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Engineered factor Xa variants retain procoagulant
activity independent of direct factor Xa inhibitors
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Daan P. Geerke® 2 & Mettine H.A. Bos® '

The absence of an adequate reversal strategy to prevent and stop potential life-threatening
bleeding complications is a major drawback to the clinical use of the direct oral inhibitors of
blood coagulation factor Xa. Here we show that specific modifications of the
substrate-binding aromatic S4 subpocket within the factor Xa active site disrupt high-affinity
engagement of the direct factor Xa inhibitors. These modifications either entail amino-acid
substitution of S4 subsite residues Tyr99 and/or Phel74 (chymotrypsinogen numbering), or
extension of the 99-loop that borders the S4 subsite. The latter modifications led to the
engineering of a factor Xa variant that is able to support coagulation in human plasma spiked
with (supra-)physiological concentrations of direct factor Xa inhibitors. As such, this factor
Xa variant has the potential to be employed to bypass the direct factor Xa inhibitor-mediated
anticoagulation in patients that require restoration of blood coagulation.
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he human hemostatic system protects against thrombosis

and bleeding by balancing pro- and anticoagulant stimuli

through an intricate network of enzymatic reactions
governed by (pro)enzymes, (pro)cofactors, and inhibitors,
collectively known as the coagulation cascade. Blood coagulation
factor X (FX) plays a pivotal role in this system as it, once
activated and assembled into the prothrombinase complex,
converts prothrombin to thrombin. Thrombin is the key reg-
ulatory enzyme of the coagulation cascade and, among others,
converts soluble fibrinogen to insoluble fibrin strands, which
serve to stabilize the platelet-based primary blood clot. The
spatiotemporal assembly of the prothrombinase complex is
tightly regulated and occurs exclusively on negatively charged
membrane surfaces (of activated cells or platelets), where acti-
vated factor X (FXa) assembles with its cofactor activated factor V
(FVa) in the presence of calcium ions'. This process is initiated
through the activation of FX by the extrinsic (tissue factor (TF)-
factor VIIa (FVIIa)-mediated) or intrinsic (factor VIIIa (FVIIIa)-
factor IXa (FIXa)-mediated) pathways of coagulation. Once
activated, FXa also propagates coagulation by activating other
factors?, including plasma FV in a phospholipid-dependent
manner’. The interaction of FXa with its cofactor FVa is
essential as it results in physiologically relevant catalytic rates of
prothrombin activation® 4,

The (chymo)trypsin-like serine protease FXa circulates in
plasma as a 59 kDa zymogen glycoprotein and consists of two
chains that are covalently linked by a disulfide bond. The
N-terminal light chain contains a vitamin K-dependent
gamma-carboxyglutamic acid-rich (GLA) domain and two epi-
dermal growth factor-like (EGF) domains; the C-terminal heavy
chain consists of an activation peptide and a serine protease
domain. The FXa serine protease domain adopts the classical two
B-barrel fold of chymotrypsin-like serine proteases, with the
catalytic triad residues His57, Aspl102, and Ser195 (chymo-
trypsinogen numbering) situated in the active site cleft that is
located between the two B-barrels®. While the catalytic triad in
conjunction with the oxyanion hole residues regulate substrate
cleavage, the active site subpockets S1 and S4 control substrate

recognition and binding. In the S1 subsite, this interaction is
facilitated through a salt bridge between Asp189 and a positively
charged side chain/moiety from the substrate/ligand. The aro-
matic S4 subpocket, which is formed by residues Tyr99, Phel74,
and Trp215, contributes via hydrophobic interactions. The
macromolecular substrate specificity and affinity are primarily
directed through exosite binding®, which involves surface regions
in the serine protease domain that are distinct from the active
site’. Proteolytic removal of the FX activation peptide induces
maturation of the serine protease domain through conforma-
tional rearrangements, resulting in proper alignment that allows
for engagement of the exosite and active site regions® °. Apart
from substrate binding, the mature active site also readily inter-
acts with the naturally occurring inhibitors of coagulation. Tissue
factor pathway inhibitor (TFPI) tightly binds both the
TF-FVIIa-FXa complex as well as free FXa!l. The principal
inhibitor of freely circulating FXa is the irreversible serine pro-
tease inhibitor antithrombin (AT)!L.

Active site inhibition of procoagulant serine proteases includ-
ing FXa has been the focus of anticoagulant drug discovery for
over a decade'?. This has led to the clinical approval of several
orally active, synthetic inhibitors of FXa for the prophylactic
management of stroke in atrial fibrillation and prevention and
treatment of venous thrombosis. These so-called direct oral
anticoagulants (DOACs) currently include the direct FXa inhi-
bitors rivaroxaban'?, apixaban'4, and edoxaban!®. By reversibly
engaging the active site of FXa with high affinity, the small
molecules effectively block the catalytic activity of both free and
prothrombinase-assembled FXa. However, a major drawback to
their use is the absence of an adequate reversal strategy to prevent
and stop potential life-threatening bleeding complications asso-
ciated with anticoagulant therapy. Here we present human FXa
variants that display a reduced sensitivity to inhibition by the
direct FXa inhibitors due to modifications in the active site
region, which are based on exceptional structural adaptations
found in FX variants that are expressed in the venom of specific
Elapid snakes. Using a combined computational and biochem-
istry approach, we have uncovered the mechanistic basis of the

a 195 b ¢ 100 100
: 1.0 4 IC,, (M) .
. | YOOAF174A  616£238 | < o
£ 1.00 08 1 F174A  45%15 2 40 60 =
° ( YOOA  34+11 = €
§ 0.75 Ny 0.6 1 WT  5%5 E >
5 by = s
B2 _ S 20 A |l| F20 =
5 0.50 A 0.4 % ] [ %
= & 57 o
0.2 1 I~ |
0.25 - o o

0.0 - 0 - - 0

0.001 0.01

Y99
1227 A
E217 -

V213 1
D189 1

— ©
o <
-
ouw

F174 1
W215 A
Q192 1
S195 A
C219 A
A190 1
Y228 A
R143 A

FXa residues

0.1 1 10 100
Apixaban (uM)

'_
<

Y99A
F174A
Y99A
F174A

Fig. 1 The S4 subsite of factor Xa coordinates apixaban binding and inhibition. a The minimal interatomic (MI) distances from the side chains of FXa
residues to apixaban were calculated every nanosecond during a 750 ns MD simulation of apixaban-bound human FXa. Box plots (with whiskers from
minimum to maximum) display the distribution of the observed Ml distances for each of the 15 FXa residues with the shortest side chain to apixaban Ml
distance (sorted by average). The surface representation (inset) depicts the FXa-bound apixaban (blue) configuration throughout the MD simulation. Color
coding (corresponding to box plots): S4 subsite residues Tyr99 (orange), Phe174 (cyan), and Trp215 (yellow), catalytic residue Ser195 (red), and others
(gray). b The rate of peptidyl substrate conversion by 5nM of RVV-X-activated wild-type (gray circles, WT), Tyr99Ala (orange squares, YO9A), Phel74Ala
(cyan squares, F174A), or double mutant (black squares, YO9A/F174A) FX was determined with saturating amounts of the cofactor FV-810 (30 nM) and
anionic phospholipid vesicles (PCPS, 50 uM) in the absence (V) or presence (V;) of increasing apixaban concentrations (0.001-100 pM). The lines were
drawn following nonlinear regression analysis of the data sets, and the fitted parameters for ICso + 1 standard deviation of the induced fit are shown in the
inset. The data are the means of two independent experiments. ¢ The specific extrinsic (PT Activity; filled bars) or intrinsic (APTT Activity; striped bars)
clotting activity of wild-type (WT), Tyr99Ala (YO9A), Phel74Ala (F174A), or double mutant (YO9A F174A) FX from conditioned media was determined as
described in ‘Methods' by dividing the PT or APTT clotting activity over the FX antigen concentration. The data represent the average + 1 standard
deviation of three representative high-producing stable cell lines per FX variant
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Fig. 2 Functional characterization of the effect of the direct factor Xa inhibitors on factor Xa paralogs. a The rate of peptidyl substrate conversion by purified
recombinant P. textilis venom FXa (10 nM; squares) or plasma-derived human FXa (2 nM; circles) was determined in the absence (V) or presence (V;) of
increasing concentrations (0.01-100 uM) of apixaban (APX; open symbols) or rivaroxaban (RVX; closed symbols). b The rate of peptidyl substrate conversion
by RVV-X activated P. textilis venom FX (closed squares), isoform FX (semi-closed diamonds), or liver FX (open diamonds) was determined in the absence (V)
or presence (V;) of increasing apixaban concentrations (0.01-100 uM). a, b The lines were drawn following nonlinear regression analysis of the data sets,
and the fitted parameters for ICsq are shown in the inset. The data are the means of two independent experiments. *For these experiments, FXa inhibition

was inefficient, precluding an accurate assessment of the ICsq values

FXa inhibitor-sensitivity of these variants and demonstrate their
effectiveness as potential bypassing agents in plasma containing
direct FXa inhibitors.

Results

Inhibitor-resistance via disruption of S4 subsite binding.
Comparison of crystal structures of human FXa in complex with
the direct FXa inhibitors apixaban (PDB 2P16) or rivaroxaban
(PDB 2W26) revealed highly similar ligand-binding configura-
tions, as both inhibitors occupy the FXa substrate binding S1 and
S4 subsites throu§h interactions with an almost identical set of
amino acids'® 1% The X-ray structures further revealed that
occupation of the S4 subsite is mediated, in part, by nonpolar
stacking interactions, in which the P4 ring of the inhibitors is
sandwiched between the aromatic side chains of Tyr99 and
Phel74 (chymotrypsinogen numbering). To assess the molecular
requirements for direct FXa inhibitor binding in more detail, we
performed 750 ns molecular dynamics (MD) simulations of the
FXa-apixaban complex (starting from the 2P16 crystal structure).
During MD, apixaban adopted a stable position in the active site
cleft of FXa, as reflected by the low minimal interaction distances
(<0.5 nm) between apixaban and many side chains of the residues
lining the binding pocket, such as Phel74, Trp215, GIn192,
Ser195, and Tyr99 (Fig. la). The narrow distribution of
close-range contacts between apixaban and the side chain atoms
of the S4 pocket residues Tyr99 and Phel74 confirmed stabili-
zation of apixaban in the S4 subsite.

The contribution of S4 residues Tyr99 and Phel74 to apixaban
binding was assessed in vitro by generating human FXa variants
comprising either Tyr99Ala, Phel74Ala, or both mutations.
While the single amino-acid substitutions resulted in a moderate
reduction in apixaban inhibition (+8-fold enhanced ICsg),
introducing both mutations increased the ICsy of FXa inhibition
by apixaban more than 100-fold (Fig. 1b). These results indicate
that modifying the S4 subsite destabilizes binding of apixaban
into the FXa active site. In addition, upon mutating Tyr99 to
Alanine, the FX-specific clotting activity was drastically reduced
(5% and 1% residual PT and APTT activity, respectively) and was
essentially lost in combination with the Phel74Ala replacement
(Fig. 1c). These findings suggest that although both Tyr99 and
Phel74 contribute to apixaban binding, Tyr99 is of key
importance to both the active site conformation and function
of FXa. This is consistent with the fact that Tyr99 is not only
evolutionary conserved in a wide range of FX species
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(Supplementary Fig. 1), but also essential to active site maturation
in the homologous blood coagulation serine protease FIXa'® 17,
Alternatively, modifications targeting other amino acids that
coordinate apixaban binding (Fig. la) may potentially disrupt
docking of apixaban into the active site while preserving clotting
activity.

Sequence analysis of FX species further revealed that FX
paralogs found in various Elapid snakes comprise a heterologous
insertion directly N-terminal to Tyr99 (between Thr95 and Lys96;
Supplementary Fig. 1)'8. These insertions result in an extended
99-loop (His91-Asp102) that borders the S4 subsite. Surprisingly,
characterization of recombinantly prepared FXa paralogs from
the Elapid snake Pseudonaja textilis showed that both the venom
and isoform proteases, unlike any FXa species known to date, are
highly insensitive to direct FXa inhibitors. This was demonstrated
by a minimal 10,000-fold increase in the ICs, of FXa inhibition by
apixaban or rivaroxaban (Fig. 2a, b). While venom FXa is
uniquely expressed in the venom gland!®, isoform FXa is both
expressed in the liver and venom gland and represents an
intermediate between P. textilis venom and liver FXa?" 2., In
contrast, P. textilis liver FXa, which comprises a shorter 99-loop
(Supplementary Fig. 1), is efficiently inhibited by submicromolar
concentrations of apixaban (Fig. 2b). These results suggest that an
extended 99-loop mediates a reduced sensitivity towards direct
FXa inhibitors.

To elucidate the molecular mechanism that is at the basis of the
apixaban resistance in P. fextilis isoform FXa, we performed MD
simulations using the crystal structure of isoform FXa (PDB
4BXW)?2. Initial docking of apixaban showed that isoform FXa is
able to accommodate apixaban in the active site in an orientation
similar to that observed for human FXa (Supplementary Fig. 2).
This is consistent with the observation that the conformation of
the S4 subsite is conserved in both FXa variants (Supplementary
Fig. 2). In isoform FXa, the 99-loop adopts an elongated and
helical conformation (Supplementary Fig. 2) with high structural
flexibility. The latter is demonstrated by the relatively high
B-factors of the 99-loop obtained from 750 ns MD simulations of
apixaban-bound and unbound isoform FXa (Supplementary
Fig. 3). Five MD simulations of the isoform FXa-apixaban
complex were independently performed, each was initiated from
an identical conformation but with different atomic starting
velocities. During these 750 ns MD simulations, we observed
displacement of the isoform FXa 99-loop, as reflected by root-
mean-square deviation (RMSD) values of >0.4 nm (Supplemen-
tary Fig. 3a-e). In addition, the following events were observed:
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Fig. 3 Molecular dynamics (MD) simulations of apixaban bound to factor Xa variants. Root-mean-square deviations (RMSDs) of atomic positions of the
apixaban ligand during independent 750 ns MD simulations of apixaban binding to either P. textilis isoform FXa (Iso FXa, five independent MD simulations
(a-e)) or to human FXa (four independent MD simulations (f-i)) are presented as block averages over 10 ns intervals. The corresponding single standard
deviation interval is indicated (gray density). For each independent simulation, the molecular configurations at 750 ns are depicted, in which apixaban
(green), the 99-loop (magenta), the isoform FXa extended 99-loop region PQKAYKFDL (yellow), and the catalytic triad residues (red) are highlighted.
Molecular configurations at 250 and 500 ns of each simulation are compared with those at 750 ns in Supplementary Fig. 4
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Fig. 4 Snake-human factor X(a) variants. a An alignment of region
His91-Asp102 in human FX (WT-FX) and FX variants A (FX-A), B (FX-B),
and C (FX-C) is shown. The sequences inserted between His91 and Tyr99
originate from P. textilis venom FX (FX-A), from T. carinatus venom FX
(FX-B), or from P. textilis isoform FX (FX-C). b Proteins (3 ug per lane) were
subjected to SDS-PAGE under reducing conditions and visualized by
staining with Coomassie Brilliant Blue. Lane 1: plasma-derived FXa; lane 2:
recombinant wild-type FXa; lane 3: FXa variant A; lane 4: FXa variant B; lane
5: FXa variant C. The protein bands corresponding to the heavy chain
derived from a or B FXa (a/p), the FXa light chain (LC), and the apparent
molecular weights (kDa) of the standards are indicated. While
autoproteolytic excision of the C-terminal portion of FXa-a (residues
436-447) yields the p form of FXa, both isoforms are functionally similar
with respect to prothrombinase assembly, prothrombin activation,
antithrombin recognition, and peptidyl substrate conversion®2. The purified
products of wt-FXa and FXa variants B and C migrate predominantly as
FXa-p; FXa variant A migrates as a 50/50 mixture of a and 8 FXa. The data
are representative of two independent experiments
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(a) apixaban displacement from the S1 subsite, combined with a
repositioning within the S4 subsite relative to its starting
configuration (Fig. 3a, Supplementary Fig. 4a), (b) apixaban
displacement from its initial docked conformation, partial
dissociation from the S1 subsite and repositioning within the
S4 subsite (Fig. 3b-d, Supplementary Fig. 4b-d), or (c) a stable
apixaban-binding conformation in the S1 and S4 subsites that
mirrors the initial docking pose of apixaban (Fig. 3e, Supple-
mentary Fig. 4e) and is similar to the apixaban
configuration in the crystallized human FXa-apixaban complex
(Supplementary Fig. 2). Interestingly, this anchoring of apixaban
in the S1 site was accompanied by the lowest flexibility in the
displaced 99-loop (Supplementary Fig. 3e). In the other four
isoform FXa-apixaban simulations, we observed substantial
movement of the 99-loop (Supplementary Fig. 3a-d), similar to
the simulations of unbound isoform FXa (Supplementary
Fig. 3f-j). This indicates significant mobility of the 99-loop in
both the apixaban-bound and -unbound states.The displacement
of the 99-loop and the rapid displacement of apixaban observed
for most MD simulations are indicative of steric hindrance
between apixaban and the structurally flexible isoform FXa 99-
loop, impairing apixaban binding. This could explain why
isoform FXa is practically insensitive toward direct FXa
inhibitors. This is further supported by MD simulations of
apixaban binding to human FXa that lacks the extended 99-loop
typical to isoform FXa. During these simulations (Fig. 3f-i,
Supplementary Fig. 4f-i), partial dissociation of apixaban from
the S1 subsite was observed in a single simulation only (at 600 ns;
Fig. 3f). Furthermore, apixaban repositioning from the S4 subsite
occurred during another individual simulation, but in a reversible
manner (at 400 ns; Fig. 3g). Other than these two displacement
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Table 1 Kinetic constants for macromolecular or peptidyl substrate cleavage and prothrombinase assembly

Prothrombin® Prothrombin® Cofactor Va? §2765° $2765° §2765P §2765°

Kn (uM) Kear (min™1) Kg, app (NM) K (uM) kot (s K. (uM) Keat (s
pd-FXa 0.31+0.07 1880 + 136 0.41+0.05 59419 47+ 4 29+8 36+3
wt-FXa 0.41+0.08 1243 + 89 144+ 0.41 33+7 27 +2 26+8 21+2
FXa-A 0.14 +0.04 122 +8 0.81+0.26 3947 941 243 +50 N+1
FXa-B 0.25+0.07 239+ 20 0.85+0.28 49+8 10 +1 249 +29 1541
FXa-C 0.22+0.04 370 +19 0.57 +0.06 60 + 11 17 +£1 216 +28 211

independent experiments

The kinetic constants for the enzyme 2prothrombinase or bFXa were obtained as described in ‘Methods'. Fitted values + 1standard deviation of the induced fit are representative of two to three

Table 2 Kinetic parameters for the inhibition of factor Xa variants

Antithrombin Antithrombin TFPlx rTAP Apixaban Edoxaban

k2, uncatalyzed (M”71 s71x103) kz, yrn (M7 s71x10%) K; (nM) K; (nM) 1Cso (nM) IC50 (NM)
pd-FXa 1.55+0.13 3.59+0.39 ND 0.87+0.18 2+02 3+2
wt-FXa 4.07+0.20 3.09+0.64 1.62+0.25 0.70 +£0.04 1+0.2 2+1
FXa-A 0.12+0.02 1.55 + 0.46 435+132 26.30+8.45 93+23 23+14
FXa-B 0.41+0.03 1.02 +0.40 4.41+1.89 7.92+1.88 652 +200 218 +31
FXa-C 0.95+0.1 6.73 +3.61 6.46 +1.63 20.24 +6.56 716 + 247 375+ 215

ND not determined

Fitted values + 1 standard deviation of the induced fit are representative of two to three independent experiments

events, apixaban maintained its original orientation in human
FXa during the 750 ns MD simulations.

Characterization of chimeric FXa. We next aimed to investigate
whether insertions within the 99-loop similar to those found in
snake FX (Supplementary Fig. 1) reduce the sensitivity of human
FXa toward direct FXa inhibitors. To this end, human-snake FX
chimeras were constructed in which the human sequence His91-
Tyr99 was replaced with the homologous region of venom (FX-
A) or isoform (FX-C) P. textilis FX, or of Tropidechus carinatus
venom FX (FX-B) (Fig. 4a). Following stable FX expression in
HEK293 cells, purified chimeric FXa variants were subjected to
SDS-PAGE analysis, which showed all FXa variants to migrate
similar to plasma-derived (pd-FXa) and recombinant wild-type
FXa (wt-FXa) (Fig. 4b).

Evaluation of the kinetics of prothrombin conversion in the
presence of saturating amounts of the FVa-like cofactor FV-810?®
and anionic phospholipids revealed that the rate of prothrombin
activation by the chimeric variants was 3- to 10-fold reduced
(Table 1), which may be indicative of a modified active site
conformation. Nonetheless, the FXa variants displayed an up to
threefold enhanced affinity for prothrombin as compared to wt-
FXa and an apparent affinity for the cofactor Va that was similar to
that of human FXa (Table 1). This shows that all chimeric variants
are able to efficiently assemble into the prothrombinase complex
and engage with the macromolecular substrate prothrombin.

Extension of the FXa 99-loop impairs active site binding.
Analysis of the direct FXa inhibitor-dependent inhibition of
prothrombin activation revealed a dramatic increase in
half-maximum inhibition for all FXa variants. Apixaban or
edoxaban inhibition of FXa assembled into prothrombinase was
least efficient for variants B and C, as we observed an up to ~700-
fold increase in ICsg, while the inhibition of variant A was ~10- to
90-fold impaired as compared to human FXa (Table 2). These
data indicate that, consistent with the MD simulations (Fig. 3a—e),
insertion of the snake venom His91-Tyr99 regions results in
impaired binding of the S4 subsite in human FXa. As the cofactor
FVa may also affect active site binding by apixaban, we assayed
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apixaban-inhibition of FXa-C in the presence and absence of FVa.
Interestingly, we observed a twofold higher ICs, in the presence
of factor Va and anionic phospholipids (Supplementary Fig. 5).
These findings indicate that prothrombinase-assembled FXa-C
may be more resistant to inhibition by apixaban to some extent,
which could result from structural constraints imposed by the
interaction of FXa with FVa.

To further explore the effect of the insertions on the FXa active
site, the binding and cleavage of the peptidyl substrate S2765 was
examined. We observed an up to ninefold increase in K, and
twofold reduced k., for the uncomplexed FXa variants compared
to wt-FXa (Table 1). This further confirms that the FXa variants
have a slightly altered activity and a modified active site. We next
assessed the second-order rate constants of FXa inhibition by the
active site-directed inhibitor AT!7. Inhibition of FXa variant A
proceeded at a 33-fold reduced rate relative to wt-FXa, whereas
that of variants B and C was 10- and 4-fold decreased,
respectively (Table 2). The impaired AT inhibition was restored
upon the addition of unfractionated heparin (UFH), resulting in
similar rates of AT inhibition for all FXa species, consistent with
previous reports*%. This shows that, unlike the FXa active site, the
heparin-binding exosite in FXa?’ is not affected by insertion of
the snake venom His91-Tyr99 regions. In addition, we
investigated the binding affinities (K;) of the active site inhibitors
TFPIo and recombinant tick saliva anticoagulant protein (rTAP)
26 toward the chimeric FXa variants. Essentially, binding
constants for both TFPIo and rTAP were perturbed, as rTAP
binding was at least 11-fold reduced while TFPIa inhibition was
at most fourfold reduced in the chimeric FXa variants (Table 2).
The difference between the binding constants of TFPIa and rTAP
toward chimeric FXa corroborates structural data that report a
more extensive buried surface area between TFPIa-FXa (>1700
A%)?7 and rTAP-FXa (~900 A2)28. Moreover, inhibition of FXa
by rTAP involves S4 subsite occupation®3, while inhibition of FXa
by the Kunitz-II domain of TFPIx entails reorganization of the
active site cleft through Tyr99 side chain reorientation®’.
Collectively, the attenuated inhibition of the FXa chimeras by
AT, TFPla, and rTAP is in agreement with the notion that
extension of the 99-loop impairs active site engagement.
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Fig. 5 Zymogen factor X-C corrects thrombin generation in plasma spiked with apixaban. a, b Thrombin generation (TG) was measured for 30 min at 37 °C
in FX-depleted plasma supplemented with 1U mI™" FX-C (15 pg mI™") in the absence (open symbols) or presence of 2 or 6 uM apixaban (a, APX, blue
symbols) or 0.6 or 2 pM edoxaban (b, EDX, orange symbols) with 2 pM tissue factor (TF) and 20 uM PCPS. Thrombin generation was initiated with CaCl,
and a thrombin fluorogenic substrate as detailed in ‘Methods'. The TG profiles of FX-depleted plasma supplemented with 1U mI™" (7 pg ml™) wt-FX in the
absence (light gray area under the curve) or presence (dark gray area under the curve) of 2 uM apixaban (a) or 0.6 uM edoxaban (b) are shown. ¢, d
Thrombin generation was measured for 30 min at 37 °C in normal pooled plasma in the presence of 2 pM (c) or 6 pM (d) TF, supplemented with
increasing concentrations FX-C (5-40 pg ml™"), 2 pM apixaban, and 20 uM PCPS. The TG profiles of normal pooled plasma in the absence (light gray area
under the curve) or presence (dark gray area under the curve) of 2 uM apixaban are shown. All curves are representatives of three to six independent

experiments

Assessment of the catalytic efficiency of the FXa variants
toward the macromolecular and peptidyl substrates suggests that
this may be modulated by the length and/or composition of the
region between His91 and Tyr99. When comparing all FXa
derivatives, variant FXa-C that comprises the shortest
His91-Tyr99 sequence (Fig. 4a) retained the highest k., toward
both substrates (Table 1). The same trend was observed for AT
inhibition in the absence of UFH (Table 2). From this we
conclude that all of the sequences inserted between His91 and
Tyr99 negatively affect active site engagement. The relatively
short amino-acid insertion in variant C is derived from isoform
FXa in which it adopts a helical conformation (Supplementary
Fig. 2)?2. We speculate that this conformation may be maintained
in FXa-C, resulting in a more structured 99-loop that compro-
mises FXa catalytic activity least. Whether this results from a
relatively limited extension over the active site and/or a different
effect on overall protein motion and subpocket S4 flexibility
between the FXa variants remains to be determined?’.

The relation between 99-loop architecture and substrate
specificity has also been made clear in structural and biochemical
studies on kallikreins. These trypsin-like serine proteases
comprise 99-loops that vary greatly in length and can range
from 2 to up to 22 additional residues between His91 and Tyr99,
the latter concerns a kallikrein-like salivary toxin (BLTX) from
the North American shrew>® 3!, In general, variation of 99-loop
length has significantly impacted enzymatic diversification in
kallikreins. For example, the elongated 99-loop of human
kallikrein-related peptidase-2 has been shown to extend over
the active site and function as a regulator of enzyme activity
through zinc binding??. Alternatively, the BLTX 99-loop has been
implicated to contribute to an increased catalytic efficiency in
silico’>. The elongated 99-loops of the venom FXa paralogs may
therefore be viewed in a broader perspective that highlights the
general significance of 99-loop architecture in enzymatic
diversification of trypsin-like serine proteases.

Chimeric FX(a) as hemostatic bypassing agent. The ability to
activate prothrombin in the presence of physiological con-
centrations of direct FXa inhibitor potentially enables chimeric
FXa to restore hemostasis in plasma inhibited by such antic-
oagulants. Functionality of the chimeric variants was therefore
assessed by calibrated automated thrombography in plasma
spiked with direct FXa inhibitors®%. To do so, we first assessed
FXa-initiated thrombin generation (TG) in FX-depleted plasma
in the absence of FXa inhibitors. Thrombin generation initiated

6
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by FXa variant C resulted in a thrombin peak height and endo-
genous thrombin potential (ETP) similar to wt-FXa-initiated TG,
while these parameters were modestly reduced following initia-
tion with variant A or B (Supplementary Table 1). As expected,
addition of a physiological concentration of apixaban (2 puM)
significantly impaired wt-FXa-initiated TG. In contrast, the TG
parameters were not affected upon initiation with FXa variant C
(Supplementary Table 1). As FXa-C displayed superior TG
parameters, we consequently investigated whether the zymogen
form of variant C (FX-C) would be able to restore the apixaban-
dependent defect in TG. To assess this, thrombin generation was
initiated with a limiting tissue factor concentration (TF, 2 pM) in
FX-depleted plasma supplemented with plasma concentrations of
zymogen FX. Other than a 1.4-fold delay in time to peak with FX-
C present (Supplementary Table 2), comparable TG curves and
parameters were obtained following supplementation with FX-C
or wt-FX in the absence of inhibitor (Fig. 5a). Consistent with
previous observations, FX-C-dependent TG was fully sustained
both in the presence of physiological (2uM) and supra-
physiological (6 pM) concentrations of apixaban (Fig. 5a) or
edoxaban (Fig. 5b), while the TG parameters were severely
impaired following wt-FX supplementation (Supplementary
Table 2).

The ability of FX-C to restore TG in the presence of apixaban
was also examined in normal pooled plasma (NPP) from healthy
individuals. Similar to previous findings, apixaban almost fully
inhibited thrombin generation in NPP (Fig. 5¢, d). Addition of
increasing concentrations of zymogen FX-C to NPP restored TG
both under conditions of a limited TF-trigger (Fig. 5¢) and upon
initiation with a high TF concentration (Fig. 5d). This was
demonstrated by a normalization of the peak height in the
presence of 20-40 pg ml~! FX-C, while the time to peak was 1.3-
to 1.6-fold prolonged (Supplementary Table 3). Assessment of TG
upon addition of 40 ugml~! FX-C in the absence of apixaban
indicated that no significant surplus of thrombin was generated as
all TG parameters were within the range of those of NPP
(Supplementary Table 3).

As the zymogen form of variant C typically displayed a
TF-dependent delay in time to peak thrombin formed, we
investigated whether activation of FV by variant FXa was
perturbed. The FXa-dependent activation of FV is essential for
the early phase of TG, thereby mediating the subsequent burst of
thrombin formed>. While proteolysis of full-length plasma-
derived FV by FXa-C did result in generation of the FVa heavy
chain and light chain activation products, FXa-C appeared to
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cleave FV at one or more sites that are distinct from cleavage by
wt-FXa, indicated by a differential fragmentation profile (Supple-
mentary Fig. 6). The altered substrate recognition of
FXa-C was further assessed by cleavage analyses of factors IX,
XI, and protein C (Supplementary Figs. 7-9), which suggests that
FXa-C maintains selective substrate specificity. However, the
potential acquisition of additional protein targets cannot be
excluded. Furthermore, the delay in time to peak was not due to a
defect in activation by the intrinsic tenase complex’®, as the
kinetic parameters for FX-C activation by the intrinsic (FVIIIa/
FIXa) tenase complex were unperturbed (Supplementary Fig. 10).
Another explanation could lay in the notion that activation of FX-
C by the extrinsic or intrinsic tenase results in a partly zymogen-
like conformation of the FXa active site. Given that assembly of
FXa into the prothrombinase complex at least partially corrects
an impaired active site® % 37 38, we examined the affinity of the
chimeric FXa variants towards the peptidyl substrate S2765 in the
presence of saturating amounts of the cofactor Va and anionic
phospholipids. Indeed, prothrombinase complex assembly of the
FXa variants almost fully corrected the defective peptidyl
substrate binding while the k., values were not significantly
altered (Table 1). These results indicate that the delay in time to
peak observed for chimeric FX-C in the TG assays reflects the
additional time that is required by FX-C to engage FVa and
become fully active. Importantly, studies on the
protease-zymogen equilibrium of trypsin-like proteases have
shown that the S4 subsite is involved in stabilization of the
protease state?” 3% 40, As the 99-loop is allosterically linked to the
S4 subsite, insertions within the 99-loop may indeed shift the
protease equilibrium toward a more zymogen-like state in the
chimeric FXa variants.

Discussion

Through a combined computational and biochemical approach
we have successfully pioneered the engineering of direct FXa
inhibitor insensitivity in FX(a). Active site inhibition of FXa by
direct FXa inhibitors requires binding of the ligand’s P4 moiety
into the S4 subsite through apolar stacking interactions with
residues Tyr99 and Phel74. Our data have shown that disruption
of apixaban binding is achieved by either replacing S4 subsite
residues Tyr99 and/or Phel74 with Alanine, or by extension of
the 99-loop that forms part of the S4 subsite. By replacement of
the wild-type FXa 99-loop sequence with that of the P. textilis
isoform FXa paralog, we obtained a FXa variant (FX(a)-C) that
was highly resistant to the direct FXa inhibitors (apixaban ICsg:
~715 nM; edoxaban ICsy: ~375 nM). This variant was also able to
restore thrombin generation in apixaban-spiked human plasma
when added at a 2- to 4-fold plasma concentration (20-40 ug ml
~1). In addition, FX-C was capable of restoring thrombin gen-
eration at supra-physiological concentrations of apixaban or
edoxaban. Finally, FX-C induced no in vitro hypercoagulability
when present at a fourfold plasma concentration in the absence of
FXa inhibitor. These properties therefore allow FX-C to function
as a bypassing agent in human plasma in order to reverse direct
FXa inhibitor anticoagulation.

Thus far, a specific and adequate reversal strategy for the
treatment of serious and life-threatening bleeding complications
associated with the FXa inhibitor-mediated anticoagulant therapy
is not clinically available*!. Consequently, semi-specific reversal
strategies to overcome FXa inhibition have been developed*>~*4,
of which two are based on modified forms of FXa. Andexanet alfa
is a GLA domainless, catalytically inactive FXa variant that
functions as a decoy by trapping the FXa inhibitors through
stoichiometric binding*?. Another reversal approach takes
advantage of a zymogen-like FXa variant (FXa-I16L) that
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comprises an impaired active site, but displays full catalytic
activity when assembled into prothrombinase’. The reversal
strategies that are based on scavenging the inhibitory compounds
from the circulation require a high dose of catalytically inactive
FXa molecules (0.9 or 1.8 g protein per patient)*> or synthetic
cationic molecules (<300 mg per individual)*?. Our approach of
bypassing the action of FXa-specific DOACs through diminished
FXa inhibitor binding could have several benefits over the
scavenging strategies. First, restoring hemostasis with inhibitor-
insensitive FX would require administration of milligrams rather
than grams of protein to equal or double the FX plasma con-
centration (10 pg ml™)2. In addition, a single administration of
inhibitor-insensitive FX could potentially be sufficient to com-
pletely restore hemostasis, as the circulatory half-life of FX
(34-40 h) exceeds that of the direct FXa inhibitors apixaban (~12
h) and edoxaban (10-14 h)% 4> %6, Moreover, the ability of an
inhibitor-insensitive form of FX to sustain thrombin generation
in plasma irrespective of the FXa inhibitor concentration should
facilitate ease of dosing in patients with limited background
information.

In summary, chimeric FX-C could have the potential to serve
as rescue therapeutic agent to overcome the effect of synthetic
FXa inhibitors in case of potentially life-threatening bleeding
events or emergency surgical interventions. Further studies into
FX-C dosing, half-life, and mitigation of FXa inhibitor-dependent
bleeding will therefore be required to assess its in vivo potential.

Methods

Reagents. Rivaroxaban, apixaban, and edoxaban were obtained from Alsachim
(Illkirch, France) or Adooq Bioscience (Irvine, CA, USA), weighted and dissolved
in vehicle (10% (v/v) EtOH, 10% (v/v) Glycerol, 10% (v/v) PEG400 (Sigma Aldrich,
St Louis, Mo, USA), and 70% (v/v) Dextrose (5% solution)), and aliquots were
stored at —20 °C. The peptidyl substrate methoxycarbonylcyclohexylglycylglycyl-
Arg-pNA (SpecXa) was obtained from Sekisui Diagnostics (Stamford, CT, USA),
and the peptidyl substrates H-D-Phe-Pip-Arg-pNA (52238), N-a-benzylox-
ycarbonyl-p-Arg-Gly-Arg-pNA (52765), and pyroGlu-Pro-Arg-pNA (S2366) were
obtained from Instrumentation Laboratories (Bedford, MA, USA). All tissue cul-
ture reagents were from Life Technologies (Carlsbad, CA, USA) except insulin-
transferrin-sodium selenite (ITS), which was from Roche (Basel, Switzerland).
Calibrator and fluorescent substrate (FluCa) were from Thrombinoscope (Maas-
tricht, the Netherlands). FX-depleted human plasma, Neoplastine CI Plus 10
prothrombin time (PT) reagent, and Triniclot automated activated partial
thromboplastin time (APTT) reagent were obtained from Diagnostica Stago (Paris,
France). NPP was obtained from Sanquin (Amsterdam, the Netherlands). UFH was
obtained from LEO Pharma (Ballerup, Denmark). Polybrene was obtained from
Sigma Aldrich. All functional assays were performed in Hepes-buffered Saline
(HBS: 20 mM Hepes, 0.15 M NaCl, pH 7.5) supplemented with 5mM CaCl, and
0.1% (w/v) PEG8000 (assay buffer). The mammalian expression vector pCMV4
carrying recombinant human FX*’ or recombinant P. textilis venom FX, the
pcDNA3.1 vector carrying Furin proprotein convertase, and a baby hamster kidney
(BHK) cell line stably expressing a constitutively active partial B-domainless
recombinant form of human FV (FV-810)%3 were generous gifts from Rodney
Camire (Children’s Hospital of Philadelphia). Human embryonic kidney (HEK)
293 cells were obtained from ATCC (CRL-1573; Manassas, VA, USA). Cell lines
were monthly checked for mycoplasma contamination employing the Venor®GeM
mycoplasma detection kit (Minerva Biolabs, Berlin, Germany), and mycoplasma
contamination was eliminated using Plasmacure™ and Plasmocin™ as prescribed by
the supplier (InvivoGen, San Diego, CA, USA). Small unilamellar phospholipid
vesicles (PCPS) composed of 75% (w/w) hen egg L-phosphatidylcholine (PC) and
25% (w/w) porcine brain L-phosphatidylserine (PS) (Avanti Polar Lipids, Alabaster,
AL, USA) were prepared by drying the lipid solution (24 mg PC, 8 mg PS) under a
stream of nitrogen into a thin layer. Following resuspension of the lipids in 11 ml
HBS, the lipid suspension was maintained in an ice bath and was continuously
sonicated for 30 min using a direct probe with an output of 18 W under a constant
stream of nitrogen. The vesicle dispersion was centrifuged at 35,000 rpm for 30 min
at 24 °C in a Beckman ultracentrifuge (SW 55 Ti swinging bucket rotor) to remove
particles and large multilamellar vesicles. Subsequently, the dispersion was cen-
trifuged at 40,000 rpm for 3 h at 24 °C, and the clear supernatant (6 ml) was stored
at 4 °C. The phospholipid concentration of the PCPS solution was determined
using an organic phosphate determination*s.

Proteins. Plasma-derived human factors Xa (pd-FXa), IX (FIX), IXa, and XI (FXI),
human prothrombin, protein C (PC), and antithrombin (AT), DAPA, and corn
trypsin inhibitor (CTI) were from Haematologic Technologies (Essex Junction, VT,
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USA). Human tissue factor (TF, Innovin) was obtained from Siemens (Newark,
NY, USA), human plasma-derived factor VIII (FVIII, Aafact) was from Sanquin
(Amsterdam, the Netherlands), and RVV-X activator was from Diagnostica Stago.
Paired antibodies to determine factor X antigen were obtained from Cedarlane
(CL20245K; Burlington, Canada)®. The Q5 site-directed mutagenesis kit and
restriction endonucleases Bgl2, Hind3, and Apal were obtained from New England
Biolabs (Ipswich, MA, USA). T4-DNA ligase was obtained from Roche. rTAP was a
generous gift from Sriram Krishnaswamy (Children’s Hospital of Philadelphia).
Recombinant FV-810 was large-scale expressed in BHK cells in triple flasks (Nalge
Nunc, Rochester, NY, USA) in Dulbecco’s modified Eagle’s medium/F-12 without
phenol red supplemented with 2 mM 1-glutamine, 100 U ml~! penicillin, 0.1 mg ml
1 streptomycin, 0.25 pg ml~! amphotericin B, 100 pg ml™! geneticin, 10 pg ml™!
ITS, and 2.5 mM CaCl,. Conditioned media was collected for six consecutive days,
centrifuged at 4000xg to remove cellular debris, filtered over an 0.45 pm poly-
ethersulfone membrane (Merck Millipore, Billerica, MS, USA), and supplemented
with 1 mM benzamidine (Sigma Aldrich) prior to storage at —20 °C. Conditioned
media (61) was thawed at 37 °C and applied at ambient temperatures to a 2.5 X6
cm SP Sepharose Fast Flow column (GE Healthcare, Chicago, IL, USA) equili-
brated in 20 mM Hepes, 0.15 M NaCl, 5 mM CaCl,,1 mM benzamidine, pH 7.4.
Following washing with the same buffer, bound protein was eluted with buffer
containing 0.65 M NaCl. Fractions containing FV activity were stored at —80 °C.
Following thawing at 37 °C, the fractions were pooled and diluted to 0.15M NaCl
in 20 mM Hepes, 5 mM CaCl,, pH 7.4, stored on ice, and applied to a 10 x 100 mm
POROS™ HQ 20 um column (Applied Biosystems, Waltham, MS, USA). Following
washing with the same buffer, bound protein was eluted with a linear 0.15-1 M
NaCl gradient. Fractions containing FV activity were analyzed employing SDS-
PAGE analysis, stored at —80 °C, pooled upon thawing at 37 °C, and ultrafiltrated
employing Amicon Ultra-15 centrifugal filter units with 30 kDa molecular weight
cutoff (Merck Millipore) to ~3 mgml™! in 20 mM Hepes, 0.15 M NaCl, 5 mM
CaCl,, pH 7.4, and aliquots were stored at —80 °C. Molecular weights and
extinction coefficients (Ey ;o, 280 nm) of the various proteins used were taken as
follows: prothrombin, 72,000 and 1.47; thrombin, 37,500 and 1.94; FX, 59,000 and
1.16; FXa, 46,000 and 1.16; FV-810, 216,000 and 1.54; FIX, 55,000 and 1.32; FIXa,
45,000 and 1.4; FXI, 160,000 and 1.34; PC, 62,000 and 1.45; AT, 58,000 and 0.62;
and rTAP, 6900 and 2.56. For the FX(a) variants, all values for the human protein
were used.

Construction and expression of recombinant FX. DNA constructs encoding FX
variants comprising the Tyr99Ala, Phel74Ala, or both substitutions were prepared
from the pCMV4 vector carrying wild-type human EX by site-directed mutagenesis
and sequenced for consistency. DNA constructs encoding P. textilis isoform and
liver FX paralogs and inserts coding for chimeric FX variants (FX-A, FX-B, and
FX-C) were synthesized by Genscript (Piscataway, NJ, USA), subcloned into
pCMV4-FX expression vector using either Bgl2 and Hind3 (FX paralogs) or Apal
(chimeric FX) and T4-DNA ligase and sequenced for consistency. HEK293 cell
lines stably expressing wild-type recombinant human FX, (chimeric) variants of
EX, or P. textilis paralogs of FX were obtained following co-transfection of
pCMV4-FX with pcDNA3.1-Furin vectors by Lipofectamine2000 according to the
manufacturer’s instructions. FX expression of transfectants was assessed by con-
ditioning individual clones for 24 h in Dulbecco’s modified Eagle’s medium/F-12
without phenol red supplemented with 2 mM 1-glutamine, 100 U ml™! penicillin,
0.1 mg ml~! streptomycin, 0.25 pg ml~! amphotericin B, 100 pg ml~! geneticin, 10
pgml~! ITS, and 6 pg ml~! vitamin K (Konakion) (FX-specific expression media)
and subsequently measuring the FX-specific PT/APTT clotting activity in a
modified one-step assay by mixing conditioned media with FX-depleted human
plasma in a 1:1 ratio. A reference curve of normal pooled plasma serially diluted in
either assay buffer with 0.1% bovine serum albumin (BSA; for PT) or
Owren-Koller diluent (for APTT), mixed in a 1:1 ratio with FX-depleted human
plasma, was used to calculate the equivalent FX Units per ml plasma. Transfectants
with the highest expression were expanded into a 6320 cm? cell factory (Thermo
Scientific, Waltham, MA, USA) and conditioned for 24 h in FX-specific expression
media. Conditioned media was collected for 10 consecutive days, centrifuged at
4000xg to remove cellular debris, filtered over an 0.45 pm polyethersulfone
membrane, and supplemented with 1 mM benzamidine prior to storage at —20 °C.

Purification of FX(a). Conditioned media (201) was thawed at 37 °C, applied to a
size 6 A ultrafiltration hollow fiber cartridge using an Akta flux 6 instrument (GE
Healthcare), diafiltrated to ~500 ml in 20 mM Hepes, 0.15M NaCl, pH 7.4, dia-
lyzed to 20 mM Tris, 0.15 M NaCl, pH 7.4, and stored at —20 °C. Following thawing
at 37 °C, the pool was applied at ambient temperatures to a 4.8 x 4 cm Q Sepharose
Fast Flow column (GE Healthcare) equilibrated in 20 mM Tris, 0.15 M NaCl, pH
7.4. Following washing with the same buffer, bound protein was eluted with a
linear 0.15-0.75 M NaCl gradient. Fractions containing FX activity were stored at
—80 °C. Following thawing at 37 °C, the fractions were pooled and two times
dialyzed at 4 °C for 2h to 1 mM Na,HPO,/NaH,PO, pH 6.8 (41), following
overnight dialysis to 40 mM Na,HPO,/NaH,PO,4, pH 6.8 (41). The dialysate was
applied at ambient temperatures to a Bio-Scale CHT20-I hydroxyapatite column
(Bio-Rad, Hercules, CA, USA) equilibrated in 40 mM Na,HPO,/NaH,PO,, pH
6.8°°. Following washing with the same buffer, bound protein was first eluted with
a linear 40-100 mM Na,HPO,/NaH,PO, gradient, followed by a linear 100-400
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mM Na,HPO,/NaH,PO, gradient at a flow rate of 3.3 ml min~!. Fractions con-
taining FX activity were analyzed employing SDS-PAGE analysis, stored at

-80 °C, pooled upon thawing at 37 °C, ultrafiltrated employing Amicon Ultra-15
centrifugal filter units with 30 kDa molecular weight cutoff to 5-10 mg ml™! in
HBS, 50% (v/v) glycerol, and stored at —20 °C. The typical yield of fully y-
carboxylated recombinant FX was 0.9 mgl~! conditioned medium. Purified
recombinant FX was activated with RVV-X (0.1 U mg’1 FX), isolated by size-
exclusion chromatography on a Sephacryl $200 HR column (V; 460 ml; GE
Healthcare), and stored at —20 °C in HBS containing 50% (v/v) glycerol. Purified
products were visualized by Coomassie Brilliant Blue staining employing SDS-
PAGE analysis.

Specific clotting activity. The specific extrinsic clotting activity was determined
using a modified FX-specific PT-based clotting assay. Purified FX samples were
serially diluted to <170 nM in assay buffer with 0.1% BSA. In a typical assay,

25 pl of FX-depleted plasma was mixed with an equal volume of sample, followed
by a 60 s incubation period at 37 °C. Coagulation was initiated after the addition of
50 pl PT reagent, and the coagulation time was monitored using a Start4 coagu-
lation instrument (Diagnostica Stago). The specific intrinsic clotting activity was
determined using a modified FX-specific APTT-based clotting assay. FX samples
were serially diluted to <170 nM in Owren-Koller diluent. FX-depleted plasma (25
pul) was mixed with sample (25 pl) and APTT reagent (50 pl), followed by an 180 s
incubation period at 37 °C. Coagulation was initiated after the addition of 50 pl of
25 mM CaCl,, upon which the coagulation time was monitored. Reference curves
consisted of serial dilutions of NPP.

Macromolecular substrate activation. Steady-state initial velocities of macro-
molecular substrate cleavage were determined discontinuously at 25 °C in assay
buffer’!. Progress curves of prothrombin activation were obtained by incubating
PCPS (50 pM), DAPA (10 pM), and prothrombin (1.4 uM) with human recom-
binant FV-810 (20 nM) for 10 min, and the reaction was initiated by the addition of
0.1-1 nM of pd-FXa, wt-FXa, FXa-A, FXa-B, or FXa-C. Samples (10 pl) were
withdrawn at various time points (0-3 min) and quenched by mixing with 90 ul of
20 mM Hepes, 0.15M NaCl, 50 mM EDTA, 0.1% (w/v) PEG8000, 2 uM

wt-TAP, pH 7.5. Quenched samples were then further diluted in the same buffer
lacking rTAP, and initial velocities of $2238 hydrolysis were determined in a
SpectraMax M2e kinetic plate reader (Molecular Devices, Berks, UK). Measured
rates were related to the concentration of thrombin from the linear dependence of
initial velocity on known concentrations of thrombin determined in each experi-
ment. The reported kinetic parameters and equilibrium binding constants for
prothrombin (ke,, Kim) and cofactor Va (FV-810; Ky, 4pp) by pd-FXa and wt-FXa
correspond to previous reported values?. Prothrombin conversion was assayed in
the absence or presence of the direct FXa inhibitors apixaban or edoxaban
(0.001-100 uM final) in order to determine ICs, concentrations for each (recom-
binant) FXa variant. Activation of FX variants by the intrinsic FVIIIa/FIXa tenase
complex was achieved by incubating 40 nM FVIII with 100 nM of thrombin during
30's, upon which 150 nM hirudin (Sigma Aldrich) was added. Progress curves of
FX activation were obtained by incubating FIXa (0.5 nM), PCPS (20 pM), and FX
(13-2200 nM) for 5 min at 25 °C, and the reaction was initiated by the addition of
FVIIIa (5nM). Samples (10 pl) were withdrawn at various time points (0-4 min)
and quenched by mixing with 90 pl of 20 mM Hepes, 0.15 M NaCl, 50 mM EDTA,
0.1% (w/v) PEG8000, pH 7.5. Quenched samples were then further diluted in the
same buffer, and initial velocities of SpecXa hydrolysis were determined in a
SpectraMax M2e kinetic plate reader. Measured rates were related to the con-
centration of wt-FXa or FXa-C from the linear dependence of initial velocity on
known concentrations of wt-FXa or FXa determined in each experiment.

Chromogenic substrate hydrolysis. The kinetics of peptidyl substrate hydrolysis
(SpecXa and S2765) were measured in assay buffer using increasing concentrations
of substrate (10-800 pM) and initiated with free FXa (2-5nM) or assembled into
prothrombinase using the following conditions: PCPS (50 pM) and FV-810 (20
nM).

Inhibition of FXa by antithrombin. The rate of inactivation of FXa by AT was
measured in assay buffer under pseudo-first-order rate conditions at ambient
temperatures®?. Uncatalyzed reactions were prepared in assay buffer containing
0.2-1.0 uM AT with 7.5 nM FXa. After 0-110 min, residual enzyme activity
remaining as a function of time was determined after the addition of 250 uM
SpecXa and monitoring the initial steady-state increase in absorbance at 405 nm.
Catalyzed reactions were prepared in assay buffer containing 1-8 nM UFH, 0.5 uM
AT, and were initiated with 5.0 nM FXa. After 0.5-5.0 min, residual enzyme
activity remaining as a function of time was determined after the addition of 250
UM SpecXa supplemented with 1 mg ml~! polybrene. The rate of AT inhibition was
determined by fitting the obtained values to an exponential decay function (k;) and
subsequent analysis by linear regression (k,) using the GraphPad Prism software
suite.

Inhibition of FXa by TFPI and rTAP. The overall dissociation constants (K;) for
TFPIa or rTAP binding to FXa were inferred from measurements of residual
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enzyme amidolytic activity. For TFPIa, reactions were prepared in assay buffer
containing 5nM FXa and 2-40 nM TFPIa. After incubation for 3 h at ambient
temperatures, residual enzyme activity was determined after the addition of 250 uM
SpecXa and monitoring the initial steady-state increase in absorbance at 405 nm.
For rTAP, reactions were prepared in assay buffer containing 1 nM FXa and
0.5-100 nM rTAP. After incubation for 30 min at ambient temperatures, residual
enzyme activity was determined after the addition of 250 uM SpecXa and mon-
itoring the initial steady-state increase in absorbance at 405 nm. The dissociation
constants were determined by fitting the obtained values to the Morrison equation
for tight binding using the GraphPad Prism software suite. The equation was
constrained for the concentration of enzyme, substrate, and SpecXa
Michaelis-Menten constant (Ky,: pd-FXa, 138 uM; wt-FXa, 135 uM; FXa-A, 645
uM; FXa-B, 658 uM; FXa-C, 659 uM).

Calibrated automated thrombography analysis. Thrombin generation was
adapted from protocols earlier described®. Thrombin generation curves were
obtained by supplementing FX-depleted plasma with TF (2 pM final), CTI (70 pg
ml~1), PCPS (20 uM), and 1 U ml™! (prothrombin time FX clotting activity) of wt-
FX (7 pg ml™!) or chimeric FX-C (15 ug ml™}) in the absence or presence of
apixaban. Alternatively, thrombin generation curves were obtained by supple-
menting NPP with TF (2 or 6 pM final), CTI (70 pg ml™1), PCPS (20 uM), and
10-40 pg ml™! of wt-FX or FX-C in the absence or presence of apixaban. Thrombin
formation was initiated by adding substrate buffer (FluCa) to the plasma. FXa-
initiated thrombin generation curves were obtained by supplementing FX-depleted
plasma with CTI (70 pg ml™!) and PCPS (20 uM). Thrombin formation was
initiated by the addition of FXa premixed with apixaban in assay buffer without
CaCl,, and supplemented with a thrombin fluorogenic substrate in CaCl,-con-
taining buffer (FluCa). The final reaction volume was 120 pl, of which 80 pl was
plasma. Thrombin formation was determined every 20 s for 30-60 min and cor-
rected for the calibrator using Thrombinoscope software. The lag time, mean
endogenous thrombin potential (ETP, the area under the thrombin generation
curve), time to peak, peak thrombin generation, and velocity index were calculated
from at least three individual experiments.

MD simulations. MD simulations were performed using GROMACS version
5.1.4%3, starting from the crystal structure with PDB 2P16'* for apixaban in
complex with wt-FXa, or from the structure obtained by docking apixaban in the
substrate binding cleft of isoform FXa (using the 4BXW PDB structure of isoform
FXa??). To prevent steric hindrance between apixaban and the side chain of
Glu192, its chi-1 dihedral was adapted from —147.66° to 54.41° before docking, in
order to open up the binding cleft and representing the orientation in human FXa.
Docking was performed using the PLANTS software>. The center of the binding
site was set to the corresponding center of geometry of apixaban in the wt-FXa
structure with a search radius of 1.1 nm. The docking algorithm was ran under
speed setting 1 and the resulting models were scored using CHEMPLP>*. The
third-ranked structure was selected based on binding pose similarity to wt-FXa in
complex with apixaban.

During MD simulations, the protein was described using the GROMOS 54A7°°
force field and the system was numerically integrated with a time step of 2 fs, using
a leap-frog integrator®. After initial energy minimization, the protein was solvated
in a periodic dodecahedral box with a minimum distance of 1.4 nm between the
solute and the box edges. The system was neutralized by simulating the system in a
0.15 M NaCl solution. After additional energy minimization, atomic velocities were
randomly assigned according to Maxwell-Boltzmann statistics using different seeds
for different simulations. The system was equilibrated in four subsequent 1 ns
simulations at a constant number particles (N), volume (V), and temperature (T)
(NVT), where the temperature was raised from an initial 100 to 200 K, and two
simulations at a final temperature of 300 K. During the heating steps, protein
heavy-atom positional restraining force constants were applied and gradually
lowered (from 10,000 to 5000, 50, and 0 kJ mol~! nm™2, respectively). After 5ns
unrestrained pre-equilibration, production simulations were run for 750 ns under
NpT conditions in which the temperature was coupled weakly by velocity-
rescaling®” to an external bath at 300 K using a coupling constant of 0.1 ps. The
pressure of the system was kept constant at a reference pressure of 1 bar, in an
isotropic manner by coupling to a Berendsen barostat®® using a coupling constant
of 0.5 ps and a compressibility of 4.5 x 107 bar~!. All bond lengths were
constrained during simulation using the LINCS algorithm®® with a single iteration
and a highest order of 4 in the constraint coupling matrix. Pairwise interactions
were monitored using a Verlet neighbor list®® with a buffer tolerance of 0.005 kJ
mol~! ps~L. Short-range electrostatic and van der Waals interactions up to a cutoff
of 1.4 nm were evaluated every time step, and long-range electrostatic interactions
were computed using a PME scheme®! with cubic interpolation and a fourier grid
spacing of 0.125 nm. Center of mass motion was removed every 100 steps.

Simulation data were written out every 50 ps for further analyses, and minimal
atomic distances were monitored using the GROMACS analysis tool g_mindist,
where minimal interatomic distances were calculated every 1 ns between residue
side-chain and apixaban atoms. For each residue in the protein we calculated a
distribution of these distances over the complete production run, and we
subsequently sorted the residues by the distribution median. RMSDs during
simulation of apixaban atomic positions were calculated after conformational
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fitting on the MD starting structure with respect to backbone atoms of the protein.
Averaging over 10 ns intervals generated block-averaged time series for the
analyzed data, and subsequently standard deviations were computed.

Statistical analysis. All in vitro data are presented as mean =+ 1 standard deviation
and are the result of at least three experiments, unless otherwise stated.

Data availability. All data supporting the findings of this study and code are
available within the article and its Supplementary Information or from the cor-
responding author upon reasonable request.
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