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Allergic asthma is a common chronic inflammation of the airways and causes airway
remodeling eventually. For a long time, investigators have been focusing on the
immunological mechanism of asthma. However, in recent years, the role of neuro-
regulation in the occurrence of asthma has gradually attracted investigators’ attention.
In this review, we firstly describe neuro-immune regulation in inflammation of allergic
asthma from two aspects: innate immunity and adaptive immunity. Secondly, we
introduce neuro-immune regulation in airway remodeling of asthma. Finally, we
prospect the role of pulmonary neuroendocrine cells in the development of asthma. In
general, the amount of researches is limited. Further researches on the neural regulation
during the occurrence of asthma will help us clarify the mechanism of asthma more
comprehensively and find more effective ways to prevent and control asthma.
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INTRODUCTION

Allergic asthma is a chronic inflammation of the airways caused by repeated exposure to allergens
such as dust, mites and pollens (1). It is a disease with high heterogeneity (2). The hallmark of
asthma is airway hyperresponsiveness (AHR) with symptoms of cough, shortness of breath, wheeze
and chest tightness. Asthma is a serious global problem with the prevalence rate of 5.8% in children
under 18 and 8.4% in adults, and fatality rate of 1.3/100,000 (https://www.cdc.gov/nchs/fastats/
asthma.htm [Accessed March 8, 2022]). Asthma can be divided into Type 2-High and Type 2-Low
subtypes according to whether T helper 2 (Th2) cells are dominant (3). Type 2-High asthma, also
known as allergic asthma, is characterized by large numbers of Th2 cells and group 2 innate
Abbreviations: AHR, airway hyperresponsiveness; Th2, T helper 2; ILC2s, group 2 innate lymphoid cells; TSLP, thymus
stromal lymphopoietin; ACh, acetylcholine; ASMs, airway smooth muscle cells; DCs, dendritic cells; CGRP, calcitonin gene-
related peptide; PNECs, pulmonary neuroendocrine cells; NT4, neurotrophin 4; OVA, ovalbumin; 5-HT, 5-
hydroxytryptamine; TGF-b, transforming growth factor b; b2-AR, b2-adrenergic receptor; NGF, nerve growth factor; EETs,
eosinophil extracellular traps; NMU, neuromedin U; VIP, vasoactive intestinal peptide.
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lymphoid cells (ILC2s). By secreting type 2 cytokines, these two
types of cells can initiate a series of signaling cascades (4–6). It
starts with the trigger of allergen which is captured by antigen-
presenting cells such as dendritic cells. Then Th2 cells in lymph
nodes are induced and activated (7, 8) with an antigen specific
manner. In addition, injured epithelial cells release cytokines
such as IL-25, IL-33, and thymus stromal lymphopoietin (TSLP),
which can directly recruit and activate Th2 cells and ILC2s in an
antigen-nonspecific manner (9–11). These two types of cells
produce a large number of type 2 cytokines and activate effector
cells such as B cells, basophils and eosinophils, thus initiate the
pulmonary inflammatory response (12, 13), causing pathological
changes such as AHR, excess mucus secretion, and airway
remodeling (14).

Although immune response plays a vital role in the occurrence
and development of allergic asthma, neuro regulation, especially
neuro-immune regulation in asthma has drawn more and more
attention in recent years. Just as skin and intestine, the lung is an
important organ that connects the body with the environment.
Airway epithelial cells are exposed to all kinds of external irritants
from air sources during breath. The lung is the first organ to sense
and recognize dangers by alarming the body immediately and
responding to these foreign invaders. During this process, nervous
and immune system cooperate closely. They share many
similarities, such as the same universal distribution almost all
over the body, common transmitting mediators such as
neurotransmitters and cytokines. In addition to exercising their
basic innate defense function, the innate nervous/immune system
of the body can also continuously promote adaptive regulation
with the changes of external environment (15). Nervous and
immune system interact with each other. Sensory nerve fibers
express cytokine receptors, which can sense cytokines and send
messages to the brain via the autonomic nervous system (15–17).
Neurotransmitters can also regulate immune responses through
neural receptors on the surface of immune cells (18, 19). This
review focuses on neuro-immune regulation in inflammation and
airway remodeling of allergic asthma.
NEURO-IMMUNE REGULATION IN
INFLAMMATION OF ALLERGIC ASTHMA

The lung is a highly innerved organ. Nerves in the lung can be
divided into sensory or afferent nervous system and motor or
efferent nervous system according to the signal direction
travelling within the nerve (20, 21). Sensory nerves from the
airways relay stretch stimuli, mechanoreceptors, and chemical
stimuli, chemoreceptors, along afferent sensory fibers or vagus
nerves to the central nervous system (20). Sympathetic,
parasympathetic, non-adrenergic and non-cholinergic
parasympathetic nerves constitute the motor pathways of the
lung. The parasympathetic nerve releases acetylcholine (ACh)
and activates muscarinic M3 receptors on airway smooth muscle
cells (ASMs), resulting in the effects of bronchial contraction (22,
23). The pulmonary sympathetic nerve innervates the blood
vessels and submucosal glands of the bronchus and
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antagonizes parasympathetic action by noradrenaline (24).
Non-adrenergic non-cholinergic parasympathetic nerves may
mediate bronchiectasis through vasoactive intestinal peptides
and nitric oxide (25).

Neuro-Immune Regulation in Innate
Immune Cells
Like a guard, dendritic cells (DCs) are the first to sound the alarm
when allergens invade. Allergen capture by antigen-presenting
cells such as DC cells is the beginning of allergic asthma (7, 8).
Nervous system regulates DCs by neuropeptides. Calcitonin
gene-related peptide (CGRP) is a neuropeptide secreted by
pulmonary neuroendocrine cells (PNECs) mainly in lung. It
inhibits maturation of DCs by CGRP receptors expressed in DCs
themselves, reducing the activation and proliferation of antigen-
specific T cells (Figure 1). In mouse model of ovalbumin (OVA)
induced asthma, CGRP-pretreated DCs alleviate inflammation
of allergic asthma with reduced eosinophil numbers in
bronchoalveolar lavage fluid (26). Interestingly, the nerve cells
can also be a whistleblower to allergens thus giving instructions
to DCs. A study using skin allergen exposure model found that
allergens can directly activate transient receptor potential
vanilloid 1 positive sensory neurons in skin, causing itch and
pain behaviors. Activated neurons release neuropeptides such as
substance P, which can induce the migration of CD301b+ DCs
into the draining lymph nodes, where the differentiation of Th2
cells is initiated (27). Whether the nervous system is also the first
responder of allergens during asthma, thereby triggering the
accumulation of dendritic cells and subsequent immune
responses needs further exploration. If so, inhibition of
sensitization by the allergen to sensory nerve fibers could
potentially reduce the activation of pulmonary inflammation
during asthma. Besides, antigens can also lead to the variation of
innervation, regulating inflammatory infiltration in tissues in an
age-related manner. In neonatal mice, exposure to antigens could
elevate neurotrophin 4 (NT4) levels of ASMs thus increase ASMs
innervation through NT4/TrkB signaling. As a result, persistent
AHR appears in adulthood (28) (Figure 1). Therefore, in
addition to the familiar antigen-presentation process, the
interaction between the nervous system and antigens might be
more important during the initial phase of inflammation.

In asthma, mast cells accumulate within or close to epithelium
and smooth muscle under the stimulation of allergen (29). Mast cells
could mediate acute inflammatory response of asthma by secreting a
large number of pro-inflammatory and pro-airway constrictor
mediators (29–32). Mast cell is now recognized to be involved in
nerve regulation during the development of asthma—with
muscarinic M3 receptors on its surface (33). Bronchial stimulation
test by methacholine provocations is a classic method used for
clinical diagnosis of asthma. Mast cells may play the key role in this
response. Under the stimulation of methacholine, mast cells release
5-hydroxytryptamine (5-HT), interact with 5-HT2 receptors in
parasympathetic nerves, thus release ACh (Figure 1). ACh, an
endogenous neurotransmitter, enhances bronchoconstriction and
AHR in house dust mite induced experimental asthma (33).
Therefore, mast cells and parasympathetic neurons cooperate to
June 2022 | Volume 13 | Article 894047
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form a vicious circle that amplifies the bronchial constriction of
choline. Asthma gets worse as the result. Why are mast cells involved
in parasympathetic regulation of ASMs? Why the parasympathetic
nerve manipulates mast cells to enhance its control on ASMs? Is it
the result of the body’s rapid response to foreign substances? Studies
showed that the interference of mast cells in ASMs occur with the
development of ASMs. Following allergen exposure during early-life,
mast cells in lung can produce amount of NT4, which is essential for
the innervation of ASMs during development (34), causing long-
term airway dysfunction. Mast cells can also produce
transforming growth factor b (TGF-b) to induce b2-adrenergic
receptor (b2-AR) phosphorylation in ASMs, thereby reducing the
airway dilation effect of b2-AR agonists (35) (Figure 1). Therefore,
during the occurrence of allergic asthma, mast cells are activated by
immunity and affect ASMs under nerve regulation, resulting in
persistent airway contraction and AHR. Obviously, mast cells are
closely related to the nervous system. Mast cells seem to control the
distribution and function of nerves. Besides inflammatory factors,
are mast cells also regulated by neurotransmitters? After all, signals
travel much faster in nerves. More research is expected.

Eosinophil is accepted as an important kind of effector cells in
the development of allergic asthma. Extensive eosinophil
infiltration around the airway is considered a hallmark of
allergic asthma (36–38). However, growing evidence suggests
that eosinophils are inextricably linked to the nervous system
during the development of asthma. Tropomyosin receptor kinase
Frontiers in Immunology | www.frontiersin.org 3
A is a high affinity receptor for nerve growth factor (NGF). In a
tropomyosin receptor kinase A-knock-in mouse model,
eosinophils are found to migrate to airway during
inflammation via eotaxin-1 (39). Moreover, eosinophils are
closely related to nerve fibers in asthma (40, 41). Under the
action of VLA-4 and CD11b, eosinophils adhere to VCAM-1 and
ICAM-1 on parasympathetic fibers (41) (Figure 1). It was found
that in guinea pigs (42) and monkeys (43) during allergy,
eosinophil binding to VCAM-1 or ICAM-1 is important in
airway hyperreactivity. Eosinophils are then activated and
release major basic protein (MBP), which is an antagonist of
M2 muscarinic receptor in human, thus enhancing
parasympathetic mediated bronchoconstriction (40) (Figure 1).
Besides, airway and peripheral blood eosinophils are associated
with increased airway innervation in asthma patients.
Eosinophils increase airway sensory innervation in mice and
humans, which is remarkable in moderate persistent asthma,
thus leading to AHR (44). Strikingly, a novel study suggests that
eosinophils play a much more interesting role in neuro-immune
regulation than we previously have known. Eosinophil
extracellular traps (EETs) are web-like DNA traps generated
from eosinophils (Figure 1). In asthma tissues from human and
mice, PNECs are surrounded by EETs and activated via the
CCDC25–ILK–PKCa–CRTC1 pathway (45). It appears that
PNECs are one type of the target cells of eosinophils, but
previous studies have shown that eosinophils are influenced by
FIGURE 1 | Neuro-immune interactions in inflammation and airway remodeling of allergic asthma. Eosinophils migrate to airway during inflammation via eotaxin-1. They
release EETs surrounding and activating PNECs. Under the action of VLA-4 and CD11b, eosinophils adhere to VCAM-1 and ICAM-1 on parasympathetic fibers.
Eosinophils are then activated and release MBP, which is an antagonist of M2 muscarinic receptor, thus enhancing parasympathetic mediated bronchoconstriction.
Besides, eosinophils increase airway innervation. Under the stimulation of methacholine, mast cells release 5-HT, interacting with 5-HT2 receptors in parasympathetic
nerves, thus release ACh (neuronal ACh), enhancing bronchoconstriction. Mast cells also produce NT4 following allergen exposure during early-life, increasing ASMs
innervation through NT4/TrkB signaling, causing long-term airway dysfunction. Mast cells also produce TGF-b to induce b2-AR phosphorylation in ASMs, thereby causing
b2-AR agonists resistance. Neuropeptides generate form neurons and neuroendocrine cells such as NMU and VIP activate ILC2s. CGRP generated mainly from PNECs
inhibits maturation of DCs, it may have bidirectional effects on ILC2s. Besides neuronal ACh, non-neuronal ACh released from epithelia cells and macrophages mainly
acted in small airways. ACh activate muscarinic 3 acetylcholine receptor on ASMs and fibroblast cells, causing airway contraction and airway remodeling. NGF released
from neurons, epithelial cells, ASMs and other immune cells acts on fibroblasts leading to fibrosis. NGF can also activate Th2 cells and promote the differentiation of B
cells into plasma cells. EETS, Eosinophil extracellular traps; PNEC, pulmonary neuroendocrine cell; MBP, major basic protein; 5-HT, 5-hydroxytryptamine; ACh,
acetylcholine; NT4, neurotrophin 4; ASMs, airway smooth muscle cells; NGF, nerve growth factor.
June 2022 | Volume 13 | Article 894047
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cells such as PNECs (46). Such interactive network regulation is
not unusual for sophisticated organisms like mammals, and
suggests that we need to take a dialectical view of disease.

ILC2s are important players in both neural and immune
regulation. They play a vital role in asthma by releasing type 2
cytokines. Besides respond to alarmins IL-25, IL-33 and TSLP
which are released by epithelium, ILC2s could also be regulated
by other stimuli. ILC2s are bidirectional regulated by the nervous
system (Figure 1). In vitro, Nmur1 is highly expressed in ILC2s
purified from mice, and neuropeptides neuromedin U (NMU)
activate ILC2s by interacting with NMUR (18, 47, 48). In house
dust induced airway inflammation model, NUM amplifies
allergic inflammation with the combination of IL-25 (18).
Vasoactive intestinal peptide (VIP) is another neuropeptide
that belongs to non-adrenergic, non-cholinergic (NANC)
system. VIP is one of the most potent endogenous
bronchodilators and is proposed to have anti-inflammatory
effects (49). However, recent study find it expressed at high
levels in nodose ganglion neurons in the lung and has a positive
stimulating effect on ILC2. Under the stimulation of IL-5 and
OVA, the generation of VIP increase in nodose ganglion neurons
both in vitro and in vivo. VIP may promote ILC2s activation
partly by VIP-VPAC2 axis thus amplify the airway inflammatory
(50). ILC2s are found resided in proximity to PNECs in naïve
mice, and when cultured with CGRP and IL-33, ILC2s are
activated with increased IL-5 production (46). However,
another study analyzed single-cell RNA-seq atlas of lung ILCs
and found that ILC2s express both CGRP and its encoding genes,
and endogenous CGRP derived from neurons and
neuroendocrine cells could negatively regulate IL-33 or IL-25
driven pulmonary ILC2s response, inhibit the production of
ILC2-derived type 2 cytokines, thus reduce tissue damage under
certain conditions (19). In a study of Nippostrongylus
brasiliensis infection mouse model also showed that a subset of
ILC2s in lung express CGRP receptor components, and CGRP
limits ILC2s response and worm clearance (51). This suggests the
complexity of CGRP function and ILC2s microenvironment in
different disease models. Many neuro-derived factors can inhibit
type 2 immune responses mediated by ILC2s. b2-AR is an
important member of the adrenergic nervous system. b2-AR
gene is detected in murine and human ILC2s. In N. brasiliensis
and Alternaria alternata induced murine lung inflammation
models, ILC-deficient mice exhibit increased levels of ILC2s in
the lung after infection, which could be inhibited by b2-AR
agonist treatment (52). b2-AR agonist is an important class of
medicine in the treatment of asthma. It can reduce bronchial
constriction by targeting b2-AR on ASMs. Whether b2-AR
signaling also alleviate asthma symptoms by dampening ILC2
responses needs further study. a7-nicotinic acetylcholine
receptor (a7nAChR) is thought to have anti-inflammatory
effect in inflammatory diseases (53). a7nAChR is found
expressed on murine ILC2s and a7nAChR agonist inhibited
ILC2s function with decreased IL-5 and IL-13 production in
vitro. By giving intranasal recombinant mouse IL-33 to Rag2-
deficient mice (devoid of T and B cells), ILC2s are induced and
a7nAChR agonist treatment could ameliorate ILC2s-mediated
Frontiers in Immunology | www.frontiersin.org 4
AHR by decreasing the expression of GATA-3, a key
transcription factor of ILC2s (54). In conclusion, ILC2s express
a variety of neuropeptide receptors. As the innate immune cells
in the lung, ILC2s become the pivot of lung neuro-
immune regulation.

We know that there are other types of innate immune cells,
like macrophages, basophils and neutrophils. A special group of
macrophages have been found near the large bronchi and airway
nerves, named nerve-and airway-associated macrophages (55).
This kind of macrophages can activate neurons to produce
colony stimulating factor 1 (CSF1) by producing bone
morphogenic protein 2, and CSF1 is the necessary signal to
maintain its survival. So, nerve fibers provide nutrients for the
survival of macrophages. But researches on their relationship
with nervous system is still insufficient.

Neuro-Immune Regulation in
Adaptive Immunocytes
As we mentioned above, large numbers of Th2 cells is a hallmark
of Type 2-high asthma. Th2 cells, induced and activated in
lymph nodes by DCs in an antigen specific manner, produce
large amounts of type 2 cytokines thus activate further immune
cascades. Stimulated by Th2 cells, B cells mature into plasma cells
and secrete IgE in response to cytokines IL-4 and IL-13 (56). IgE
interacts with cells that have receptors FcϵRI and CD23, such as
mast cells, basophils, DCs and ASMs, causing acute allergic
response and AHR (3, 57).

Differentiation of T cells into Th2 cells is a landmark in the
development of allergic asthma, and the subsequent production
of large amounts of type 2 cytokines cause persistent
inflammatory changes. These are also important molecular
indicators for determining asthma severity and evaluating the
effectiveness of interventions in various studies. T cells are
certainly an important battleground for the nervous system to
participate in immune regulation. As a transient receptor
potential ankyrin channel, transient receptor potential ankyrin
1 (TRPA1) is widely expressed in sensory neurons. It can be
triggered by wide variety of stimuli and release amounts of
inflammatory neuropeptides and neurotransmitters, facilitating
the communication between the nervous system and the
immune system (58). Furthermore, adaptive immune cells may
directly participate in the battlefield of neuroimmune response
through TRPA1. The expression of TRPA1 is increased in lung
tissues and CD4+ T cells in an OVA-induced mouse model of
asthma, accompanied with the development and exacerbation of
asthma (59). It provides a complement to non-neural sources
of TRPA1. As we have discussed before, the neurotransmitter
VIP regulates the immune system by acting on its receptor
VPAC2. With the help of VPAC2 expressed on T cells, VIP
promotes the differentiation of CD4+ T cells into Th2 cells and
increase the production of IL-5 and IL-13 correspondingly (50).
NGF has been suggested to play an important role in neuro-
immune regulation in airway inflammation by overwhelming
studies (60–62). The aggravating role of NGF in lung
inflammation can be explained partly by regulating T and B
cells. NGF exacerbates inflammation and airway remodeling by
June 2022 | Volume 13 | Article 894047
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enhancing Th2 in OVA sensitized asthma in rat model (63).
Suppression of NGF could reduce Th2 immune response,
decrease inflammatory infiltration and airway response in
murine asthma model (64). The above effects in lung
inflammation resulting from inhibition of NGF is also
observed in mice infected with respiratory syncytial virus
(RSV) (65). And RSV infection in infants is considered a risk
factor for the development of asthma (66, 67). It seems that NGF
is a broad and powerful molecule involved in neuroimmune
inflammation. It is worth noting that the regulation of adaptive
immunity by the nervous system may partly explain the higher
incidence of allergic asthma in children. It is found that during
postnatal development in mice and humans, sympathetic nerves
in the lung in mice and humans undergo a transition from
dopaminergic type to adrenergic type. In this process, dopamine
is bound to a specific dopamine receptor, DRD4, then IL-2-
STAT5 signaling is upregulated and histone trimethylation is
induced at Th2 gene loci, as a result, differentiation of CD4+ T
cell to Th2 cell is promoted (68). Thus, the dopamine-DRD4
pathway augments Th2 inflammation in the lung of young mice
in allergen exposure models, which is not so evident in the lungs
of adult mice dominated by the adrenergic type.

NGF can also affect the function of plasma cells in the
development of asthma. In a mouse model of OVA induced
allergic asthma, plasma cells from airways and spleen express
different patterns of neurotrophins receptors, and TrkA is only
expressed on pulmonary plasma cells. In vitro, NGF promotes
survival of pulmonary plasma cells by increasing transcription
factors in plasma cells (X-box binding protein 1 and NF-kB
subunit RelA) responsible for production of immunoglobulins.
Consistently, anti-NGF treatment reduce the number of
pulmonary plasma cells and serum IgE (69). B cell activation and
subsequent production of large amounts of antigen-specific IgE are
known to be characteristic of allergic asthma. However, studies on
neural regulation on B cells or plasma cells in asthma are handful
and years in advance. Interestingly and excitingly, FcϵR1, a high-
affinity IgE receptor, is found expressed on vagal nociceptor neurons
in lung in an OVA sensitized mouse model. It means that this kind
of neurons can sense invading allergens directly, inducing allergic
inflammation (70). This finding is an important addition to the
understanding of neuro-immune regulation in the development of
asthma, and more research is expected.
NEURO-IMMUNE REGULATION
IN AIRWAY REMODELING OF
ALLERGIC ASTHMA

Airway remodeling, the ultimate pathological change in the
development of many pulmonary diseases, is one of the most
characteristic pathological features of persistent asthma and
main reason for hospital care (3, 71). ASMs and fibroblasts
play important roles in airway remodeling, and they are closely
related to the nervous system.

ASMs express receptors for IgE and respond to IgE directly,
causing airway obstruction in severe asthma (3, 72). ASMs is the
Frontiers in Immunology | www.frontiersin.org 5
mainkindof effector cell ofAHRandairway remodeling, especially in
small airways (73). ASMs becomes innervated by parasympathetic
fibers since embryogenesis, and its development partly rely on ACh
secreted from parasympathetic nerves (74). In asthma, the airway
tone is increased mainly because of ASMs contraction, induced by
ACh (Figure 1). ACh is derived from two ways——neuronal (the
classic) and non-neuronal way. The former is released from nerves
like vagus and parasympathetic nerves, the latter comes from
epithelial cells and macrophages, which is the main source in small
airways (75). ACh activated muscarinic 3 acetylcholine receptor on
ASMs and fibroblast cells, causing airway contraction and airway
remodeling (75, 76). It is unclear whether the ACh from these two
sources is different. Besides, just as we discussed, eosinophils increase
parasympatheticACh release by inhibitingM2 receptor function.An
increase in airway eosinophils specifically enhances bronchial
constriction in mice, independent of changes in muscarinic M3
receptors or 5-HT receptors in ASMs (77). Apparently, the body
considers neuromodulation to be an efficient and economical way.
Evenwithout the involvementofnervefibers, various cells of thebody
communicate with each other through neurotransmitters. During
evolution for over tens of millions of years, human beings and other
mammals have developed such elaborate structures. Making full use
of the intrinsic transmitters and receptors not only enables us to
respond quickly to the environment, but also is more cost-effective
——farmore efficient and economic than evolving one ormore extra
regulatory systems.

Excessive collagen deposition and subepithelial fibrosis is
another striking feature of airway remodeling (78–81). Almost all
these mechanisms are associated with the activation of fibroblasts
and its trans-differentiation into myofibroblasts (82, 83). TGF-b1 is
identified as one of the important factors in this process (84).
However, more and more researches reveal that neural regulation
also plays a vital role (Figure 1). Previous studies have shown that
NGF was highly increased during allergic asthma, especially in
chronic phase (85). And NGF induced the production of type III
collagen in fibroblasts by activating p38 MAPK in a TGF-b1
independent way, thus promoting fibrosis (85). Interestingly,
activated airway epithelium is a major source of NGF in allergic
airway inflammation (86). AndNGF can also be produced by ASMs
and infiltrated immune cells including mast cells, T cells,
eosinophils (87–90). It seems that when a man is going down-hill,
everyone will give him a push.

Besides, macrophage may promote the development of
pulmonary fibrosis (91) by affecting nerves in the lung. In a
bleomycin inhaled mouse model, macrophage-derived neuronal
guidance proteins such as netrin-1 is involved in pulmonary
adrenergic nerve remodeling and promotes pulmonary fibrosis (92).
REGULATION OF PNECS IN
ALLERGIC ASTHMA

PNECs are a rare and evolutionarily conserved type of lung
epithelial cells, accounting for about 0.5% of airway epithelial cells
(93), 0.01% of total lung cells (94). They were firstly described in
1954 (95). They scatter among lung epithelial cells, or exist in
June 2022 | Volume 13 | Article 894047
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clusters, forming neuroepithelium bodies (NEBs) consisting of 5-20
PNEC cells (96–98). PNECs are located along the airway epithelium
in the trachea and lung in humans and rodents, while NEBs are
mainly distributed at the airway branch points (96), where
inhalation particles gathered (99). PNECs originate from the
endoderm or basal cells (100–102). PNECs are the first to
differentiate in the lung (96). The differentiated PNECs gradually
move towards the bronchial bifurcation to form NEBs. Nerve fibers
then enter the NEBs to innervate them, and innate lung immune
cells such as ILC2 settle around the NEBs (96). Although the
population of PNECs is very limited, their function can be
significant. PNECs have both neural and endocrine properties.
They are the only innervated cells in the lung epithelium and the
cytoplasm of PNECs is rich in core vesicles containing many kinds
of substances like amines, amine metabolizing enzymes, purines,
neuroendocrine markers, functional proteins and so on (103). In
vitro, PNECs release their vesicle contents under the stimulation of
oxygen, mechanical stretching and chemical spines, thereby
inducing corresponding pathophysiological changes (104).
Innervation of PNECs appear in rabbit embryos on the 16th day
(105). The specific form of PNECs and nerve interaction varies in
different species (96), which is still not well understood. Present
study shows that the nerve innervating PNECs may be sensory
nerve, and its cell body is located in the vagal ganglion or dorsal root
ganglia (106). PNECs are considered as the most important “sense”
cells in the airways. They can sense oxygen changes in the airways
(107). The number of PNECs increases in hypoxic environment,
and plays a protective role in the surrounding airway epithelial cells
(100). Some members of the olfactory receptor family are found
expressed in human PNECs, thus PNECs can sense a variety of
Frontiers in Immunology | www.frontiersin.org 6
chemical stimuli (108). Besides, they can also sense mechanical
stimuli (109, 110). When the airway epithelium is damaged, PNECs
act as progenitor cells to repair the damaged epithelium (97, 111,
112). PNECs are not the key cells to maintain lung development
(46), but are necessary in many lung diseases including asthma (46,
113–115).

PNECs may serve as the center of neuro-immune regulation
in the asthmatic lung (116). PNECs activate ILC2s by secreting
neuropeptides thus amplify the allergen stimulation of immune
cells in asthma (46). PNECs are the main source of gamma-
aminobutyric acid (GABA) in the lung. GABA secreted by
PNECs can promote the transformation of club cells around
PNECs into goblet cells. In addition, GABA leads to excess
mucus secretion in airway goblet cells by acting on GABA type a
and GABA type b receptors (117) and worse symptoms in
asthma. Adjacent to ILC2s, PNECs can directly stimulate
ILC2s to produce IL5, IL-13 and other cytokines by secreting
CGRP, and then trigger Th2 response (46) (Figure 2).
CONCLUSION

The occurrence of asthma involves multi-factors such as heredity,
environment and so on. Neuro-immune regulation is ubiquitous in
the development of asthma and airway remodeling. The link
between the nervous system and the immune system is intricate
and interlocking. This review provides a new view for the study of
the pathogenesis of allergic asthma and the search for effective
treatment from the perspective of nerve regulation on immunity.
The nervous system is closely related to the various cells of the
FIGURE 2 | Effects of PNEC cells on surrounding cells in allergic asthma. In murine asthma model, PNECs secret CGRP to active ILC2s and further promote the
differentiation of Th2 cells. Type 2 cytokines such as IL-5 and IL-13 secreted by ILC2s act on eosinophils and goblet cells. Eosinophils in turn activate PNECs by
releasing EETs. Besides, PNECs secret GABA to promote transformation of club cells near PNECs into goblet cells. GABA leads to excess mucus secretion in
airway goblet cells by acting on GABA type a and GABA type b receptors, thus worse symptoms in asthma. EETS, Eosinophil extracellular traps; PNECs, pulmonary
neuroendocrine cells; GABA, gamma-aminobutyric acid; ASMs, airway smooth muscle cells.
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immune system, but it is not clear whether neuro-immune
regulation is the cause or the result for the development of
asthma. With the discovery of PNECs, the function of neuro-
regulation in the physiological and pathological aspects in asthma
has been paid more attention gradually. However, related
investigations are still very handful. There are still many questions
to be answered. For example, most of the signaling pathways and
key molecules that mediate neuro-immune regulation are not yet
clear, and the function of some cells and molecules is controversial.

With the novel perspective of neuro-immune regulation, it is
our hope to screen out the high-risk population of asthma in
early childhood, help find a simpler and more specific
monitoring method of asthma treatment, as well as develop
new asthma treatments. While for now, more research is
expected and this is definitely a field worth further exploration.
Frontiers in Immunology | www.frontiersin.org 7
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