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Abstract
Individuals with obesity are often characterized by alterations in reward processing. This may affect how new information is 
used to update stimulus values during reinforcement-based learning. Here, we investigated obesity-related changes in non-
food reinforcement processing, their impact on learning performance as well as the neural underpinnings of reinforcement-
based learning in obesity. Nineteen individuals with obesity (BMI > = 30 kg/m2, 10 female) and 23 lean control participants 
(BMI 18.5–24.9 kg/m2, 11 female) performed a probabilistic learning task during functional magnetic resonance imaging 
(fMRI), in which they learned to choose between advantageous and disadvantageous choice options in separate monetary 
gain, loss, and neutral conditions. During learning individuals with obesity made a significantly lower number of correct 
choices and accumulated a significantly lower overall monetary outcome than lean control participants. FMRI analyses 
revealed aberrant medial prefrontal cortex responses to monetary losses in individuals with obesity. There were no sig-
nificant group differences in the regional representation of prediction errors. However, we found evidence for increased 
functional connectivity between the ventral striatum and insula in individuals with obesity. The present results suggest that 
obesity is associated with aberrant value representations for monetary losses, alterations in functional connectivity during 
the processing of learning outcomes, as well as a decresased reinforcement-based learning performance. This may affect 
how new information is incorporated to adjust dysfunctional behavior and could be a factor contributing to the maintenance 
of dysfunctional eating behavior in obesity.
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Previous studies have reported obesity-related alterations in 
the neural representation of rewarding food stimuli (Feld-
stein Ewing et al. 2016; Stice et al. 2009; García-García 
et al. 2014). However, while the processing of food reward 
has been studied extensively in obesity, non-food reward 

likewise provides a powerful source of information to 
monitor and successfully adapt behavior to changing envi-
ronments. In this vein, Saunders and Robinson (2013) 
hypothesized that humans generally differ in their reward 
cue reactivity, a trait that is likely to be stable across differ-
ent domains of primary and secondary reinforcers. Indeed, 
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obesity-related alterations in reward processing have recently 
been shown to exist outside of the food context. For instance, 
Opel et al. (2015) reported increased neural responses of 
individuals with obesity in areas of the brain’s reward cir-
cuit following the presentation of monetary gains. While 
these authors found no significant group differences dur-
ing the processing of monetary losses, Balodis et al. (2013) 
described that individuals with obesity exhibited greater 
neural activation in subcortical as well as prefrontal brain 
areas during the anticipation of monetary gains and losses, 
suggesting that obesity-related alterations in reinforcement 
processing may also exist for aversive stimuli.

Interestingly, Balodis et al. (2013) additionally found a 
dissociation between neural responses during the anticipa-
tion and receipt of monetary reinforcement, a phenomenon 
that has similarly been observed in the food context. Spe-
cifically, individuals with obesity tend to show increased 
neural responses during the anticipation (Rothemund et al. 
2007), but blunted responses during the actual receipt of 
rewarding food stimuli (Stice et al. 2008, 2010). Prominent 
theories argue that this discrepancy results from an initially 
high trait reward responsiveness facilitating overeating and 
subsequent neuroadaptive processes, leading to a heightened 
motivational value of anticipated food, but blunted hedonic 
signals when actually consuming it (Kenny 2011). Others 
argue that both a high and low reward responsiveness may 
be associated with obesity (Val-Laillet et al. 2015). Impor-
tantly, Kroemer and Small (2016) suggest that the apparent 
dissociation between responses during the anticipation and 
receipt of rewarding (food) stimuli may instead be explained 
in terms of altered reinforcement-based learning in indi-
viduals with obesity. Specifically, individuals with obesity 
displayed heightened reward sensitivity, but lower learning 
rates leading to increased neural responses during the antici-
pation, but blunted striatal responding during the receipt of 
rewarding (food) stimuli.

While animal studies have, indeed, shown that obesity is 
also associated with alterations in learning and behavioral 
adaptation (Reichelt et al. 2014; Johnson and Kenny 2010; 
Kanoski and Davidson 2011), few studies have investigated 
reinforcement-based learning in humans with obesity. Using 
the Iowa Gambling Task, Horstmann et al. (2011) demon-
strated that women with obesity in contrast to lean women 
preferred choice options associated with high immediate 
monetary rewards even in light of high potential losses, and 
failed to adjust their behavior over time despite an overall 
negative outcome. Recently, Coppin et al. (2014) reported 
evidence suggesting that these deficits may be driven by 
impaired reinforcement-based learning. Using two differ-
ent tasks, they found that individuals with obesity failed 
to develop a preference for the most rewarded patterns in 
a cue conditioning paradigm, and also showed less avoid-
ance for negative stimuli in a probabilistic learning task. 

Interestingly, performance was partly affected by working 
memory differences between lean participants and partici-
pants with obesity. Together, these studies suggest that obe-
sity may be associated with alterations in neural reinforce-
ment processing beyond the food context that may also affect 
decision making and reinforcement-based learning.

Electrophysiological and neuroimaging studies in nor-
mal-weight populations highlight the role of a dopaminer-
gic prediction error (PE) signal for learning and updating 
stimulus and action values when a presented outcome is 
better or worse than expected (Schultz et al. 1997; Garrison 
et al. 2013; Chase et al. 2015). Alterations in the coding of 
dopaminergic PEs in the striatum as well as the transfer of 
feedback signals to higher cortical areas have been found 
to be associated with a reduced learning performance. For 
instance, successful learners exhibit more robust PE signals 
in the dorsal and ventral striatum (VS) than less successful 
ones (Schönberg et al. 2007), while a decline in learning 
performance with age seems to be related to a reduction 
in PE-related blood oxygenation level dependent (BOLD) 
activity in the VS (Eppinger et al. 2013). Moreover, Park 
et al. (2010) reported that individuals with alcohol depend-
ence show a reduced learning performance despite intact 
ventral striatal PE-responses, which was, however, associ-
ated to alterations in the functional connectivity between 
the VS and dorsolateral prefrontal cortex. Accordingly, it 
seems that both PE coding in the VS and its functional uti-
lization in other brain areas may be potential mechanisms 
that evoke impaired decision making and learning. Indeed, 
individuals with obesity have been shown to have an altered 
dopaminergic circuitry, such as a lower striatal D2-receptor 
binding potential (Wang et al. 2001). This further highlights 
the possibility that alterations in neural PE signaling may 
affect feedback utilization in reinforcement-based learning 
in individuals with obesity.

In the current study we used functional magnetic reso-
nance imaging (fMRI) to investigate the neural mechanisms 
of monetary gain and loss processing and the neural under-
pinnings of feedback utilization in reinforcement-based 
learning in individuals with obesity. We aimed to (1) further 
examine whether individuals with obesity are characterized 
by alterations in reinforcement processing beyond the food 
context; (2) test whether these alterations affect the neural 
representation of both monetary gains and losses as well as 
their omission and avoidance; (3) replicate previous findings 
regarding obesity-related alterations in learning performance 
and examine whether learning deficits are present for both 
performance in learning from reward and performance in 
learning from punishment, and (4) investigate the neural 
correlates of reinforcement-based learning, specifically the 
representation and utilization of PE signals in the brain.

We hypothesized that individuals with obesity show 
altered neural representations of both positive and negative 
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monetary outcomes in areas of the brain’s reward system, 
such as the striatum, medial orbitofrontal cortex (OFC), 
insula, midbrain and thalamus. Further, we hypothesized 
that individuals with obesity would exhibit a lower rein-
forcement-based learning performance, which potentially 
is mediated by alterations in ventral striatal PE processing.

Materials and methods

Participants

Fifty-five participants were recruited for the current study 
via online advertisements, and from the participant data-
base of the Max Planck Institute for Human Cognitive and 
Brain Sciences, Leipzig, Germany. Inclusion criteria encom-
passed MR-eligibility, right-handedness, an age-range of 20 
to 45 years, as well as a BMI between 30.0 and 50.0 kg/m2 
for participants with obesity, or a BMI between 18.5 and 
24.9 kg/m2 for lean control participants. Participants were 
excluded from the study if they reported current smoking, 
the use of drugs or psychoactive medication, a history of 
neuropsychiatric diseases, current depressive symptoms 
(Beck’s Depression Inventory, BDI-SF, > = 10, Beck and 
Steer 1987), or a thyroid disease. We restricted our sample 
by these criteria to avoid confounding influences of age (e.g. 
Samanez-Larkin et al. 2012), smoking status (e.g. Martin 
et al. 2014), as well as neuropsychiatric symptoms and medi-
cation (e.g. Etkin and Wager 2007; Philip et al. 2012; Zhang 
et al. 2013; Wittmann and D’Esposito 2015; Yan et al. 2015) 
on reinforcement processing. Furthermore, participants 
reporting thyroid diseases were excluded from the current 
sample as these conditions may affect body-weight status 
(Tzotzas et al. 2000).

Upon participation we had to exclude two participants 
due to lack of task compliance (one lean, one obese), and 
three participants due to lack of task comprehension (one 
lean, two obese). Four participants were excluded who 
reported obesity at the time of recruitment, but fell below 
our predefined BMI criteria for obesity at the time of meas-
urement, and three participants were excluded due to cur-
rent depressive symptomatology (BDI-SF > = 10; one lean, 
one obese) or medication use (one obese). Finally, one par-
ticipant experienced a panic attack inside the scanner and 
aborted the scanning session.

The final sample thus consisted of 19 individuals with 
obesity and 23 individuals without obesity who were com-
parable with respect to gender, age, education, and working 
memory performance (Table 1).

All participants gave written informed consent prior to 
their participation and received 8 €/hour for reimburse-
ment (mean study duration 2 h). Additionally, participants 
received a monetary bonus dependent on their performance 

in the reinforcement learning task (final score/1000, on aver-
age 3.10 €). The study was carried out in accordance with 
the Declaration of Helsinki and was approved by the ethics 
committee of the University of Leipzig.

Procedure and probabilistic reinforcement learning 
task

Participants performed a probabilistic reinforcement learn-
ing task comprising 240 trials, which we adapted from Kim 
et al. (2006). In each trial participants were presented with 
a pair of symbols and had to choose one of them by button 
press. Three types of pairs were included in the experiment: 
(1) one pair signaled the possibility of winning 50 points 
or receiving no outcome (gain condition, 80 trials), (2) one 
pair signaled the possibility of losing 50 points or receiving 
no outcome (loss condition, 80 trials), and (3) one pair was 
associated with a neutral outcome signaling neither gain nor 
loss (neutral condition, 80 trials). In each pair of stimuli one 
symbol had a higher probability of receiving the respective 
outcome: In the gain condition, the advantageous symbol 
was associated with a 70% probability of winning 50 points 
and led to no outcome in only 30% of the trials in which it 
was chosen. The disadvantageous symbol was associated 
with a 30% probability of winning 50 points and led to no 
outcome in 70% of the trials in which it was chosen. Simi-
larly, in the loss condition the advantageous symbol was 
associated with a 30% probability of losing 50 points, while 
the disadvantageous symbol had a loss probability of 70%. 
Additionally, we included a financially neutral control condi-
tion, which primarily served as a control condition for fMRI 
data analysis. Here, the two symbols likewise had a 70 and 
30% probability of seeing neutral feedback, and no outcome 
otherwise. Symbols were assigned to the given conditions 
pseudorandomly. Trial order was randomized in 8 consecu-
tive bins each comprising 30 trials (10 gain, 10 loss, 10 neu-
tral). Within each bin these 30 trials were freely randomized. 
This was done to ensure a roughly equal number of trials per 
condition in each stage of the experiment.

Trial timing and conditions are displayed in Fig. 1. In 
short, the pair of symbols was presented for a maximum of 
1500 ms and participants were asked to select one symbol. 
Once they had made their selection, the chosen option was 
highlighted for 1000 ms and a blank screen appeared during 
a 1000 ms delay period. Thereafter, the feedback occurred 
on the screen for 2000 ms. If the participants received no 
outcome a fixation cross was shown instead. If the partici-
pants did not press the button within 1500 ms after stimu-
lus onset, the trial was aborted and the text “Too slow!” 
appeared on the screen. No response trials were omitted 
from all analyses (on average 2.55% of all trials).

Prior to the experiment, participants completed the Figu-
rative Memory subtest from the Wechsler-Memory-Scale-R 
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Table 1  Sample characteristics

Years of education = years of school education, Income = Available income measured in five categories (< 500€ per month, 500–1000€ per 
month, 1000–1500€ per month, 1500–2000€ per month, > 2000€ per month), data available from n = 22 lean and n = 18 obese participants, 
Occupation = current occupation classified according to five categories (unemployed, trainee, student, employee, self-employed), BMI = Body 
Mass Index, WHR = Waist-to-hip-ratio, Weight duration = average number of years participants with obesity had been obese. 1All but one lean 
participant reported they had been lean throughout their lives. WMS-R FM – Wechsler Memory Scale - Revised, Subtest Figural Memory, BDI-
SF = Beck’s Depression Inventory – Short Form, BIS/BAS - BIS = Behavioral Inhibition/Behavioral Activation Scale – Subscale Behavioral 
Inhibition, BIS/BAS - BAS = Behavioral Inhibition/Behavioral Activation Scale – Subscale Behavioral Activation. Values represent mean ± SD. 
Independent samples t-tests are reported for normally distributed data, while results of the Mann–Whitney U-test are reported if the assumption 
of normality was violated (as determined by Shapiro–Wilk test). Χ2 and results from Fisher’s Exact test are reported for comparisons of categori-
cal data

Participants with obesity
n = 19

Participants without obesity
n = 23

Test statistic

Demographics
 Female/male 10/9 11/12 Χ2 = 0.096, p = .757
 Age 29.5 ± 5.6 30.0 ± 5.0 t(40) = − 0.264, p = .793
 Years of education 11.8 ± 0.7 11.9 ± 0.4 U = 216.000, p = .864
 Income 6/6/5/0/1 5/9/6/1/1 Χ2 = 1.996, p = .976
 Occupation 1/2/9/6/1 0/0/10/9/4 Χ2 = 4.541, p = .299

Anthropometrics
 BMI 35.4 ± 4.5 22.4 ± 1.7 U = 0.000, p < .001
 WHR 0.9 ± 0.1 0.7 ± 0.2 U = 78.500, p < .001
 Weight duration 15.07 ± 7.24 – 1

Tests and questionnaires
 WMS-R FM 8.3 ± 1.2 8.8 ± 1.0 U = 167.500, p = .172
 BDI-SF 2.6 ± 2.6 1.3 ± 1.5 U = 158.000, p = .107
 BIS/BAS-BIS 2.6 ± 0.6 2.9 ± 0.4 t(40) = − 1.930, p = .061
 BIS/BAS-BAS 3.1 ± 0.3 3.1 ± 0.3 t(40) = 0.167, p = .868

Fig. 1  Trial structure, conditions, and cue-outcome contingencies of the probabilistic reinforcement learning task

    (2018) 12:1431 1449  –Brain Imaging and Behavior 1434



1 3

in order to evaluate the influence of (visual) working mem-
ory on learning performance that was previously reported in 
other studies (Collins and Frank 2012; Coppin et al. 2014). 
Participants were then instructed about the task and per-
formed a practice run of 12 trials (four trials in each condi-
tion) outside the scanner. In the instructions, they were told 
that two stimuli would be presented in each trial and their 
task was to select one of them. Dependent on their choice 
they would win 50 points, lose 50 points, receive financially 
neutral feedback or no outcome. Participants were informed 
that the task comprised three conditions and that in each 
condition one cue had a higher probability of leading to an 
advantageous outcome. However, they did not know which 
cue was associated with a particular outcome. In addition, 
participants were informed that their net gain would be trans-
formed into a monetary bonus at the end of the experiment. 
Upon completion of the experiment participants were inter-
viewed about their retrospective task comprehension and 
knowledge about the cue-outcome contingencies. Finally, 
all participants were debriefed about the aim of the study.

Ratings

Immediately before and after the learning experiment, we 
obtained subjective valence and arousal ratings for each 
symbol to determine changes in affective responses towards 
the stimuli. Here, each symbol was presented individually 
and rated according to valence and arousal on 9-point Self-
Assessment Manikin visual analog scales (Bradley and 
Lang 1994). The sequence of stimulus presentations was 
pseudo-randomized.

FMRI data acquisition

Functional and structural images were obtained using a 
3T Siemens Trio MRI scanner. Functional images were 
acquired in a T2*-weighted blood oxygen level dependent 
sequence with a TR of 2000 ms, TE of 22 ms, flip angle 
of 90°, 64 × 64 in-plane matrix, field of view of 192 mm. 
Thirty-eight 2.5 mm slices with a 0.5 mm gap were meas-
ured in ascending order and 1098 volumes were acquired 
for the current study.

Additionally, a T1-weighted structural scan was 
recorded using a three dimensional MPRAGE sequence 
(matrix 256 × 240; 176 slices, FoV = 256 × 240 mm, voxel 
size = 1.0 × 1.0 × 1.0 mm, TR = 2300 ms, TE = 2.96 ms, flip 
angle = 9°) for participants that had not previously received 
a structural scan in our institute. For all other participants an 
existing T1-weighted structural scan showing similar imag-
ing parameters was employed for co-registration.

A standard 12-channel head coil was used for the experi-
ment. Visual stimuli were presented on a screen behind 

the scanner that was visible to the participants via a mirror 
mounted on the head coil.

Behavioral data analyses

Statistical analyses of the behavioral performance data 
were carried out using IBM SPSS Statistics 20 (Armonk, 
NY, USA) with a level of significance being set at p < .05. 
For repeated-measures ANOVAs degrees of freedom were 
adjusted using Greenhouse-Geisser correction (Greenhouse 
and Geisser 1959) if the assumption of sphericity was vio-
lated. In this case, we report uncorrected degrees of free-
dom, corrected p-values and epsilon. For significant effects, 
generalized eta squared (ηG

2) as determined by R’s afex 
function is reported as a measure of effect size. Bonferroni-
corrected t-tests were utilized as post-hoc tests where the 
ANOVA indicated a significant main or interaction effect. 
Cohen’s d is reported as a measure of effect size for inde-
pendent samples t-tests.

Computational learning model

Trial-wise PEs and participant- and condition-specific 
learning rates were derived from a reinforcement model. 
The model was previously applied in another implicit 
learning paradigm in healthy and clinical populations and 
it was shown to adequately capture probabilistic classifica-
tion tasks (Mathar et al. 2017b). As a slightly modified ver-
sion of standard Q-learning, our model contains separate 
learning rates for the experimental conditions that are fitted 
independently of other model parameters. The latter ensures 
that learning rates are statistically independent of the choice 
consistency parameter, which is not the case in standard 
Q-learning (Mathar et al. 2017b). More specifically, the rein-
forcement learning model consists of six input nodes Ii=1,...,6 
with weighted connections to two output nodes (Q-values) 
Qj=1,2that represent the presence or absence of the six dif-
ferent symbols (three pairs of symbols) and the two possi-
ble outcomes in each condition, respectively. On each trial, 
activity of the output nodes is computed as Qj =

∑
i qijIi, 

where qij is the weight connecting input node Ii and output 
node Qj . Weights are initialized to 0.25, representing equal 
distribution of initial weights between the four connections 
that can be updated within one trial (connections from two 
input patterns to the two outcomes). Weights are updated 
in each trial by means of qij(k + 1) = qij(k) + �Sj(Rj − Qj)Ii 
where Rj encodes the correct output in this trial, α consti-
tutes a learning rate, and Sj represents the subject’s response. 
The latter is included for allowing the model to simulate the 
behavior of the individual participant rather than optimal 
learning.

Since participants were informed about the three sepa-
rate learning conditions and learning performance in one 
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condition was independent of the other two conditions, we 
fitted three independent learning rates for the gain, loss, and 
neutral condition, respectively. This allowed us to differen-
tially assess learning from reward (monetary gains) and pun-
ishment (monetary losses). For each participant, individual 
learning rates were determined that minimized the sum of 
squared differences between the model’s output and the par-
ticipant’s response: 

∑
jk

�
Sjk − Qjk

�2 → min , with j = 1, 2 
and k being the number of trials. In a subsequent step, we 
modeled each participant’s choices of a particular outcome 
to follow a softmax distribution: 

with temperature or choice consistency parameter β. The 
parameter β was fitted to participants’ choices by minimiz-
ing the negative log likelihood of the choice probabilities P 
by LL = −ln(

∏
k Pk

�
Qj

�
) , while the learning rates were held 

constant at the values optimized in the first step. As previ-
ously proposed by Mathar et al. (2017b), model fitting and 
estimation of all parameters was accomplished by nonlinear 
optimization.

FMRI data analyses

MR images were preprocessed and analyzed using SPM8 
(Wellcome Trust Centre for Neuroimaging, UCL, London, 
UK), implemented in Matlab 7.14 (The MathWorks Inc., 
Sherborn, MA). Functional images were unwarped and spa-
tially aligned to the first image of the session to correct for 
movement artifacts. Realignment parameters were subse-
quently included as regressors of no interest in all individ-
ual participant level models described below. Slice timing 
correction to the anatomical middle slice was performed to 
correct for different acquisition times. The mean EPI image 
was co-registered to the high-resolution anatomical image, 
the T1 reference scan was segmented into different tissue 
classes, and functional and structural images were normal-
ized to Montreal Neurological Institute (MNI) stereotaxic 
space. Subsequently, the normalized images were smoothed 
with an isotropic Gaussian kernel of 8 mm FWHM. The final 
resampled voxel size after normalization was 3 × 3 × 3 mm.

At the individual participant level, we set up sepa-
rate models for the analyses of outcome-related BOLD 
responses, PE-related BOLD responses and functional con-
nectivity: Stimulus- and outcome-related BOLD responses 
were modeled using three symbol pair regressors (gain 
condition trial, loss condition trial, neutral condition trial) 
and six outcome regressors (gain, gain omission, loss, loss 
avoidance, neutral outcome, no neutral outcome) that were 
modeled as impulse function and convolved with a hemo-
dynamic response function. To examine outcome-related 

P
(
choice = Sj|Q1,Q2

)
=

exp
(
�Qj

)

exp
(
�Q1

)
+ exp

(
�Q2

)with j = 1, 2

brain activation, individual contrast images for gain, gain 
omission, loss, and loss avoidance compared to neutral 
control trials were computed and submitted to separate 
one-sample t-tests for the analysis of within-group effects 
as well as two-sample t-tests for the comparison of out-
come-related brain responses between lean participants 
and participants with obesity. For a detailed analyses of 
activation and deactivation patterns in contrasts revealing 
significant group differences, we extracted percent signal 
change of the BOLD signal using MarsBar 0.42.

PE-related brain activation was modeled at feedback 
onset and trial-wise PE estimates derived from the rein-
forcement learning model were used as parametric modu-
lators of the feedback regressor that signaled the onset of 
any outcome in the gain or loss condition. Trials of the 
neutral condition were excluded from the analysis of PEs as 
performance was not reinforced by monetary feedback and 
participants may thus have been less attentive or motivated 
to learn the cue-outcome contingencies. Individual contrast 
images were submitted to one- and two-sample t-tests for 
within- and between group comparisons, respectively.

To investigate obesity-related changes in functional con-
nectivity of the VS, we followed an approach proposed by 
Park et al. (2010) to build a psychophysiological interaction 
(PPI) term. Using this method, we examined the correlation 
of the observed BOLD time-series, without making assump-
tions about the neural event contributing to the BOLD signal 
(Kahnt et al. 2009). We focused on the VS as a seed region 
as previous studies have highlighted its importance in PE 
coding. First, we identified activated voxels in the left and 
right VS that significantly correlated with trialwise-PEs 
at whole group level. Here, anatomical ROI masks of the 
nucleus accumbens from the Harvard-Oxford Subcortical 
Structural Atlas were used to restrict the analysis. We then 
extracted individual participants time courses within the 
whole group activation masks, which were then multiplied 
by condition vectors that contained ones for four TRs after 
the presentation of positive (PPI regressor for positive PE 
feedback) and negative feedback (PPI regressor for nega-
tive PE feedback) and zeros otherwise. The resulting vectors 
were then used as regressors in an individual participant 
level model, which also included condition vectors con-
taining separate feedback onsets for positive and negative 
feedback as well as realignment parameters as regressors 
of no interest. Contrast images of the PPI regressors were 
subsequently submitted to a 2nd level ANOVA comprising 
the factors PE condition (positive, negative) and group (lean, 
obese).

All results were corrected for multiple comparisons using 
a combination of individual voxel probability and cluster-
extent based thresholds. Using 3dClustSim with an estimated 
non-Gaussian autocorrelation function and individual-voxel 
threshold of p < .001, we determined a cluster-extent based 
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threshold of 53 adjacent voxels to reach a family-wise error 
rate of 5%.

Association of neural responses and learning 
behavior

To examine if alterations in VS functional coupling are asso-
ciated with learning success, we extracted for each partici-
pant individual beta weights for the functional connectivity 
between the VS and areas showing significant group dif-
ferences (i.e. insula/superior temporal gyrus and vermis). 
These were then used as predictors of learning in a multi-
variate ANOVA including objective and subjective measures 
of learning success, namely the percentage of advantageous 
choices in gain and loss conditions during the acquisition 
phase, the average learning rate as well as subjective valence 
ratings.

Data availability The datasets analyzed during the current 
study are available from the corresponding author on request.

Results

Behavioral performance

The net monetary outcome at the end of the experiment, 
percentage of advantageous choices and model-derived 
learning rates were evaluated as indices of individual learn-
ing performance. For the overall monetary score, an inde-
pendent samples t-test revealed that individuals with obesity 
accumulated a significantly lower outcome than lean control 
participants over the course of the experiment [t(40) = 2.206, 
p = .037, d = 0.703].

For the analyses of choice behavior, we calculated the 
percentage of advantageous choices in the gain and loss con-
dition in 4 time bins (each comprising ~ 20 trials per condi-
tion). To evaluate learning performance, we then focused 
on choice behavior during the early phases of the experi-
ment, when cue-outcome contingencies are predominantly 
acquired (e.g. Pessiglione et al. 2006; Lin et al. 2012; den 
Ouden et al. 2013). Specifically, we evaluated the percentage 
of advantageous choices during the first two blocks of the 
experiment. The neutral condition was excluded from this 
analysis since there was no financial incentive to develop 
a choice preference and participants may thus have used 
diverse behavioral strategies to complete the task (e.g. ran-
dom choices or fixed choices of one symbol). Due to viola-
tions of normality, choice data were rank transformed and 
subjected to a repeated measures ANOVA including the 
within subject factors condition (gain, loss), block (1–2) 
as well as the between subject factor group (lean, obese). 
The results corroborate the previous finding: we found a 

significant main effect of group [F(1, 40) = 4.622, p = .038, 
ηG

2 = 0.049], a main effect of block showing an increase in 
correct responses from block 1 to block 2 [F(1, 40) = 50.560, 
p < .001, ηG

2 = 0.129], as well as a Group × Block interaction 
[F(1, 40) = 6.617, p = .014, ηG

2 = 0.019], indicating that indi-
viduals with obesity achieved a lower number of advanta-
geous choices than lean controls particularly during the later 
acquisition phase (Block 2, p = .031; Fig. 2a). Interestingly, 
we found no significant modulation of learning performance 
by condition [main effect of Condition: F(1, 40) = 2.371, 
p = .131] and no significant interaction of group and condi-
tion, suggesting that group differences are comparable when 
learning from gain and loss feedback [interaction of Condi-
tion × Group: F(1, 40) = 1.671, p = .204].

Additionally, we examined choice behavior during the 
later phase (last two blocks) of the experiment, where the 
learning process should have resulted in stable cue-outcome 
associations. Here, we found no significant increase of per-
formance across blocks [F(1, 40) = 3.984, p = .053] and 
no significant group differences across the gain and loss 
condition [main effect of group: F(1,40) = 1.259, p = .269; 
interaction of Condition × Group: F(1, 40) = 1.168, p = .286, 
Fig. 2a].

For the analysis of model-derived learning parameters, 
we extracted learning rates for the gain and loss condi-
tion separately and submitted them to a repeated-measures 
ANOVA including the within-subject factor condition (gain, 
loss) as well as the between-subject factor group (lean, 
obese). In line with the behavioral performance results, a 
significant main effect of group [F(1, 40) = 5.713, p = .022, 
ηG

2 = 0.076] indicates that lean participants exhibited sig-
nificantly higher learning rates than individuals with obesity 
(Fig. 2b). As with the observed choice behavior, this effect 
was not modulated by the factor condition [interaction of 
Condition × Group: F(1, 40) = 0.839, p = .365].

In order to disseminate the influence of working memory 
on learning performance, we repeated the above-mentioned 
analyses including the Figurative Memory score as a covari-
ate of interest. However, there was no evidence for a sig-
nificant modulation of learning performance by individual 
working memory differences (Online Resource 1). Further, 
lean and obese participants did not significantly differ in 
their working memory performance (U = 167.500, p = .172).

Ratings

To investigate differential changes in the evalua-
tion of advantageous and disadvantageous symbols, 
we obtained individual valence and arousal ratings 
of all symbols before and after the experiment. Both 
were submitted to a repeated-measures MANOVA 
including the within-subject factors condition (gain, 
loss, neutral), time (before, after) and reinforcement 
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probability (advantageous, disadvantageous) as well as 
the between-subject factor group (lean, obese). Using 
Pillai’s trace, we found a significant multivariate inter-
action effect of Time × Group × Reinforcement Prob-
ability [V = 0.157, F(2, 39) = 3.644, p = .035]. Univariate 
follow-up analysis showed that this effect was strongly 
driven by group differences in valence ratings [interac-
tion of Time × Group × Reinforcement Probability: F(1, 
40) = 4.635, p = .037, ηG

2 = 0.006]. Specifically, while 
participants with obesity exhibited similar ratings of 
advantageous and disadvantageous choice options before 

and after the experiment (all p > .05), lean participants 
showed a decrease in positive valence ratings for disad-
vantageous choice options from before to after the experi-
ment (p = .045) as well as more positive valence ratings of 
advantageous compared to disadvantageous choice options 
after the experiment (p = .036; Fig. 2c).

Similar to objective markers of learning performance, we 
found no evidence for an association between the subjective 
evaluation of advantageous and disadvantageous symbols 
and figurative working memory (Online Resource 1).
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Fig. 2  Behavioral results of the probabilistic reinforcement learning 
task. a Individuals with obesity showed a lower number of advanta-
geous choices across gain and loss trials than lean participants during 
the acquisition phase (main effect of Group), which was particularly 
pronounced during the second block of the experiment (late acquisi-
tion phase, Group X Block interaction). No significant group differ-
ences occurred during the later phases of the experiment (blocks 3 
and 4). Note that the neutral condition was not included in the statis-
tical analysis, but is displayed here for completeness. b Individuals 
with obesity exhibited lower learning rates in the gain and loss con-

dition than lean controls (main effect of Group). Again, the neutral 
condition was not included in the statistical analysis. c Valence rating 
obtained before and after the experiment revealed that lean partici-
pants showed a decrease in positive valence ratings for the disadvan-
tageous choice options after the experiment as well as more positive 
ratings of advantageous compared to disadvantageous choice options 
after the experiment. No modulation of the subjective evaluation of 
the task stimuli occurred in individuals with obesity. Error bars rep-
resent standard errors of the mean taking into account the within-sub-
ject design (Cousineau 2005; Morey 2008). * p < .05 (two-tailed)

    (2018) 12:1431 1449  –Brain Imaging and Behavior 1438



1 3

FMRI results

Gain receipt and loss avoidance

For the analysis of neural responses towards positive mon-
etary outcomes, we first examined neural responses to mone-
tary gains as well as responses to the successful avoidance of 
monetary losses, in each group individually. Subsequently, 
we compared lean and obese participants in a subtraction 
analysis.

Whole brain within-group analysis revealed that the 
receipt of a monetary gain was associated with significant 
activation in clusters encompassing the striatum, insula, 
anterior cingulate (ACC), middle frontal gyrus and midcin-
gulate cortex (MCC) in lean and obese participants. Further, 
lean participants exhibited significantly higher activation to 
monetary gains than to neutral feedback in the right mid-
dle OFC, cerebellum and occipital cortex, while individu-
als with obesity showed increased activation in the inferior 
parietal lobule (Table 2).

In both groups, the successful avoidance of monetary 
losses was similarly associated with higher activation in 
clusters encompassing the insula, middle frontal gyrus, 
cerebellum, and inferior parietal lobule. Additionally, lean 
participants demonstrated significant activation in the MCC, 
superior frontal, and superior medial frontal gyrus, whereas 
individuals with obesity showed increased activation in the 
middle OFC (Table 2).

The between-group analysis revealed that individuals 
with obesity and lean control participants did not signifi-
cantly differ in their neural responses towards monetary 
gains or the successful avoidance of monetary losses.

Loss receipt and gain omission

In a second step, we examined neural responses following a 
negative monetary outcome. Specifically, we first analyzed 
the processing of monetary losses as well as the omission 
of monetary gains in each group individually. Subsequently, 
we compared responses of individuals with obesity and lean 
control participants in a between-group subtraction analysis.

In both groups monetary loss processing was associ-
ated with increased activation in clusters encompassing the 
insula, superior medial frontal gyrus, ACC and MCC, as 
well as cerebellum and inferior partial lobule. Additionally, 
lean participants displayed higher activation to monetary 
losses than neutral feedback in the thalamus, midbrain, and 
middle frontal gyrus (Table 2).

The omission of monetary gains elicited significant acti-
vation in the inferior parietal lobule in both groups. In lean 
control participants we further found activation in the insula, 
as well as MCC (Table 2).

The between-group analysis of monetary losses compared 
to neutral feedback revealed a region of significant differ-
ences in the medial prefrontal cortex (mPFC). Extracted 
percent signal change of the BOLD signal indicated that the 
effect was driven by significantly different neural responses 
to monetary losses [t(40) = 2.666, p = .013], such that lean 
participants demonstrated a pronounced deactivation in 
response to monetary losses, while individuals with obesity 
showed a small increase in activation (Fig. 3a).

PE representation

The within-group analysis of neural responses associated 
with PEs revealed that lean participants showed significant 
PE-related activity in the VS, and medial OFC, as well as 
superior temporal gyrus, occipital gyrus, MCC, and poste-
rior cingulate gyrus. In individuals with obesity, PE-related 
activity occurred in the precentral gyrus, occipital gyrus and 
inferior parietal lobule (Table 3). Additionally, using a less 
conservative individual-voxel threshold (p < .005, 128 vox-
els) we likewise found evidence for significant PE-related 
activity in the VS bilaterally (x = 12, y = 8, z = − 11, T = 4.39; 
x = − 9, y = 14, z = − 11, T = 4.17).

The between-group comparison revealed that individuals 
with obesity and lean control participants did not signifi-
cantly differ in PE-related activity (Table 3). To investigate 
the possibility that PE-related group differences occurred 
mainly during the acquisition phase, we additionally exam-
ined PE-related responses during the first two blocks of the 
experiment only. Again, we found no evidence for obesity-
related alterations in neural PE representation (Online 
Resource 2).

VS functional connectivity

For the analysis of VS functional connectivity, the group-
by-condition ANOVA indicated regions of significant group 
differences in clusters encompassing the left insula and 
superior temporal gyrus as well as between the VS and ver-
mis/cerebellum (Table 4; Fig. 3b). Individuals with obesity 
compared to lean participants showed increased functional 
connectivity between the VS and these regions, while no 
modulation of group differences by condition (i.e. no signifi-
cant Group × Condition interaction) was observed.

Association of neural responses and learning behavior

Finally, we investigated the association of alterations in 
functional connectivity and learning behavior. Here, we 
used the strength of functional connectivity between the 
VS and the clusters showing significant group differences 
during outcome processing (insula/ superior temporal gyrus 
and vermis) to predict learning behavior of lean participants 
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Table 2  Within- and between-
group comparison of whole-
brain outcome processing 
results

Anatomical region Cluster voxels T at peak Peak MNI coordinates

(a) Regions responding to gain receipt
Lean
 Pallidum L 1676 6.58 − 12 5 − 5
  *Insula L 6.07 − 33 14 − 11
  *Insula R 5.87 36 17 − 8

 Anterior cingulate cortex R 493 5.55 6 41 4
  *Anterior cingulate cortex L 4.78 − 12 35 16

 Inferior occipital gyrus R 330 4.84 39 − 88 − 11
  *Cuneus R 4.58 15 − 100 7
  *Vermis 4.15 3 − 64 − 38

 Middle occipital gyrus L 239 4.83 − 15 − 103 4
  *Lingual gyrus L 4.68 − 36 − 91 − 14

 Middle orbitofrontal cortex R 87 4.81 33 59 − 5
 Cerebellum L 136 4.45 − 27 − 58 − 29
 Middle frontal gyrus R 108 4.27 45 47 19

Obese
 Anterior cingulate cortex L 979 5.60 0 35 16
  *Medial orbitofrontal cortex R 4.93 3 41 − 5

 Inferior parietal lobule R 78 5.49 57 − 37 52
 Nucleus accumbens L 618 5.46 − 9 − 1 − 8
  *Putamen R 5.04 15 14 − 5
  *Putamen L 4.90 − 15 14 − 5

 Midcingulate cortex R 128 5.29 0 − 13 31
 Middle frontal gyrus R 54 4.52 39 41 19

Lean vs obese
 – – – –

(b) Regions responding to loss avoidance
Lean
 Insula R 171 6.01 33 23 − 5
 Superior frontal gyrus R 101 5.16 30 62 − 2
 Inferior parietal lobule R 199 4.75 45 − 49 43
  *Angular gyrus R 4.34 42 − 61 52

 Cerebellum L 82 4.39 − 12 − 76 − 29
 Middle frontal gyrus R 59 4.31 42 11 52
 Midcingulate cortex R 71 4.28 6 35 31
  *Superior medial frontal gyrus R 3.78 6 29 43

Obese
 Inferior parietal lobule R 192 4.63 48 − 43 40
  * Superior temporal gyrus R 3.35 63 − 49 19

 Middle orbitofrontal cortex R 267 4.56 18 53 − 8
  *Superior orbitofrontal cortex R 4.38 21 44 − 14

 Middle frontal gyrus R 172 4.54 42 29 40
 Cerebellum L 103 4.15 − 15 − 85 − 29

Lean vs obese
 – – – –

(c) Regions responding to loss
Lean
 Insula L 343 9.27 − 33 17 − 11
 Insula R 391 8.64 33 20 − 8
 Superior medial frontal gyrus R 643 6.03 3 35 40
  *Anterior cingulate cortex R 5.73 9 35 22
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and participants with obesity. Surprisingly, we found no evi-
dence for an association of learning success and connectivity 
strength. Using Pillai’s trace, there was no significant mul-
tivariate effect of VS connectivity with the insula/superior 
temporal gyrus [V = 0.077, F(3, 37) = 1.036, p = .388] or 
vermis [V = 0.166, F(3, 37) = 2.450, p = .079] on indices of 
learning (Fig. 3c). To rule out specific influences of connec-
tivity on objective (learning rate, percentage of advantageous 
choices) compared to subjective measures of learning suc-
cess (ratings), we further examined the univariate effects, but 
similarly found no evidence for any significant relationship.

Discussion

In the current study, we aimed to investigate obesity-
related alterations in non-food reinforcement processing, 
learning performance and the neural underpinnings of 

reinforcement-based learning in individuals with obesity. 
The results partly confirmed our hypotheses: (1) indi-
viduals with obesity compared to lean control partici-
pants showed alterations in the processing of monetary 
reinforcement stimuli. Specifically, we found differences 
during the processing of monetary losses, where lean 
participants responded with a strong deactivation, while 
individuals with obesity exhibited a small increase in 
activation of the mPFC. Contrary to our hypothesis, we 
found comparable activation patterns in reward-related 
areas in both groups for the processing of monetary gains. 
(2) In line with previous studies, individuals with obesity 
exhibited a compromised learning performance. This was 
evidenced by a lower number of advantageous choices as 
well as lower learning rates in individuals with obesity. In 
the same vein, subjective indices of reinforcement-based 
learning suggested that lean, but not obese, participants’ 
evaluation of the task stimuli was modulated by learning 

* Additional peak voxel in the current cluster

Table 2  (continued) Anatomical region Cluster voxels T at peak Peak MNI coordinates

 Middle frontal gyrus R 484 5.54 24 56 22
  *Middle orbitofrontal cortex R 4.74 36 56 − 8

 Midcingulate cortex R 91 5.21 3 − 28 28
 Midbrain L 502 5.11 − 3 − 13 − 11
  *Midbrain R 4.96 3 − 19 − 17
  *Thalamus L 4.90 − 9 − 10 − 2

 Cerebellum L 91 4.80 − 15 − 76 − 32
 Inferior parietal lobule R 166 4.76 42 − 52 43
 Calcarine gyrus R 67 4.05 3 − 76 7

Obese
 Midcingulate cortex R 142 6.15 0 − 13 31
 Anterior cingulate cortex R 1255 5.70 6 35 28
  *Superior medial frontal gyrus R 5.56 6 41 34

 Insula R 328 5.48 39 20 1
 Inferior parietal lobule R 432 5.25 51 − 46 52
  *Supramarginal gyrus R 4.86 57 − 49 31

 Insula L 103 4.96 -30 17 − 11
 Cerebellum L 99 4.70 − 12 − 82 − 26

Lean vs obese
 Medial prefrontal cortex L 61 -3.68 6 56 1
  * Medial prefrontal cortex R -3.56 − 9 53 1

(d) Regions responding to gain omission
Lean
 Insula R 134 6.70 33 23 − 2
 Insula L 60 5.27 − 27 20 − 2
 Inferior parietal lobule R 97 4.37 45 − 49 43
 Midcingulate cortex R 58 4.27 6 35 37

Obese
 Inferior parietal lobule R 75 3.85 51 − 49 49

Lean vs obese
 – – – –
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experience. (3) Lastly, both groups showed similar neural 
PE representations in the VS, but individuals with obe-
sity exhibited higher functional connectivity following 
feedback between the VS and a cluster encompassing the 

insula and superior temporal gyrus. This was, however, 
not predictive of a compromised learning performance in 
individuals with obesity.

a

b c

Fig. 3  a Axial view z = 5 of the mPFC cluster (peak voxel at x = 6, 
y = 56, z = 1) showing significantly different activation in participants 
with obesity compared to lean participants during the processing of 
monetary losses compared to neutral outcomes. The graph addition-
ally depicts the average percent BOLD signal change of this cluster 
for loss and neutral outcome trials in lean participants and individu-
als with obesity separately. Error bars represent standard error of the 

mean taking into account the within-subject design (Cousineau 2005; 
Morey 2008). b Axial and coronal views at z = − 10 and y = 8 demon-
strating higher functional connectivity between the VS bilaterally and 
insula/superior temporal gyrus during PE processing in individuals 
with obesity compared to lean participants. c Connectivity strength 
was not significantly associated with indices of learning performance 
across all participants. * p < .05 (two-tailed)
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Outcome processing

In the current study, we provide further evidence for gen-
eralized obesity-related alterations in reinforcement pro-
cessing beyond the food context. We found evidence for 
aberrant neural responses of the mPFC after actual mon-
etary losses in individuals with obesity, which indicate 

that the processing of negative reinforcement may be asso-
ciated with altered value representations in obesity.

To date little evidence exists on the processing of negative 
events in individuals with obesity. Opel et al. (2015) found 
obesity-related differences in the coding of monetary rewards 
and no differences in the coding of punishment, but used rela-
tively higher gains than losses. Employing comparable gains 

Table 3  Within- and between-
group comparisons of 
whole-brain prediction error 
processing results

* Additional peak voxel in the current cluster

Anatomical region Cluster voxels T at peak Peak MNI coordinates

Lean
 Nucleus accumbens R 2224 8.27 12 2 − 8
  *Nucleus accumbens L 8.20 − 12 5 − 11
  *Medial orbitofrontal cortex L 7.26 − 6 47 − 8

 Middle occipital gyrus L 801 7.33 − 18 − 97 − 5
  *Cerebellum L 6.04 − 33 − 76 − 26
  *Inferior occipital gyrus L 5.73 − 36 − 82 − 8

 Superior temporal gyrus R 203 7.08 66 − 31 13
  *Superior temporal gyrus R 4.27 66 − 19 4
  *Postcentral gyrus R 4.07 66 − 10 25

 Inferior occipital gyrus R 428 5.67 24 − 91 − 5
  *Middle occipital gyrus R 4.82 27 − 97 4
  *Middle occipital gyrus R 4.81 39 − 88 16

 Superior temporal gyrus L 149 5.22 − 57 − 19 10
  *Middle temporal gyrus L 4.87 − 57 − 31 7

 Posterior cingulate cortex L 278 5.06 − 9 − 37 31
  *Midcingulate cortex R 4.58 6 − 31 46
  *Midcingulate cortex L 4.55 − 6 − 43 37

Obese
 Precentral gyrus R 200 6.64 30 − 13 37
  *Postcentral gyrus R 6.48 30 − 25 43
  *Superior frontal gyrus R 5.17 21 − 10 55

 Inferior parietal lobule L 110 5.48 − 51 − 37 43
  *Postcentral gyrus L 4.72 − 48 − 22 28
  *Inferior parietal lobule L 4.54 − 33 − 43 34

 Inferior occipital gyrus R 76 5.48 27 − 91 − 2
Lean vs obese
 – – – –

Table 4  Between-group 
comparison of ventral striatal 
functional connectivity during 
prediction error processing – 
main effect of group

* Additional peak voxel in the current cluster

Anatomical region Cluster voxels F at peak Peak MNI coordinates

Superior temporal gyrus L 150 21.40 − 42 − 10 − 17
 *Insula L 20.50 − 45 8 − 11
 *Superior temporal gyrus L 19.17 − 51 2 − 11

Vermis 143 19.88 6 − 64 − 23
 *Cerebellum R 14.38 9 − 49 − 17
 *Cerebellum L 12.30 − 9 − 55 − 17
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and losses, Balodis et al. (2013) reported obesity-related 
differences in the neural representation of anticipated and 
received monetary losses. They found that the presentation 
of an early predictive cue indicating an upcoming monetary 
loss was associated with relatively higher neural responses to 
anticipated losses than neutral monetary outcomes in areas 
of the brain’s reward circuit, while actual monetary losses 
compared to financially neutral feedback lead to relatively 
decreased medial frontal activation in participants with obe-
sity. In our study, we found an obesity-related modulation of 
mPFC activation for monetary losses compared to neutral 
feedback. Importantly, however, a separate inspection of acti-
vation and deactivation patterns towards monetary losses and 
financially neutral outcomes revealed that this was driven by 
a slight increase in response to monetary losses in individu-
als with obesity, which stood in contrast to a pronounced 
deactivation in lean control participants.

The mPFC, in particular its ventral subdivision, has been 
hypothesized to provide a common valuation system for 
different reinforcers, showing greater BOLD responses to 
more rewarding or less aversive stimuli (Bartra et al. 2013). 
This has been reported for money and food (Levy and Glim-
cher 2011; Sescousse et al. 2013) as well as the encoding 
of the emotional value of pictures (Winecoff et al. 2013). 
These neural responses are often characterized by opposing 
patterns of activity with higher activation to the presenta-
tion of more rewarding and deactivation to more negative 
(Winecoff et al. 2013) or less valuable stimuli (Mullett and 
Tunney 2013). Canessa et al. (2013) reported that alterations 
in the activation patterns of the brain’s reward circuit may 
be associated with behavioral responses towards potential 
losses, such that larger loss-related deactivation than gain-
related activation predict higher loss aversion during deci-
sion making. Indeed, Tom et al. (2007) found that greater 
neural sensitivity to increasing losses in the medial OFC, 
insula, and striatum were associated with greater behavioral 
loss aversion in a gambling paradigm, supporting the notion 
that individual differences in cortical sensitivity to aversive 
stimuli affect cognitive performance and decision making.

It has been suggested that obesity is characterized by 
a two-fold pattern of reward responses encompassing 
heightened anticipatory, but blunted consummatory neural 
responses to rewarding stimuli (Kenny 2011). Previous stud-
ies in the context of monetary reward have already shown 
mixed results with increased anticipatory (Balodis et al. 
2013), but both increased (Opel et al. 2015) and decreased 
(Balodis et al. 2013) consummatory responses to monetary 
gains. Though the design of the current study was focused 
on outcome processing and did not allow for a thorough 
investigation of anticipatory processes, we find evidence for 
a decreased responsiveness to the receipt of negative stimuli 
in obesity. Surprisingly, we do not find differences in the 
neural processing of monetary gains, suggesting that reward 

processing may not be universally altered in individuals with 
obesity and differences in task design need to be considered.

In conclusion, our results indicate that individuals with 
obesity exhibit aberrant value representations of monetary 
losses in the mPFC. A decreased motivational significance 
of negative action consequences could be an integral mecha-
nism contributing to alterations in decision making, such as 
a preference for immediate rewards in the light of long-term 
negative consequences (Horstmann et al. 2011) or a higher 
valuation of temporally close, but objectively worse deci-
sion outcomes (Simmank et al. 2015). Similarly, whether 
individuals with obesity will change or maintain their eat-
ing behavior can be strongly determined by their percep-
tion of its consequences. As evidence suggests that these 
mechanisms may be generalized across different domains of 
reinforcement, a lower motivational significance of negative 
(health) consequences of overeating may thus potentially 
decrease their regulatory effect on eating behavior, facili-
tating maintained dysfunctional eating patterns even in the 
light of negative long-term consequences.

Learning performance

In addition to non-food incentive representation, we also 
evaluated group differences in reinforcement-based learn-
ing performance. Similar to previous studies (Coppin et al. 
2014; Horstmann et al. 2011), we found evidence for a 
lowered reinforcement-based learning performance in indi-
viduals with obesity. Interestingly, data on the subjective 
evaluation of the presented stimuli, as indicated by valence 
ratings, suggested that this effect was driven by alterations in 
differential conditioning, such that differences were particu-
larly pronounced for the evaluation of the disadvantageous 
stimuli across conditions. While lean participants evaluated 
the disadvantageous stimuli as less pleasant after the experi-
ment and showed a clear differentiation in valence ratings 
between advantageous and disadvantageous symbols, indi-
viduals with obesity demonstrated no modulation of their 
ratings by learning experience. This is in line with previous 
studies that similarly showed obesity-related impairments 
particularly when learning the meaning of cues that have a 
low probability for subsequent rewards. Specifically, Zhang 
et al. (2014) reported that women with and without obesity 
responded comparably towards the cues that were associ-
ated with a food reward, but women with obesity showed 
higher reward expectancies towards the other cue that was 
in fact never followed by a food reward. In the same vein, 
Coppin et al. (2014) found that individuals with obesity were 
particularly impaired in avoiding disadvantageous options 
in a probabilistic learning task. In an earlier study from our 
group, we used the Weather Prediction Task to investigate 
PE coding in individuals with obesity in a complex implicit 
learning task. Adding to previous results, we found selective 
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impairments on the neural level, namely in the utilization of 
negative feedback and PEs for learning in individuals with 
obesity (Mathar et al. 2017a). Interestingly, rodents studies 
point in a similar direction showing that rats fed on highly 
palatable cafeteria diets are insensitive to aversive stimuli, 
i.e. they do not decrease food consumption in the light of 
a conditioned stimulus that is predictive of a aversive foot 
shock (Velazquez-Sanchez et al. 2015), an effect that may 
be mediated by alterations in the striatal D2 receptor system 
(Johnson and Kenny 2010). This deficit seems to be selective 
to negative stimuli, as rats fed on Western diets fail to solve 
tasks, in which a (negative) feature stimulus signals that a 
subsequent conditioned stimulus will not be paired with an 
expected reward, while they are not impaired in similar tasks 
using positive feature stimuli (Kanoski and Davidson 2011). 
Together, previous studies in humans and animals point at 
obesity-related alterations in negative outcome learning.

Here, we extended this work by applying a task that 
explicitly separates effects of learning from monetary gains 
(and their omission) versus learning from monetary losses 
(and their successful avoidance). Interestingly, none of the 
learning indices displayed condition effects, suggesting that 
learning performance is not primarily related to the actual 
monetary value of the presented outcomes. Rather it depends 
on their relative meaning discriminating disadvantageous 
from advantageous choice options.

PE processing and functional connectivity

A lower reinforcement-based learning performance has been 
shown to relate to alterations in the neural representation of 
dopaminergic learning signals in the striatum (Schönberg 
et al. 2007; Park et al. 2010; Eppinger et al. 2013). In the 
current study, individuals with obesity showed no alterations 
in the regional PE coding per se, but exhibited significantly 
higher functional connectivity between the VS and a cluster 
encompassing the left insula, and superior temporal gyrus 
during the processing of monetary outcomes. However, as 
opposed to other studies, this was in fact not directly related 
to decreases in learning performance, suggesting that altera-
tions in VS-insula connectivity may rather reflect more gen-
eral changes in the processing of (unexpected) feedback than 
differences in the utilization of striatal signals for learning.

The insula is a key area for the processing of interocep-
tive sensations and a node for the integration of external 
and interoceptive inputs (Craig 2002, 2009, 2011; Critch-
ley et al. 2004). Predominantly the (ventral) anterior insula 
seems to be related to affective processing and autonomic 
function (Kelly et al. 2012; Chang et al. 2013). Interestingly, 
VS and insula are anatomically connected (Leong et al. 
2016) and commonly co-activate in task-based and resting 
state fMRI studies (Postuma and Dagher 2006; Cauda et al. 

2011; Chang et al. 2013). Evidence suggests bidirectional 
connectivity patterns between (anterior) insula and VS dur-
ing incentive processing. More precisely, the insula has been 
hypothesized to code somatic changes in response to appeti-
tive and aversive stimuli and project to the VS to facilitate 
motivated behavior (Clithero et al. 2011; Cho et al. 2013). 
Furthermore, a higher tract coherence between the anterior 
insula and NAcc has been shown to be negatively related 
to risk preferences (Leong et al. 2016). Likewise, the VS 
has been found to project to the insula particularly during 
high attention allocation to appetitive cues (Rothkirch et al. 
2014).

Combined, these results highlight the possibility that an 
increased connectivity of insula and VS in individuals with 
obesity may reflect a stronger engagement of the reinforce-
ment processing circuitry and increased attention allocation 
in response to the presentation of monetary feedback. How-
ever, this does not directly translate to learning performance, 
suggesting that potential differences in affective coding do 
not impact per se on reinforcement-based learning perfor-
mance in individuals with obesity.

Other mechanisms in reinforcement‑based learning

Other mechanisms may contribute to obesity-related altera-
tions in reinforcement-based learning, instead. Indeed, learn-
ing and complex choice behavior have been discussed to rely 
on a combination of mechanisms beyond simple model-free 
learning based on striatal PEs only (Collins and Frank 2012; 
Doll et al. 2016). For instance, working memory capacity 
may play a distinct role in associative learning, particularly 
for so-called model-based learning processes that rely on 
building mental representations of the task environment. 
In complex 2-step learning tasks, designed to investigate 
such model-based compared to model-free processes, Par-
kinson patients with higher working memory capacity have 
been found to exhibit more model-based decisions (Sharp 
et al. 2016). Moreover, individuals were shown to be more 
resilient against the disruption of performance by external 
factors (Otto et al. 2013; Smittenaar et al. 2013). Similarly, 
Collins and Frank (2012) found that the combination of 
simple reinforcement-based learning models with working 
memory capacity best explained participants’ behavior in 
a putatively simpler instrumental learning task. For indi-
viduals with obesity, Coppin et al. (2014) reported working 
memory impairments and suggest that this may contribute to 
their failure to form preferences for highly rewarded stimuli. 
It is thus plausible to assume that working memory capacity 
contributed to learning deficits in the current study, though, 
surprisingly, we did not find a significant association in the 
data. This may be due to methodological issues: Firstly, we 
employed a simple working memory task in which both 
groups performed very well and performance variance 
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was relatively small. Secondly, we focused on visual work-
ing memory, while other studies have employed different 
measures. This may suggest that performance in the current 
task did not depend on the ability to memorize complex 
visual stimuli, but leaves the possibility that other and more 
sensitive measures of working memory capacity may help 
to further elucidate potential mechanisms contributing to 
obesity-related alterations in reinforcement-based learning.

Strength, future directions and limitations

To our knowledge, the current study is the first fMRI study 
integrating behavioral as well as neural correlates of mon-
etary reinforcement processing and reinforcement-based 
learning in individuals with obesity. While previous stud-
ies have mostly focused on general correlates of learning 
and response adaptation, the current paradigm allows for the 
investigation of two additional aspects: (1) a clear separation 
of learning from monetary gains compared to losses, and (2) 
the examination of both objective markers of learning per-
formance and the subjective evaluation of the conditioned 
stimuli.

However, we could not conclusively resolve which under-
lying mechanisms contributed to obesity-related learning 
alterations in the current study. Thus some further aspects 
should be considered in future studies. Firstly, a relatively 
low overall sample size precluded the examination of gender 
differences in the current task, though previous studies have 
shown that alterations in executive functioning and behav-
ioral adaptation may be particularly pronounced in women 
with obesity (Horstmann et al. 2011; Zhang et al. 2014). In 
the same vein, overweight participants should be included 
in future studies, as overweight and moderately obese par-
ticipants seem to be more distinct from lean participants in 
reward sensitivity, working memory performance and mon-
etary reward processing than individuals with severe obesity 
(Davis et al. 2004; Coppin et al. 2014; Dietrich et al. 2014; 
Verdejo-Román et al. 2017).

Additionally, while learning mostly took place during the 
first half of the experiment, performance in the second half 
was likely more influenced by fatigue and individual ten-
dencies to exploit the learned associations or explore other 
options despite existing knowledge of the advantageous 
choice options. More dynamic paradigms with changing 
cue-outcome contingencies could reduce these potential 
biases.

Lastly, the current study was mainly focused on the utili-
zation of feedback for learning. However, in order to under-
stand the influence of altered negative value representations 
on behavior in individuals with obesity, additional measures 
of decision making and the processing of negative action 
outcomes, e.g. in the context of eating behavior and health 
consequences, should be employed in future studies.

Conclusion

The current study examined the neural representation of 
non-food reinforcement stimuli and their utilization for 
reinforcement-based learning in individuals with obesity 
employing a probabilistic learning paradigm with sepa-
rate monetary gain and loss learning conditions. Findings 
of aberrant negative value representations and increased 
functional connectivity between the VS and insula point at 
generalized obesity-related differences in neural reinforce-
ment processing that are present outside of the food context. 
Additionally, a reduction in reinforcement-based learning 
performance and specific alterations in disadvantageous 
outcome learning further support the idea of a lower impact 
of negative choice consequences on behavioral adaptation 
in individuals with obesity. Surprisingly, neither PE-related 
processes nor working memory explained obesity-related 
differences in learning, highlighting the need for further 
investigations, with potentially different methodological 
approaches.
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