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Abstract: In this study, we report on the structural, magnetic, and optical properties of Tb3+-doped
CeF3 nanocrystals prepared via a polyol-assisted route, followed by calcination. X-ray diffraction
analysis and electron microscopy investigations have shown the formation of a dominant Ce0.75F3

nanocrystalline phase (of about 99%), with a relatively uniform distribution of nanocrystals about
15 nm in size. Magnetization curves showed typical paramagnetic properties related to the presence of
Ce3+ and Tb3+ ions. The magnetic susceptibility showed a weak inflexion at about 150 K, assigned to
the cerium ions’ crystal field splitting. Under UV light excitation of the Ce3+ ions, we observed Tb3+

green luminescence with a quantum yield of about 20%.
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1. Introduction

Rare-earth-doped nanofluorides are of great interest due to their high potential for application in
various fields, e.g., lighting and displays, optical amplifiers, lasers, up-converters, and scintillators ([1–3]
and references therein). Nanomaterials showing both luminescence and magnetic characteristics in
particular are useful for a wide range of applications, such as multifunctional imaging and simultaneous
diagnosis and therapy [4,5].

Among different inorganic fluorides, CeF3 is one of the most versatile due to its wide range of
bulk properties, such as high thermal and chemical stability, high density and resistance to radiation,
fast response time, low vibrational energies, etc., and chemical flexibility of the structure allowing
high solubility of rare-earth dopant ions. Another major advantage of this compound is related to
the large spectrum of possible preparation methods, allowing for its processing in various sizes and
morphologies, down to the nanometer scale. The bulk CeF3 crystal has a hexagonal phase structure:
a space group of P3c1 (D3d

4) with lattice constants a = 0.713 nm and c = 0.729 nm [5]. It exhibits
efficient UV absorption due to the allowed electric dipole 4f→5d transition of Ce3+ ions and energy
transfer to other rare-earth activators, which is useful for white LED phosphor applications [6–8].
In particular, various synthesis methods have been proposed for Tb3+-doped CeF3 nanocrystals, and the
photoluminescence properties and energy transfer mechanism have been extensively investigated [9–12].
A less-studied aspect is related to the magnetic properties, which are strongly correlated with its
electronic structure, whereas for the rare-earth dopant ions, these are related to the unpaired electrons
in the inner 4f sub-shell. Investigations of the magnetic behavior of CeF3 crystals are relatively limited
and have been described within several models: crystal field theory [13], mixed-valent Ce3+-Ce4+

behavior [14], or super-exchange interaction of cerium ions [15]. Recent investigations of CeF3

nanodisks have revealed an anomalous behavior of the magnetic susceptibility at T � 50 K, assigned to
the processing-related defects and/or size effects [13–16].
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The synthesis route may influence nanocrystals’ structure through synthesis-induced defects,
but to date, there has been little focus on the structural refinement analysis, and the mixed valency
behavior of the cerium ions has been overlooked [17]. These aspects are crucial to understanding the
interaction mechanisms relevant for both optical and magnetic properties, and their improvement for
possible applications. In addition, the high ratio of ions at the surface (with unsaturated coordination),
and the periodicity loss on the surface, result in structural modifications and defects that may affect
all the properties, and therefore, knowledge of the nanocrystals’ surface properties is highly relevant.
The absolute novelty of this study derives from two aspects: (i) the complex structural analysis of
terbium-doped cerium fluoride nanocrystals and its correlation with the influence of the material
processing method, and (ii) the investigation of the specific magnetic behavior of the nanocrystals.

Herein, we report on the structural, magnetic, and optical properties of Tb3+-doped CeF3

nanocrystals prepared via a polyol assisted route. X-ray diffraction and electron microscopy
techniques have been used for the structural and morphological characterization of the nanocrystals,
whereas photoelectron spectroscopy was employed for the nanocrystals’ surface analysis. Magnetic
and optical properties (e.g., photoluminescence, quantum yield) have been presented and discussed.

2. Materials and Methods

2.1. Samples Preparation

For the preparation of Tb (8 mol%)-doped CeF3 nanocrystalline powders, we used the chemical
precipitation technique at room temperature mediated by the ethylene glycol solvent, similar to [18].
The raw materials Ce(NO3)3 · 6H2O (99.5%), Tb(NO3)3 · xH2O (99.9%), NH4F (99.99%), and anhydrous
ethylene glycol (99.8%) were used for the synthesis. Initially, a first solution was prepared by dissolving
0.102 g of NH4F into 10 mL of ethylene glycol. Then, 0.3261 g Ce(NO3)3 · 6H2O (99.5%) and 0.0358 g
Tb(NO3)3 · xH2O (99.9%) were dissolved into 5 mL of ethylene glycol. This second solution was
slowly dropped into the first one, and the mixture was stirred for 1 min at room temperature until a
transparent colloidal solution had formed. At the end, the nanoparticles were isolated by centrifugation
of the colloidal solution, washed to remove the remaining reagent, and dried at 80 ◦C in air. Further
annealing of the CeF3:Tb powder was performed in open atmosphere for 1 h at 400 ◦C.

2.2. Samples Characterization

For the X-ray diffraction (XRD) measurements, we used a BRUKER D8 ADVANCE (Billerica,
Massachusetts, USA), type X-ray diffractometer. The XRD pattern was recorded in the 20 to 60◦ range
with 0.05◦ step and 3 s integration time. For the phase composition analysis and crystal structure
refinement, we used the Rietveld method and a dedicated software (MAUD) [19,20], and starting
parameters from PDF 04-005-7362 (Ce0.75F3) and PDF 00-008-6551 (CeO1.66) files from the ICDD Powder
Diffraction Files database [21]. The morphology of the samples was studied using a Zeiss MERLIN
(Jena, Germany) Compact scanning electron microscope (SEM) with a GEMINI column, whereas for
the chemical composition analysis, we used an EVO 50 XVP microscope from Zeiss equipped with an
energy dispersive X-ray system (EDX) Quanta Bruker 200. For the magnetic properties’ characterization,
we used a superconducting quantum interference device (SQUID), and we measured the sample
magnetization dependence on both magnetic fields up to 3 T, and on temperatures ranging from 5
to 300 K. A powder sample (17 mg) of CeF3:Tb3+ was measured using a standard capsule, and its
magnetic contribution (about 4%) was subtracted from the total magnetic signal. The temperature
dependence of the magnetic susceptibility was measured under magnetic fields of 0.1 and 5 T applied
perpendicularly to the sample. For the XPS measurements, we used a multianalysis SPECS system
dedicated to surface analysis, equipped with a non-monochromatic source that provides a uniform
X-Ray flux on the sample surface. The electron analyzer was a PHOIBOS150, with a 150 mm radius
and a multichanneltron detector operating in large area mode and very low angular acceptance of 5◦

around the normal. The spectra of C1s, O1s, Ce3d, F1s, Tb3d, and Tb4d lines were recorded using a
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Pass Energy of 10 eV, while the extended spectrum was recorded using a Pass Energy of 50 eV. For the
spectra fitting and analysis, we used the Spectral Data Processor v.2.3 software (XPS International,
Marlborough, Massachusetts, USA) and Voigt functions. In order to minimize the contamination,
the XPS spectra were recorded on freshly calcinated samples after having been stored for 24 h in the high
vacuum chamber. For the photoluminescence (PL) spectra, we used a FluoroMax 4P spectrophotometer
(HORIBA Jobin Yvon, Kyoto, Japan); the spectra were corrected for the spectral sensitivity of the
experimental set-up. The chromaticity analysis and quantum yield characterization were performed
using the Quanta-Phy accessory of the spectrophotometer”.

3. Results and Discussion

3.1. Structural and Morphological Characterisation

The XRD pattern of the CeF3:Tb nanocrystalline powder calcinated at 400 ◦C is depicted in
Figure 1; the results of the Rietveld analysis are presented in Figure 1 and Tables 1 and 2. The analysis
showed the presence of a dominant Ce0.75F3 crystalline phase (of about 98.7%), accompanied by a much
smaller CeO1.66 crystalline fraction (of about 1.2%), both stable at room temperature. The formation of
Ce0.75F3 as a dominant crystalline phase is the consequence of the synthesis and processing conditions
that result in a material with defects and multiple fraction valencies of cerium ions [17]. The lattice
parameters are very close to those from the ICDD database (Table 1), and the nanocrystallite’s size
agrees very well with SEM microscopy data (see below).
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Figure 1. XRD pattern (black curve) and Rietveld refinement plot (red curve) of CeF3:Tb nanocrystalline
powder calcinated at 400 ◦C, with the Bragg reflections for Ce0.75F3 and CeO1.66 crystalline phases
indicated by vertical bars; the lower trace represents the difference curve between observed and
calculated patterns.

From Table 2, it can be observed that the positions of the Ce3+ ions and their first neighbor (F1 ions)
are slightly shifted compared to the reference. As the Tb3+ ions ionic radius (R = 1.095A) is smaller
than that of Ce3+ ions (R = 1.196A), a substitutional incorporation is very likely; the photoluminescence
spectra showed a crystal-field structure of the Tb3+ luminescence bands (see below). However, the
XRD pattern analysis has shown small changes in the cell parameters (Table 1), and therefore, a partial
interstitial incorporation of Tb3+ ions cannot be completely rejected. The microstrain values for both
phases indicated different values of the distances between the crystallographic planes, which can be
related to the lattice defects produced during the synthesis and lattice distortion induced by the Tb3+

ions’ incorporation into the Ce0.75F3 crystalline lattice.
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Table 1. Rietveld refinement results for Tb3+doped CeF3 nanocrystalline powders calcinated at 400 ◦C.

Crystalline Phase Cerium Fluoride (Ce0.75F3) Cerium Oxide (CeO1.66) R Factors (%)

Weight fraction (%) 98.798 ± 0.001 1.2017 ± 0.002
Crystal size (nm) 13.985(2)
Crystal system Hexagonal Cubic

Rwp (%) = 2.994
RB (%) = 2.358
Rexp. = 1.015
χ2 = 2.049

Space group P-3c1 Fm-3m

Calculated Unit Cell (Å)
a = b = 7.1053(3)

c = 7.2614(1)
a = 5.415(1)(2)

Cell_angle_alpha
Cell_angle_beta

Cell_angle_gamma

90◦

90◦

120◦

90◦

90◦

90◦

Unit Cell according PDF (Å) (ref. [21])
a = b = 7.1

c = 7.27
a = b = 5.4112(10)

Cell Volume (Å3) 317.38 (3) 158.45(1)
Microstrain 1.7 × 10 −5

± 0.002 2.3x10 −6
± 0.001

Table 2. Atomic site occupancy for Tb3+doped CeF3 nanocrystalline powders.

Atoms Ce0.75F3
(calc.)

Ce0.75F3
(theor.)

Ce0.75F3
(calc.)

Ce0.75F3
(theor.)

Ce0.75F3
(calc.)

Ce0.75F3
(theor.)

Wyckoff
Site

Atom Site Occupancy
(theor/calc)

x y z
F1 0.3862(3) 0.356 0.3610(4) 0.328 0.0712(3) 0.096 12g 1/0.8393(5)
Ce 0.3394(5) 0.3333 0 0 0.2504(1) 0.25 6f 0.75/0.7503(2)
F3 0.3334(2) 0.3333 0.6671(5) 0.6666 0.2267(3) 0.167 4d 1/0.9851(5)
F4 0 0 0 0 0.2497(2) 0.25 2a 1/0.9877(4)

The SEM image analysis has shown a distribution of round-shaped nanoparticles of about 15 nm
in size (Figures 2 and 3). Chemical composition analysis resulting from the EDX spectra (Figure 3) has
shown a relative agreement (within the experimental errors) between the atoms’ concentrations in the
precursor chemicals and in the annealed samples: 14 at%(Ce), 79 at%(F), 1.5 at%(O), and 1.5 at%(Tb).
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Figure 2. SEM image of CeF3:Tb nanocrystalline powder calcinated at 400 ◦C.

It can be seen that the F to Ce ratio (of about 5.5) is relatively close to the four expected for Ce0.75F3

phase (Table 1), but higher than the three expected for CeF3, indicating Ce3+ ion deficiency and lower
Tb3+ ion concentration than expected; XRD analysis has shown Ce0.75F3 phase, i.e., Ce3+ ion deficiency.
We suppose that the reason is related to the NH4F amount used for the synthesis, since it plays a
critical role in controlling the final morphology and size of the product [11]. In the present case, for the
stoichiometric NH4F amount generally used, we obtained spherical nanoparticles about 15 nm in size
(Figure 2) with Ce3+ ion deficiency as resulting from the EDX and XRD analyses (Table 1 and Figure 3),
this aspect having been overlooked by previous studies. The Ce3+ ion deficiency suggested that a
higher NH4F amount is required to accomplish the reaction and the Tb3+-doping process. However,
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for higher NH4F content, different nanocrystals morphologies were obtained with hundreds of nm
in size, accompanied by crystallinity and luminescence signal improvement [11]. Therefore, by using a
stoichiometric NH4F amount, we obtained nanocrystals “with defects”, i.e., a Ce0.75F3 nanocrystalline
phase with lower “effective” Tb3+ ions’ dopant concentration.
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3.2. X-ray Photoelectron Spectroscopy (XPS) Characterization

For the investigation of the nanocrystals’ surface, we used the XPS technique, which is recognized as
a valuable investigation tool for the chemistry associated to different bonds and related compounds ([22]
and references therein).

Figure 4 shows different spectral lines of the XPS spectrum of CeF3:Tb nanocrystalline powder
annealed at 400 ◦C. The region between 880 and 925 eV was assigned to the Ce3d line of the Ce3+

ion species, and the energies indicate Ce-F bonds [23]. The XPS spectrum is composed of several
convoluted peaks that correspond to the Ce 3d5/2 and 3d3/2 lines, and each of them is split into two
lines due to the multiplet splitting effect arising from the two possible states after photoionization: 4f1

and 4f2. The 884.57 and 902.97 eV peaks were due to the 4f2 final state, whereas the others at 888.12
and 906.38 eV were due to the 4f1 final state. The 899.05 and 918.11 eV peaks were assigned to the
“loss” type peaks due to the energy transfer from the F2p orbitals to the conduction band orbitals of
Ce (4d,5d,6s) [24,25]. The CeF3 nanocrystalline phase was revealed by the strong single F1s peak at
685.20 eV, in connection to the Ce 3d peaks. The oxygen species’ characteristic peaks are observable
in the energy region at around 530–532 eV. The 529.07 eV peak was assigned to the oxidized metal,
whereas the 531.99 eV peak was assigned to the adsorbed species and carbon bonds; low signal of
the oxygen indicates low oxygen concentration. The oxidized metal species were observed in LaF3

nanoparticles within a nanometric layer at their surfaces [18] and are related to the calcination process.
Regarding the Tb3+-ion dopant, its characteristic spectrum in the 4d region between 140 and 160 eV
showed a complex multiplet splitting (not presented), which is difficult to analyze. However, the
values of the energy bonds and the spectrum shape attribute the observed features to Tb3+ ion species.
In the 3d region, the Tb3d3/2 peak overlaps with the Ce3p1/2 peak, and the two 1241.96 and 1245.19 eV
energy peaks were assigned to the Tb3d5/2 multiplet splitting, corresponding to the 3d94f9 and 3d104f8

final states. As the bond energies are slightly higher than for corresponding metal or oxides [26,27],
and fluorine electronegativity is higher than for oxides, the peaks were assigned to the Tb-F bonds,
due to the Tb3+ incorporation in the CeF3 matrix.
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3.3. Magnetic Properties

The paramagnetic properties of the CeF3:Tb3+ nanocrystalline powder calcinated at 400 ◦C are
confirmed by the magnetization vs. magnetic field dependencies (at low and high temperatures) of the
magnetization curves (Figure 5).
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Figure 5. Magnetization vs. magnetic field dependence measured at T = 300 K and T = 5 K recorded
on CeF3:Tb nanocrystalline powder calcinated at 400 ◦C.
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Temperature dependence of both magnetization and the inverse magnetic susceptibility (computed
from the experimental data) are depicted in Figure 6. In both cases (for applied magnetic fields of 0.1
and 5 T), the magnetic susceptibility shows a typical paramagnetic behavior with small inflection at
around 150 K that can be attributed to the Ce3+ ions’ crystal field splitting. Tb3+ contribution is very
weak considering the small percentage of Ce3+ substitution. It is known that cerium is a Kramer’s
ion, having an odd number of 4f electrons, and the maximum possible splitting of the 2F5/2 state is
in three doublets. When Ce3+ ions are placed in a hexagonal symmetry, the maximum splitting of
levels will occur [28]. Energy splitting calculations showed that, for a hexagonal crystal field in cerium,
the doublets were excited to 30 and 150 K above the ground state [29]. These values are comparable to
those reported at 89 and 206 K for Ce3+ ions in hexagonal yttrium [30].
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3.4. Photoluminescence Properties

The photoluminescence properties and energy transfer mechanism for Tb3+-doped CeF3 have
been extensively investigated in CeF3 [9–12], and therefore, we do not address them in detail here.
The energy levels of Tb3+ allow an efficient energy transfer (ET) from the 5d-4f emission of the Ce3+ ions,
resulting in high light output (Figure 6—left). Under 250 nm UV light pumping, Ce3+ ions are excited
from 7F7/2,5/2 ground state levels to the 4f5d excited energy levels. Then, a radiative energy transfer to
the Tb3+ excited levels occurs, followed by radiative deexcitation from the green emitting levels of
Tb3+ (5D4→

7Fj; J = 5, 4, 3)—Figure 6. The maximal ET rate is about 89% for 7.5 mol% Tb3+-doping [5],
or 79.7% for 10mol% Tb3+-doping [10]. In the present case, we computed the ET efficiency (ηETE) from
Ce3+ to the Tb3+ activator ions using the Ce3+ luminescence signal intensities in the absence (I0) and
presence (I) of Tb3+-activator ions [31]: “ηETE = 1−I/I0”, and we obtained an ET efficiency value of
about 92%.

The luminescence and excitation spectra recorded on undoped and Tb-doped CeF3 nanocrystalline
powders calcinated at 400 ◦C are depicted in Figure 7. Under 250 nm UV light excitation,
the undoped nanoparticles showed weak 375 nm luminescence assigned to the 5d-4f radiative
deexcitation (Figure 7—dotted curve) [9]. This luminescence cannot be seen in the doped nanocrystal
sample, where we observed only the Tb3+-related luminescence peaks at 542, 585, and 620 nm
(5D4→

7Fj; J = 5, 4, 3). The PL bands showed a crystal field structure associated to Ce3+ substitution by
the Tb3+ in the CeF3 crystalline lattice. The excitation spectrum of the green 545 nm Tb3+-luminescence
showed the characteristic 4f-4f transitions of the Tb3+ ions, accompanied by a broad and intense peak
at 250 nm assigned to the Ce3+ transitions 7F7/2,5/2 to 4f5d excited states.
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Figure 7. Energy level scheme of the Ce3+ and Tb3+ ions (left) and the photoluminescence excited at
250 nm with the excitation spectrum of the 545 nm luminescence recorded on CeF3:Tb nanocrystalline
powder calcinated at 400 ◦C (right); photoluminescence of undoped CeF3 nanocrystalline sample is
shown for comparison (dotted curve).

Figure 8 shows the Commission Internationale de l’Eclairage (CIE) chromaticity diagram of
CeF3:Tb3+ nanocrystalline powder with the coordinates x = 0.252 and y = 0.725 in the region of green
light characteristic to the Tb3+ luminescence region. In the present case, the quantum yield (QY) of
the Tb3+ ions green-related luminescence is about 20% (for 250 nm excitation wavelength) and is
smaller than for YAG:Ce phosphor nanoparticles (of about 130 to 270 nm size), where a QY of 70–72%
was reported [32]. On the other hand, the QY is influenced by the nanocrystals’ size: the QY of
Ca3Sc2Si3O12:Ce3+ nanopowders is about 50% and increases to 70–72% for microparticles [33].
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4. Conclusions

In this study, Tb3+-doped CeF3 nanocrystals showing both magnetic and photoluminescence
properties were prepared at room temperature via a polyol mediated route followed by calcination.

X-ray diffraction analysis has shown a dominant Ce0.75F3 nanocrystalline phase (of about 99%),
in which Tb3+ ions are substitutionally and interstitially incorporated, accompanied by traces of CeO1.66

(of about 1%). Electron microscopy investigations have shown a relatively uniform distribution of
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nanocrystals about 15 nm in size. X-ray photoelectron spectroscopy has evidenced the presence of an
oxidized metal layer at the nanocrystals’ surface due to the calcination process. Magnetization curves
showed typical paramagnetic properties related to the Ce3+ and Tb3+ ions. The magnetic susceptibility
behavior for low and high applied magnetic fields (0.1 T and 5 T, respectively) highlighted a small
inflection around 150 K, due to the crystal field splitting related to the cerium ions. Under UV light
excitation, an efficient energy transfer from the Ce3+ to Tb3+ ions resulted in a strong Tb3+ green
luminescence with a quantum yield of about 20%.

The combination of fluorescent alongside magnetism-integrated functions of multifunctional
nanoparticles could lead to new opportunities in nano-bio related applications.
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