFs) of the ordinal outcome. The CDF for arm
a €{0,1} evaluated at je{l,..,K} is denoted by
F(jla)=P(Y < jlA=a), and the -corresponding
probability mass function is denoted by f(j|a)=
F(j|la)—F(j —1]a). The estimands can be equivalently
expressed in terms of the CDFs as follows:

K
DIM: Y u(fG 1D = £ 10}

j=1

K
MW: Y {F(j—1|0)+ %f(jlo)}f(ﬂl)’
j=1

LOR: LKz_‘jm [F(J 1D/ FU| 1)}].
K—1 & "°|F(j10)/{L-F(j |0}
To estimate these quantities, it suffices to estimate the arm-
specific CDFs and then to evaluate the summaries; such
estimators are called plug-in estimators.

The unadjusted estimator of the CDF in each arm
is the empirical distribution in that arm. The resulting
plug-in estimator for the DIM is the difference between
arms of sample means of the transformed outcomes. Also,
the resulting plug-in estimator (denoted M) for the MW
estimand is closely related to the usual Mann-Whitney

U-statistic U = ngn; M, where ny and n; are the total
sample sizes in the two study arms.

Model-robust, covariate-adjusted estimators are avail-
able for estimation of the MW estimand, for example, Ver-
meulen et al. (2015), and for the LOR estimand, for exam-
ple, Diaz et al. (2016). We use a slightly different approach
as described below. It is an area of future research to com-
pare the performance of our method to the those from
related works.

Our covariate-adjusted estimator of the CDF in each
arm, presented in Appendix B of the Supporting Infor-
mation, leverages prognostic information in baseline
variables. It uses working models, that is, models that are
fit in the process of computing the estimator but which
we do not assume to be correctly specified. Specifically,
the adjusted estimator of the CDF for each study arm
a € {0,1} is based on the following arm-specific, propor-
tional odds working model for the cumulative probability
of the outcome given the baseline variables: logit{P(Y <
jlA=a,X)}=a;+ X, for each j=1,..,K—1 with
parameters «y,...,ag_; and B; the model for the other
study arm is the same but with a separate set of parame-
ters. Each model is fit using data from the corresponding
study arm, yielding two working covariate-conditional
CDFs (one per arm). For each arm, the estimated marginal
CDF is then obtained by averaging the corresponding con-
ditional CDF across the empirical distribution of baseline
covariates pooled across the two study arms. The above
methods are implemented in an accompanying R package,
drord.

The validity (ie, consistency and asymptotic normality)
of the adjusted CDF estimator given above in no way relies
on correct specification of the aforementioned working
model. This property also holds for the estimators of Ver-
meulen et al. (2015) and Diaz et al. (2016).

3.3 | Time-to-event outcomes

We consider three treatment effect estimands in the time-
to-event setting, all of which are interpretable under viola-
tions of a proportional hazards assumption. To define these
estimands, we let T be a time-to-event outcome, C be a
right-censoring time, A be a treatment indicator, and X be
a collection of baseline covariates.

Estimand 1: Difference in restricted mean survival times
(RMSTs). The RMST is the expected value of a sur-
vival time that is truncated at a specified time 7
(Chen and Tsiatis, 2001; Royston and Parmar, 2011),
that is,

RMST: E(min{T,7}| A =1) — E(min{T,7}| A = 0).
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Estimand 2: Survival probability difference (also
called risk difference, RD). Difference between
arm-specific probabilities of survival to a specified
time t*, that is,

RD:P(T <t*|A=1)—P(T <t*| A =0).

Estimand 3: Relative risk (RR). Ratio of the arm-specific
probabilities of survival to a specified time t¢*,
that is,

PT<t'|A=1)
RR: —/——————.
P(T<t*|A=0)

Analogous to the ordinal outcome case, estimators of
these parameters can be constructed from estimators of
the survival functions for each arm. One approach to con-
structing adjusted estimators, used here, involves discretiz-
ing time and then: (i) estimating the time-specific haz-
ard conditional on baseline variables, (ii) transforming to
survival probabilities using the product-limit formula, and
(iii) marginalizing using the estimated covariate distribu-
tion (pooled across arms). The adjusted approach as imple-
mented here (and elsewhere—see references below) has
two key benefits relative to unadjusted alternatives such
as using the unadjusted Kaplan-Meier estimator (Kaplan
and Meier, 1958). First, the adjusted estimator’s consistency
depends on an assumption of censoring being independent
of the outcome given study arm and baseline covariates
(C L T|A,X), rather than an assumption of censoring in
each arm being independent of the outcome marginally
(C L T|A). The former may be a more plausible assump-
tion. Second, in large samples and under regularity con-
ditions, the adjusted estimator is at least as precise as the
unadjusted estimator in the case that censoring is com-
pletely at random, that is, that in each arm a € {0,1},C L
(T,X)|A = a.

Covariate-adjusted estimators for time-to-event out-
comes include, for example, Chen and Tsiatis (2001),
Rubin and van der Laan (2008b), Moore and van der
Laan (2009b), Lu and Tsiatis (2011), Stitelman et al. (2011),
Brooks et al. (2013), Parast et al. (2014), Zhang (2014),
and Benkeser et al. (2018, 2019). Diaz et al. (2019) com-
pare the properties of some of these estimators. We used
the covariate-adjusted estimator of the RMST (specifically,
the targeted minimum loss-based estimator of the RMST)
from Diaz et al. (2019) implemented in the R package
survtmlerct. Time was discretized at the day level. Sim-
ilar covariate-adjusted estimators for the RD and RR are
also available (Moore and van der Laan, 2009b; Benkeser
et al., 2018, 2019). Both Diaz et al. (2019) and Benkeser
et al. (2018) provide approaches that can be used to develop
Wald-type confidence intervals and corresponding tests of
the null hypothesis of no treatment effect.

4 | SIMULATION METHODS

4.1 | Data-generating distributions

In each setting below, we simulated trials with 1:1 random-
ization to the two arms and total enrollment of n = 100,
200, 500, and 1000. In each case, 1000 trials were simu-
lated. In each simulated trial, the n participant data vectors
are i.i.d. draws from a population data-generating distribu-
tion that depends on the setting.

Data for simulated control-arm participants were sim-
ulated based on real data, while data for simulated
treatment-arm participants were simulated by modifying
the outcome distribution observed in the real data to
achieve a desired level of treatment effect (details below).
In all simulation settings, covariates are approximately,
equally prognostic across arms and there is no treatment
effect heterogeneity.

4.1.1 | Binary outcomes

The data-generating distributions are the same as for ordi-
nal outcomes (below), except that we dichotomized the
outcome into “bad” (death or survival with ICU admis-
sion) and “good” (survival without ICU admission).

4.1.2 | Ordinal outcomes

We generated data based on CDC COVID-19 Response
Team (2020), which reported outcomes for individuals
with COVID-19. We focus on hospitalized patients. (See
Appendix C of the Supporting Information for additional
results pertaining to the non-hospitalized population.) The
ordinal outcome has three levels: death (level 1), survival
with ICU admission (level 2), and survival without ICU
admission (level 3). The following age categories define
the single baseline variable (which is used for adjustment):
0-19, 20-44, 45-54, 55-64, 65-74, 75-84, and >85. In CDC
COVID-19 Response Team (2020), lower and upper esti-
mates were reported for each age group-specific outcome
probability; we used the average of these within each age
group to define our data-generating distributions. For the
hospitalized COVID-19 positive population, the resulting
outcome probabilities for each age group are listed in
Table 1.

We separately considered two types of treatment effects
in our data-generating distributions: no treatment effect
and an effective treatment. For the former, we randomly
sampled n age-outcome pairs according to the distribution
in Table 1 and then independently assigned study arm with
probability 1/2 for each arm.
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TABLE 1
conditional outcome distributions based on data from CDC
COVID-19 Response Team (2020) that we use for defining the
control arm distribution in the ordinal outcome simulation studies.

Hospitalized, COVID-19 positive population: age and

“ICU” represents ICU admission

P
P (ICUand P
P (death survived (no ICU and
Age (age) | age) | age) survived | age)
0-19 0.004 0.000 0.000 1.000
20-44 0.189 0.009 0.177 0.815
45-54 0.162 0.026 0.319 0.655
55-64 0.165 0.079 0.314 0.607
65-74 0.225 0.105 0.373 0.521
75-84 0.143 0.166 0.465 0.369
>85 0.112 0.371 0.347 0.281

For the latter case (effective treatment), we randomly
generated control arm participants as in the previous para-
graph and randomly generated treatment arm participants
by modifying the values in Table 1 to achieve a desired
level of true treatment effect. Specifically, the probabilities
P(ICU admission and survived | age) in column 4 were pro-
portionally reduced, while P(no ICU admission and sur-
vived | age) were increased by an equal amount. The prob-
abilities of death given age in column 3 were not changed.
This modified table corresponds to a scenario where the
treatment has no effect on the probability of death but
decreases the odds of ICU admission among those who sur-
vive by the same relative amount in each age category.

The aforementioned relative reduction (and the result-
ing treatment effect) was separately selected for each sam-
ple size n = 100, 200, 500, 1000. For the DIM estimand at
each sample size, we selected treatment effect sizes such
that a t-test using the unadjusted estimator would achieve
roughly 50% and 80% power, respectively, to reject the null
hypothesis of no treatment effect. For sample size n = 100,
we instead set this relative reduction to achieve roughly
30% and 40% power, respectively, because there did not
exist a relative reduction that achieved 80% power at this
sample size. The same data-generating distributions used
for the DIM estimand were also used for the MW and
LOR estimands.

In our simulations, we used the adjusted estimator
described in Section 3.2, where age is coded using the cat-
egories in Table 1. Specifically, these age categories are
included as the main terms in the linear parts of the pro-
portional odds working models.

For simplicity, for binary and ordinal outcomes we sim-
ulated trials with no missing data. However, the methods
we used can adjust for missing outcomes. (See Appendix B
of the Supporting Information.)

4.1.3 | Time-to-event outcomes

In this simulation, the outcome is time from hospital-
ization to the first of intubation or death, and the pre-
dictive variables used are sex, age, whether the patient
required supplemental oxygen at Emergency Depart-
ment (ED) presentation, dyspnea, hypertension, and the
presence of bilateral infiltrates on the chest x-ray. We
focus on RMST 14 days after hospitalization, and the
RD of remaining intubation-free and alive 7 days after
hospitalization.

Our data generation distribution is based on a database
of over 500 patients hospitalized at Weill Cornell Medicine
New York Presbyterian Hospital prior to March 28, 2020.
Outcome information was known for all patients through
at least day 14. Patient data were resampled with replace-
ment to generate 1000 datasets, for each of the sizes n =
100, 200, 500, and 1000. For each dataset, a hypothetical
treatment variable was drawn from a Bernoulli distribu-
tion with probability 0.5 independently of all other vari-
ables. Positive treatment effects were simulated by adding
an independent random draw from a y? distribution to
each participant’s outcome in the treatment arm; we used
x? distributions with two and four degrees of freedom,
respectively, to generate two different effect sizes. These
data-generating distributions correspond to a difference in
RMST of 0.507 and 1.004 at 14 days, and an RD of 3.5% and
8.8% at 7 days, respectively. Five percent of the patients
were selected at random to be censored, and their cen-
soring time was drawn from a uniform distribution on
{,..,14}.

We compare the performance of the unadjusted,
Kaplan-Meier-based estimator to the covariate-adjusted
estimator. These estimators are defined in Sections 4 and 6
of Diaz et al. (2019), respectively, and implemented in the
R package survtmlerct. Wald-type confidence intervals
and corresponding tests of the null hypothesis of no effect
are reported.

4.2 | Performance criteria

We compare the type I error and power of tests of the
null hypothesis H, of no treatment effect based on unad-
justed and adjusted estimators, both within and across
estimands. For each estimand, we also compare the bias,
variance, and mean squared error of the unadjusted and
the adjusted estimators.

We approximate the relative efficiency of the unadjusted
relative to the adjusted estimator by the ratio of the mean
squared error of the latter to the mean squared error of
the former. In all of our simulation studies, this is simi-
lar to the corresponding ratio of variances, since the bias
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TABLE 2 Results for the binary outcome and risk difference (RD) estimand in the hospitalized population
n Estimator type Effect P(reject H,) MSE Bias Variance Rel. Eff.
100 Unadjusted 0.000 0.030 0.995 0.022 0.996 1.000
100 Adjusted 0.000 0.052 0.900 0.023 0.900 0.904
100 Unadjusted —0.161 0.307 0.877 0.011 0.878 1.000
100 Adjusted —0.161 0.420 0.791 0.009 0.792 0.902
100 Unadjusted —0.201 0.463 0.829 0.025 0.829 1.000
100 Adjusted —0.201 0.607 0.755 0.023 0.755 0.911
200 Unadjusted 0.000 0.038 1.006 —0.024 1.007 1.000
200 Adjusted 0.000 0.049 0.907 —0.030 0.906 0.901
200 Unadjusted —0.147 0.527 0.917 0.002 0.918 1.000
200 Adjusted —0.147 0.633 0.801 —0.009 0.802 0.873
200 Unadjusted —0.201 0.821 0.864 0.010 0.865 1.000
200 Adjusted —0.201 0.895 0.749 —0.001 0.750 0.867
500 Unadjusted 0.000 0.036 1.038 0.020 1.039 1.000
500 Adjusted 0.000 0.043 0.897 0.024 0.898 0.864
500 Unadjusted —0.093 0.542 0.994 —0.017 0.995 1.000
500 Adjusted —0.093 0.611 0.863 —0.012 0.863 0.868
500 Unadjusted —0.126 0.798 0.979 —0.013 0.980 1.000
500 Adjusted —0.126 0.862 0.850 —-0.007 0.851 0.868
1000 Unadjusted 0.000 0.033 0.932 0.012 0.933 1.000
1000 Adjusted 0.000 0.038 0.829 0.019 0.829 0.889
1000 Unadjusted —0.058 0.440 0.932 0.014 0.933 1.000
1000 Adjusted —0.058 0.507 0.857 0.021 0.857 0.919
1000 Unadjusted —0.091 0.837 0.898 0.012 0.899 1.000
1000 Adjusted —0.091 0.892 0.817 0.020 0.818 0.910

2BCa bootstrap is used for confidence intervals and hypothesis testing. “Effect” denotes the true estimand value; “MSE” denotes mean squared error; “Rel. Eff.”
denotes relative efficiency, which we approximate as the ratio of the MSE of the estimator under consideration to the MSE of the unadjusted estimator. In each
block of six rows, the first two rows involve no treatment effect and the last four rows involve a benefit from treatment. MSE and variance are scaled by n; bias is

scaled by n!/2.

squared was always much smaller than the variance. One
minus this relative efficiency is approximately the pro-
portion reduction in sample size needed for a covariate-
adjusted estimator to achieve the same power as the unad-
justed estimator (van der Vaart, 1998, pp. 110-111).

5 | SIMULATION RESULTS

For binary and ordinal outcomes, we present results that
use the nonparametric BCa bootstrap (Efron and Tibshi-
rani, 1994) for confidence intervals and hypothesis tests.
We used 1000 replicates for each BCa bootstrap confidence
interval. While we recommend 10 000 replicates in prac-
tice, the associated computational time was too demanding
for our simulation study. Nonetheless, we expect similar
or slightly better performance with an increased number
of bootstrap samples. Results that use closed-form, Wald-
based inference methods are presented in Appendix C of
the Supporting Information.

For time-to-event outcomes, we used Wald-based confi-
dence intervals since these made the computations faster
compared to the BCa bootstrap method.

5.1 | Binary outcomes

Table 2 compares the performance of the unadjusted and
adjusted estimators when “bad outcome” is defined as
death or survival with ICU admission, and the estimand
is the risk difference. The relative efficiency of the unad-
justed method relative to the adjusted method varied from
0.92 to 0.86. This is roughly equivalent to needing 8-
14% smaller sample size when using the adjusted estima-
tor compared to the unadjusted estimator, to achieve the
same power.

Type I error of the covariate-adjusted method was com-
parable to that of the unadjusted method. The covariate-
adjusted method achieved higher power across all settings.
Absolute gains in power varied from 5% to 14%.
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TABLE 3 Results for the ordinal outcome and DIM estimand in the hospitalized population

n Estimator type Effect P(reject Hy) MSE Bias Variance Rel. Eff.
100 Unadjusted 0.000 0.059 1.853 —0.038 1.854 1.000
100 Adjusted 0.000 0.054 1.640 —0.046 1.639 0.885
100 Unadjusted 0.190 0.287 1.757 —0.036 1.758 1.000
100 Adjusted 0.190 0.296 1.606 —0.038 1.606 0.914
100 Unadjusted 0.244 0.419 1.645 —0.035 1.646 1.000
100 Adjusted 0.244 0.449 1.543 —0.025 1.544 0.938
200 Unadjusted 0.000 0.048 1.848 0.023 1.850 1.000
200 Adjusted 0.000 0.054 1.640 0.033 1.641 0.888
200 Unadjusted 0.195 0.531 1.838 —0.022 1.839 1.000
200 Adjusted 0.195 0.587 1.623 —0.004 1.624 0.883
200 Unadjusted 0.252 0.763 1.798 0.019 1.800 1.000
200 Adjusted 0.252 0.811 1.565 0.060 1.563 0.870
500 Unadjusted 0.000 0.056 1.898 —0.061 1.896 1.000
500 Adjusted 0.000 0.042 1.604 —0.066 1.601 0.845
500 Unadjusted 0.126 0.533 2.013 —0.025 2.014 1.000
500 Adjusted 0.126 0.581 1.786 —0.036 1.786 0.887
500 Unadjusted 0.171 0.781 1.986 —0.022 1.987 1.000
500 Adjusted 0.171 0.820 1.788 —0.022 1.789 0.900
1000 Unadjusted 0.000 0.050 1.852 —0.005 1.854 1.000
1000 Adjusted 0.000 0.044 1.661 —0.013 1.663 0.897
1000 Unadjusted 0.089 0.558 1.842 —0.006 1.844 1.000
1000 Adjusted 0.089 0.586 1.662 —0.021 1.664 0.903
1000 Unadjusted 0.126 0.839 1.819 0.003 1.821 1.000
1000 Adjusted 0.126 0.881 1.658 —0.006 1.660 0.911

2BCa bootstrap is used for confidence intervals and hypothesis testing. “Effect” denotes the true estimand value; “MSE” denotes mean squared error; “Rel. Eff.”
denotes relative efficiency, which we approximate as the ratio of the MSE of the estimator under consideration to the MSE of the unadjusted estimator. In each
block of six rows, the first two rows involve no treatment effect and the last four rows involve a benefit from treatment. MSE and variance are scaled by n; bias is

scaled by n!/2.

5.2 | Ordinal outcomes

Tables 3, 4, and 5 display results for the DIM, MW, and
LOR estimands, respectively. The relative efficiency of the
unadjusted methods relative to adjusted methods varied
from 0.94 to 0.85 for the DIM, 0.94 to 0.85 for the MW
estimand, and 0.93 to 0.85 for the LOR. This is roughly
equivalent to needing 6-15% (DIM), 6-15% (MW), and 7-15%
(LOR) smaller sample sizes, respectively, when using the
adjusted estimator compared to the unadjusted estimator,
to achieve the same power.

Type I error control of the covariate-adjusted methods
was comparable to that of the unadjusted methods. The
covariate-adjusted methods achieved higher power across
all settings. Absolute gains in power varied from 1% to 6%
for the DIM, 1% to 6% for the MW estimand, and 1% to 5%
for the LOR.

5.3 | Time-to-event outcomes

Table 6 displays the results for RMST estimators, where the
baseline variables adjusted for include age and sex along
with the four other variables described in Section 4.1.3.
First consider the no treatment effect case. At sample sizes
n = 100, 200, 500, 1000, the relative efficiencies were 0.96,
0.89, 0.83, 0.82, respectively; this is roughly equivalent to
needing 4%, 11%, 17%, 18% smaller sample size to achieve
the same power as using the unadjusted estimator, respec-
tively. The results were similar for the positive treatment
effect cases.

Type I error control of the covariate-adjusted method
was comparable to that of the unadjusted method.
The covariate-adjusted methods achieved higher power
across all settings, with absolute gains varying from
2% to 8%.
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TABLE 4 Results for ordinal outcome and MW estimand in the hospitalized population
n Estimator type Effect P(reject Hy) MSE Bias Variance Rel. Eff.
100 Unadjusted 0.500 0.054 0.263 —-0.014 0.263 1.000
100 Adjusted 0.500 0.050 0.234 —0.017 0.234 0.890
100 Unadjusted 0.585 0.389 0.226 —0.010 0.226 1.000
100 Adjusted 0.585 0.431 0.208 —0.011 0.208 0.919
100 Unadjusted 0.609 0.625 0.205 —0.009 0.205 1.000
100 Adjusted 0.609 0.670 0.194 —0.006 0.194 0.944
200 Unadjusted 0.500 0.053 0.264 0.010 0.264 1.000
200 Adjusted 0.500 0.056 0.236 0.014 0.236 0.895
200 Unadjusted 0.587 0.720 0.232 —0.006 0.232 1.000
200 Adjusted 0.587 0.776 0.205 —0.001 0.206 0.886
200 Unadjusted 0.612 0.924 0.217 0.008 0.217 1.000
200 Adjusted 0.612 0.953 0.190 0.021 0.190 0.879
500 Unadjusted 0.500 0.063 0.271 —0.018 0.271 1.000
500 Adjusted 0.500 0.044 0.230 —-0.020 0.230 0.848
500 Unadjusted 0.556 0.710 0.262 —0.001 0.262 1.000
500 Adjusted 0.556 0.749 0.231 —0.008 0.231 0.882
500 Unadjusted 0.576 0.935 0.249 0.000 0.250 1.000
500 Adjusted 0.576 0.958 0.224 —0.002 0.224 0.897
1000 Unadjusted 0.500 0.039 0.255 —0.004 0.255 1.000
1000 Adjusted 0.500 0.040 0.227 —0.007 0.228 0.894
1000 Unadjusted 0.540 0.722 0.243 —0.005 0.243 1.000
1000 Adjusted 0.540 0.745 0.220 —0.013 0.220 0.906
1000 Unadjusted 0.556 0.956 0.234 —0.003 0.234 1.000
1000 Adjusted 0.556 0.970 0.214 —0.009 0.214 0.915

2BCa bootstrap is used for confidence intervals and hypothesis testing. “Effect” denotes the true estimand value; “MSE” denotes mean squared error; “Rel. Eff.”
denotes relative efficiency, which we approximate as the ratio of the MSE of the estimator under consideration to the MSE of the unadjusted estimator. In each
block of six rows, the first two rows involve no treatment effect and the last four rows involve a benefit from treatment. MSE and variance are scaled by n; bias is

scaled by n!/2.

To evaluate the importance of adjusting for multiple
baseline variables, we also evaluated an adjusted RMST
estimator that only adjusts for age and sex; see Appendix C
of the Supporting Information. The gains of the covariate-
adjusted methods relative to the unadjusted methods were
small, with absolute gains in power of approximately 0-
1% and relative efficiency ranging from 0.96 to 1.00. These
results suggest that there can be a meaningful benefit from
adjusting for prognostic covariates beyond just age and sex.

We also considered the RD estimand; see Appendix C
of the Supporting Information. The results (when adjust-
ing for age and sex along with the four other variables
described in Section 4.1.3) are qualitatively similar, except
with slightly smaller precision gains, to those for the RMST
in Table 6.

The type I error in Table 6 for the unadjusted estimator
at n = 100 is 1.1%, much smaller than the nominal level.
We conjecture this is due to the Wald-type asymptotic
inference procedure being a poor approximation at this
sample size. This is illustrated by the fact that the scaled

variance at n =100 is much smaller than the scaled
variance at n = 1000. Similar comments apply to some of
the results in Appendix C of the Supporting Information.

6 | RECOMMENDATIONS FOR TARGET
OF INFERENCE AND PRIMARY
EFFICACY ANALYSIS

Recommendations below that do not reference related
work or our simulation results are based on the authors’
experience.

(1) Estimand when the outcome is ordinal. If a utility func-
tion can be agreed upon to transform the outcome to
a score with a clinically meaningful scale, then we
recommend using the difference between the trans-
formed means in the treatment and control arms.
Otherwise, we recommend using the unweighted dif-
ference between means or the MW estimand. We
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TABLE 5 Results for the ordinal outcome and LOR estimand in the hospitalized population
n Estimator type Effect P(reject H,) MSE Bias Variance Rel. Eff.
100 Unadjusted 0.000 0.063 23.243 0.149 23.244 1.000
100 Adjusted 0.000 0.060 20.663 0.178 20.652 0.889
100 Unadjusted —0.432 0.108 25.783 0.015 25.809 1.000
100 Adjusted —0.432 0.120 23.461 0.065 23.480 0.910
100 Unadjusted —0.593 0.163 28.183 —0.063 28.207 1.000
100 Adjusted —0.593 0.183 26.138 —0.039 26.163 0.927
200 Unadjusted 0.000 0.037 20.717 —0.032 20.736 1.000
200 Adjusted 0.000 0.031 18.285 —0.064 18.300 0.883
200 Unadjusted —0.447 0.229 24.220 —0.008 24.244 1.000
200 Adjusted —0.447 0.239 21.329 —0.008 21.351 0.881
200 Unadjusted —0.619 0.383 26.778 —0.231 26.751 1.000
200 Adjusted —0.619 0.436 23.233 —0.277 23.180 0.868
500 Unadjusted 0.000 0.048 20.373 0.269 20.321 1.000
500 Adjusted 0.000 0.039 17.249 0.284 17.186 0.847
500 Unadjusted —-0.272 0.252 23.800 0.134 23.806 1.000
500 Adjusted —-0.272 0.277 21.157 0.209 21.134 0.889
500 Unadjusted —0.383 0.442 24.797 0.099 24.812 1.000
500 Adjusted —0.383 0.473 22.250 0.170 22.244 0.897
1000 Unadjusted 0.000 0.055 20.669 —0.020 20.690 1.000
1000 Adjusted 0.000 0.048 18.547 0.001 18.566 0.897
1000 Unadjusted —0.189 0.243 21.127 —0.028 21.147 1.000
1000 Adjusted —0.189 0.267 18.864 0.055 18.880 0.893
1000 Unadjusted —0.272 0.464 21.606 —0.071 21.623 1.000
1000 Adjusted —0.272 0.504 19.444 0.017 19.464 0.900

2BCa bootstrap is used for confidence intervals and hypothesis testing. “Effect” denotes the true estimand value; “MSE” denotes mean squared error; “Rel. Eff.”
denotes relative efficiency, which we approximate as the ratio of the MSE of the estimator under consideration to the MSE of the unadjusted estimator. In each
block of six rows, the first two rows involve no treatment effect and the last four rows involve a benefit from treatment. MSE and variance are scaled by n; bias is

scaled by n

@)

)
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recommend against estimating LOR, since clinical
interpretation requires considerable nuance (Diaz
et al., 2016) and the corresponding estimators (even
unadjusted ones) can be unstable at small sample sizes
(Appendix C of the Supporting Information).
Covariate adjustment. Based on our simulations, we
recommend adjustment for prognostic baseline vari-
ables to improve precision and power. In the context
of COVID-19 trials, we expect improvements to be sub-
stantial since there are already several known prognos-
tic baseline variables, for example, age and comorbidi-
ties. We did not consider it here, but one may consider
using an algorithm for variable selection from a pre-
specified list of candidate variables; see, for example,
Tsiatis et al. (2008), Rubin and van der Laan (2008a),
Moore et al. (2011), Bloniarz et al. (2016), Wager et al.
(2016), and Tian et al. (2019). The entire statistical pro-
cedure should be prespecified (FDA and EMA, 1998).
Confidence intervals and hypothesis testing. Based on
our simulations for binary and ordinal outcomes,

(€]

hypothesis tests and confidence intervals had
improved performance when using the bootstrap
(BCa method) compared to using Wald statistics. (For
time-to-event outcomes, only Wald statistics were
used due to computational limitations in implement-
ing the bootstrap in simulations.) We recommend that
the nonparametric bootstrap (BCa method) be used
with 10 000 replicates for constructing a confidence
interval. The entire estimation procedure, including
any model fitting, should be repeated in each replicate
dataset. Hypothesis tests can be conducted either by
inverting the confidence interval or by permutation
methods—the latter may be especially useful in
smaller sample size trials in order to achieve the
desired Type I error rate. Vermeulen et al. (2015)
present such a permutation-based test for the MW
estimand based on a different covariate-adjusted
estimator than presented here.

Information monitoring. We summarize our rec-
ommendations below and give more detailed
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TABLE 6 Results for difference in RMST at 14 days estimand in hospitalized population, when the adjusted estimator uses all six

baseline variables from Section 4.1.3
Sample size Estimator type Effect P(reject Hy) MSE Bias Variance Rel. Eff.
100 Unadjusted 0.000 0.011 76.296 0.014 76.304 1.000
100 Adjusted 0.000 0.035 73.480 0.013 73.488 0.963
100 Unadjusted 0.507 0.025 67.882 —0.938 67.008 1.000
100 Adjusted 0.507 0.063 62.857 —0.668 62.418 0.926
100 Unadjusted 1.004 0.087 53.738 —2.030 49.622 1.000
100 Adjusted 1.004 0.154 50.988 —1.804 47.738 0.949
200 Unadjusted 0.000 0.044 95.651 —0.131 95.644 1.000
200 Adjusted 0.000 0.055 85.260 —0.176 85.238 0.891
200 Unadjusted 0.507 0.108 80.512 —0.332 80.410 1.000
200 Adjusted 0.507 0.131 71.970 —0.187 71.943 0.894
200 Unadjusted 1.004 0.330 62.739 —1.014 61.718 1.000
200 Adjusted 1.004 0.399 56.397 —0.770 55.810 0.899
500 Unadjusted 0.000 0.051 100.299 —0.042 100.307 1.000
500 Adjusted 0.000 0.054 83.466 —0.008 83.474 0.832
500 Unadjusted 0.507 0.226 87.159 0.085 87.160 1.000
500 Adjusted 0.507 0.274 71.673 0.155 71.656 0.822
500 Unadjusted 1.004 0.735 72.850 —0.032 72.856 1.000
500 Adjusted 1.004 0.816 62.236 0.150 62.220 0.854
1000 Unadjusted 0.000 0.052 99.702 0.113 99.700 1.000
1000 Adjusted 0.000 0.053 81.859 0.144 81.846 0.821
1000 Unadjusted 0.507 0.411 87.420 0.282 87.349 1.000
1000 Adjusted 0.507 0.492 71.611 0.329 71.510 0.819
1000 Unadjusted 1.004 0.958 76.466 0.282 76.394 1.000
1000 Adjusted 1.004 0.980 63.461 0.360 63.339 0.830

2Confidence intervals and hypothesis tests are Wald-based. “Effect” denotes the true estimand value; “MSE” denotes mean squared error; “Rel. Eff.” denotes
relative efficiency, which we approximate as the ratio of the MSE of the estimator under consideration to the MSE of the unadjusted estimator. In each block of
four rows, the first two rows involve no treatment effect and the last two rows involve a benefit from treatment. MSE and variance are scaled by n; bias is scaled
by n'/2.

recommendations in Appendix E of the Support-
ing Information. First, consider trials without interim
analyses. Information monitoring can be used to
determine how long the trial will continue. Before
starting the trial, one computes the information
level required to achieve the desired power at a fixed
alternative. Then during the trial, the accrued infor-
mation (defined as the reciprocal of the estimator’s
variance) is monitored and the trial is continued until
the required information level is surpassed. In this
way, covariate adjustment can lead to faster trials
even when the treatment effect is zero (ie, when the
null hypothesis is true); this may be more ethical in
settings where it is desirable to stop as early as possible
to avoid unnecessary exposure to side effects.

Next, consider trials with interim analyses. For the
estimands and adjusted estimators that we considered
for continuous, binary, or ordinal outcomes, one can
directly apply the group sequential, information-based

©)

designs of Scharfstein et al. (1997); Jennison and Turn-
bull (1997, 1999). This can be done as long as data from
pipeline participants, thatis, participants who enrolled
but have not been in the study long enough to have
their primary outcomes measured, are not used when
conducting interim analyses. This is because the key
property needed to apply the aforementioned group
sequential designs, called the independent-increments
property, is only guaranteed to hold if pipeline par-
ticipant information is not used. There are meth-
ods for modifying the estimators through orthogo-
nalization so that the independent increments prop-
erty holds even when using pipeline participant infor-
mation (and similarly when the outcome is time-to-
event), but this was not simulated in our paper and is
an area of future research.

Plotting the CDF and the probability mass function
when the outcome is ordinal. Regardless of which
treatment effect definition is used in the primary
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efficacy analysis, we recommend that the covariate-
adjusted estimate of the probability mass function
(PMF) and/or CDF of the primary outcome be plotted
for each study arm when the outcome is ordinal. Point-
wise and simultaneous confidence intervals should be
displayed (where the latter account for multiple com-
parisons). This is analogous to plotting Kaplan-Meier
curves for time-to-event outcomes, which can help in
interpreting the trial results. For example, Figure 1
shows covariate-adjusted estimates of the CDF and
PMF for a dataset from our simulation study. From the
plots, itis evident that the effect of the treatment on the
ordinal outcome is primarily through preventing ICU
admission, with no impact on probability of death.
Missing covariates. We do not recommend adjusting
for baseline covariates that are expected to have high
levels of missing data. For the situation with low lev-
els of missing data, it is simplest to singly impute
missing values based only on data from those base-
line covariates that were observed. To ensure that
treatment assignment is independent of all baseline
covariates (including imputed ones), no treatment or
outcome information should be used in this imputa-
tion. For performing inference based on the bootstrap,
the bootstrap sample should be drawn first, then miss-
ing covariates should be imputed.

Missing ordinal outcomes. We recommend handling
missing ordinal outcomes using methods that are
robust to model misspecification, such as the one
described in Appendix B of the Supporting Informa-
tion. Compared to a complete-case analysis, these

approaches weaken the assumption of missingness
from missing completely at random to missing at ran-
dom. Nevertheless, these methods are still subject
to bias in the presence of unmeasured factors that
influence the study outcome and missingness prob-
ability. Therefore, trials should seek to minimize the
likelihood of missing outcomes and employ relevant
sensitivity analyses to address robustness of studying
findings to assumptions about missing data (National
Research Council, 2010); this applies to all outcome
types.

(8) Loss to follow up with time-to-event outcomes. We rec-
ommend accounting for loss-to-follow-up using meth-
ods that are robust to model misspecification such
as those described in Benkeser et al. (2018) and Diaz
et al. (2019). These methods rely on a potentially more
plausible condition on the censoring distribution than
do unadjusted methods, as discussed in Section 3.3.
The covariate-adjusted estimator that we used for the
restricted mean survival time in the time-to-event set-
ting is robust to misspecification of one of its work-
ing models (as long as the other is correctly specified)
under censoring being independent of the outcome
given baseline variables and arm assignment.

7 | DISCUSSION

In our simulated data-generating distributions, the cor-
relations between baseline variables and the outcome
were similar for each arm. Because we designed our
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data-generating distributions to mimic the correlations
between baseline variables and outcomes from observa-
tional study data, these may be reasonable approximations
to the control arm (ie, standard of care) of a trial involv-
ing the same population. If the treatment arm in such a
trial has similar correlations between baseline variables
and the outcome, then the precision gains in such a trial
may be similar to those in our simulations. However, if
the treatment arm in such a trial has smaller correlations
between baseline variables and the outcome, then the pre-
cision gains in such a trial may be smaller than those in
our simulations.

Adjusting for baseline variables beyond just age and sex
led to substantial improvements in precision in our simu-
lations involving time-to-event outcomes, as described in
Section 5.3. For the other outcome types, that is, binary
and ordinal, our data-generating distributions only had
one baseline variable, age; this is all that was available in
the CDC data, so we were not able to investigate the value
added by adjusting for more variables.

The described methods for binary and ordinal outcomes
can be adapted to handle the case where stratified ran-
domization on a subset of the measured baseline covariates
is used. Specifically, one can apply the general method of
Wang et al. (2019), which gives a formula for consistently
estimating the asymptotic variance of covariate-adjusted
estimators under stratified randomization. This method
can be applied to any M-estimator and therefore applies
to the estimators that we considered for binary and ordi-
nal outcomes. To the best of our knowledge, for time-to-
event outcomes it is an open problem to prove consistency
and asymptotic normality for the TMLE estimators con-
sidered here under stratified randomization; we conjecture
that the approach of Wang et al. (2019) can be extended to
do this.

Treatment effect heterogeneity refers to differences in
treatment effects among groups defined by baseline vari-
ables. Variance reductions due to covariate adjustment
can occur both in the presence or absence of treatment
effect heterogeneity (Qian et al., 2016). For example, when
the data-generating distributions are identical under treat-
ment and control (in which case there is no treatment
effect and no treatment effect heterogeneity), there can still
be substantial variance reductions due to covariate adjust-
ment if baseline variables are correlated with the outcome.
This was observed in each of Tables 2- 6 for rows corre-
sponding to no treatment effect.

Vermeulen et al. (2015) derived an adjusted estimator
that is directly targeted at maximizing precision for the
MW estimand, and similarly Diaz et al. (2016) derived
an adjusted estimator that is directly targeted at the LOR
estimand. In contrast, our adjusted estimators for ordinal
outcomes target the entire treatment-specific CDFs. A
potential benefit of targeting the entire CDFs is that
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these estimates can be plugged in to estimate any smooth
contrast of the treatment-specific distributions, including,
but not limited to, the MW estimand or the LOR estimand.
It is an open research question to compare the statistical
properties of our method to those above.
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SUPPORTING INFORMATION

Web Appendices referenced in Sections 2-6 are avail-
able with this paper at the Biometrics website on Wiley
Online Library. Appendix A gives intuition for how covari-
ate adjustment can lead to precision gains in randomized
trials. Appendix B defines our covariate-adjusted estima-
tors for ordinal outcomes. Appendix C presents additional
simulation studies, including data-generating distribu-
tions for non-hospitalized COVID-19 patients. Appendix D
describes the availability of code on Github that reproduces
our simulation experiments and that implements the esti-
mators and confidence intervals. Appendix E gives our rec-
ommendations for information monitoring in trials that
use covariate adjustment.
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