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Abstract: Medical health systems continue to be challenged due to newly emerging COVID-19,
and there is an urgent need for alternative approaches for treatment. An increasing number of
clinical observations indicate cytokine storms to be associated with COVID-19 severity and also to
be a significant cause of death among COVID-19 patients. Cytokine storm involves the extensive
proliferative and hyperactive activity of T and macrophage cells and the overproduction of pro-
inflammatory cytokines. Stem cells are the type of cell having self-renewal properties and giving rise
to differentiated cells. Currently, stem cell therapy is an exciting and promising therapeutic approach
that can treat several diseases that were considered incurable in the past. It may be possible to develop
novel methods to treat various diseases by identifying stem cells’ growth and differentiation factors.
Treatment with mesenchymal stem cells (MSCs) in medicine is anticipated to be highly effective. The
present review article is organized to put forward the positive arguments and implications in support
of mesenchymal stem cell therapy as an alternative therapy to cytokine storms, to combat COVID-19.
Using the immunomodulatory potential of the MSCs, it is possible to fight against COVID-19 and
counterbalance the cytokine storm.

Keywords: COVID-19; stem cell therapy; cytokine storm; mesenchymal stem cells; inflammation

1. Introduction

COVID-19, caused by the SARS-CoV2 virus, is a perilous disease that threatens global
public health. “COVID-19”stands for Coronavirus Disease of 2019 and was named by the
WHO on 11 February 2020 [1]. SARS-CoV-2, the causative agent of this disease, is an en-
veloped, positive, single-stranded RNA virus belonging to the beta-coronaviruses subfamily.

The spread of coronavirus occurs mainly through the droplets generated through the
sneezing and coughing of the infected person [2]. Incubation period for this virus after
transmission is from 2 to 14 days. The SARS-CoV-2 virus resides in the lower respiratory
tract and causes pneumonia in humans, eventually leading to fatality from chronic hyper-
inflammation and respiratory distress [3]. It attaches with the help of spike proteins present
on its membrane, and mRNA coding for this spike protein induces mutations, making
it antigenically favorable. The lipid nanoparticles protect the non-replicating RNA from
degradation and allow it to be delivered into host cells. Once inside the host cell, the mRNA
is translated into the SARS-CoV-2 spike protein, which is generated on the cell’s surface [4].
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SARS-CoV-2 is a beta coronavirus belongs to the family coronaviridae and is mainly
responsible for COVID-19. However, some of their mutants that arise mostly due to
mutations are also responsible for causing COVID-19. SARS-CoV-2 family of coronavirus is
closely related to the variant of coronavirus found in the population of bats and SARS-CoV.
Two more variants named RaTG13 and RmYN02 show approximately 96.2% and 93.3%
sequence homology, respectively, with the SARS-CoV-2 virus family and these variants are
also found in the bat population [5,6]. Some of the variants such as B.1.526, B.1.525, and
P.2 arise due to a common mutation D614G in which aspartic acid is replaced by glycine
at codon 614, changing its spike protein. These variants have properties to spread faster
than many other variants and have many different properties than original SARS-CoV-2 [7].
Despite this, some more variants such as 501Y.V1 (B.1.1.7) and 501Y.V2 (B.1.351) emerged in
UK and South Africa, respectively. These variants had a mutation at the receptor-binding
domain of the spike protein that helped in the higher spread of this variant. The 501Y.V2
variant arose due to additional mutations E484K and K417N of the spike protein in the
501Y.V [8–10]. In Southern California, a new variant named CAL.20C was reported to
derive from 20C cluster and had a mutation in ORF1a: I4205V, ORF1b: D1183Y, spike
protein: S13I, W152C, and L452R [11].

In COVID-19 disease, acute respiratory distress syndrome (ARDS) is the leading cause
of death. Its main feature is the cytokine storm, an uncontrolled inflammatory response
triggered by immune cells releasing cytokines and chemokines [12,13]. After infection with
COVID-19, lung epithelial and endothelial cell apoptosis and vascular leakage, alveolar
edema, and hypoxia result from the abnormal release of pro-inflammatory factors. ARDS
is caused by an uncontrolled release of pro-inflammatory factors, such as IL-6, IL-8, and
IL-1. In most severe patients of COVID-19, improper function of the immune system
results in enhanced production of cytokines (cytokine storm) such as IL-2, IL-6, colony-
stimulating factor, and TNFs, ultimately leading to death [13]. Furthermore, it is also
caused by the release of chemokines and reactive oxygen species, such as CCL-2, CCL-5,
IP-10, and CCL-3 [14]. Entry of the coronavirus in host cells occurs from receptor-mediated
endocytosis through the numb-associated kinases (NKA). The capability of coronavirus
to cause the disease resides in the spike glycoproteins, which binds to the angiotensin-
converting enzyme-2 (ACE-2) receptor present on the alveolar epithelial cells, endothelial
cells, and cardiac and renal cells. After binding with the receptor, the virus enters the cell’s
cytoplasm to release its genetic material. Genetic material (RNA) replicates and gives rise
to new virus progeny, resulting in the spread of the virus to the other cells due to cell
burst [13,15].

Even though most COVID-19 patients are asymptomatic, some develop pneumonia,
and about 10% require ventilation. As the most common symptoms, patients can have fever,
cough, breathing difficulty, headaches, muscle and bone pain, hemoptysis, diarrhea, and
nausea [3]. In 10–20% of the total infection cases of SARS-CoV2 virus, it may cause intersti-
tial pneumonia and acute respiratory distress syndrome (ARDS), especially in older age
people [16]. For the entry in lungs after infection, SARS-CoV-2 virus recognizes angiotensin
I converting enzyme 2 receptor with the help of its spike proteins. After recognition, its
spike protein primed by cellular transmembrane protease, serine 2 (TMPRSS2) leads to
its entry and further spread to other organs [17–19]. SARS-CoV2 virus does not remain
confined to the respiratory tract but can invade the CNS and induce many neurological
diseases, causing severe illness. Moreover, SARS-CoV2 can also invade many organs simul-
taneously, resulting in multi-organ failure. Mesenchymal stem cells (MSCs) are emerging as
therapy against SARS-CoV2 due to their distinctive ability to improve immune functions to
combat multiple and severe disease conditions. MSCs show immunomodulatory effects by
the secretion of a variety of paracrine factors. These paracrine factors interact with immune
cells that lead to the immunomodulation [20]. In a study, it was reported that the infusion
of umbilical cord-derived stem cells into patients having ARDS and cytokine storm resulted
in better functional outcomes [21]. In another study, MSCs were implanted in a patient
with severe brain and multiple organ infection along with developing cardiac arrest by
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COVID-19. It was reported that MSCs incorporation had a healing effect on infected organs
and severe infection [22].

2. Cytokines

Small polypeptides of glycoproteins known as cytokines elicit diverse responses
in the body by interacting with their receptors via autocrine, paracrine, or endocrine
signaling. Cytokines can stimulate cellular proliferation, differentiate cell communication,
and regulate immune responses based on the target cell type. The receptors bind to
cytokines and subsequently alter gene transcription by triggering intracellular signaling.
Cytokines can be growth factors, chemokines, or interleukins formed by superfamilies
having familiar and different gene structures. They are pleiotropic, and different cytokines
can have the same effects [23,24]. One of the largest classes of cytokines is chemokines
accounting for nearly 44 members that play various roles in regulating the immune system,
such as recruitment and trafficking of leukocytes. Any dysregulation in the trafficking
mechanism can lead to hyperinflammation [25]. Table 1 shows various cytokines and their
secretary cells along with their mode of action.

Table 1. Cytokines, their secretary cells, and mode of action.

Family Cytokine, Pro-Inflammatory
Factor Secreted by

Types of Cells on
Which It
Acts/Function

Mode of
Action/Mechanism References

Cytokine GSCF (Granulocyte
Colony-Stimulating Factor)

Endothelium,
macrophages

Mouse
lymphoid-biased

Anti-apoptotic,
angiogenic,
neurogenesis and
functions.

[26–29]

Cytokine IP10
Monocytes, T-cells,
endothelial cells, and
keratinocytes

It recruits immune cells
to fight at inflammatory
sites

To stimulate apoptosis,
chemotaxis, cell
growth, and angiostasis

[26,30–32]

Chemokines MCP1 (Monocyte
Chemoattractant Protein 1)

Microglial cells,
mesangial, epithelial,
smooth muscle,
astrocytic, monocytic,
and endothelial

Attracts T-
lymphocytes,
monocytes, and natural
killer cells

It infiltrates, facilitates
the migration of
inflammatory cells and
other cytokines
towards the site of
Inflammation.

[26,33–35]

Chemokines MIP1A (Macrophage
Inflammatory Protein 1 α)

Monocytes and
macrophages

Act upon inflammatory
cells and maintain
impulsive immune
response.

Healing wounded cells
and halting stem cells. [36,37]

Cytokine IL-2 CD4+ T cells

Act against microbial
infection as a natural
impedance. It also
promotes T cells
differentiation into an
effector T cell and then
into memory T cell as
the incident with
antigen.

Ameliorate AICD
(Activation Induced
Cell Death) and
increase the killing
activity of Tc (Cytotoxic
T) cells and NK cells.

[38–40]

Cytokine IL-6 Dendritic cell and
macrophages

Inflamed acute-phase
protein synthesis,
neutrophile in bone
marrow, and help in
the growth of B-cells.

IFN-γ secretion is
affected by IL-6
through CD4 T cells,
i.e., curial interferon
that uplifts, IL-6
triggers CD4 cells to
release IL-4 and
directly affects Th2.

[41–43]

Cytokine IL-7
Stromal cells in
thymus and bone
marrow

It affects mature T-cells
and immature B-cells
and leads to secondary
cytokine release.

It involves
mechanically on
TCR-gamma and
TCR-gamma delta
thymocyte maturation.

[44,45]
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Table 1. Cont.

Family Cytokine, Pro-Inflammatory
Factor Secreted by

Types of Cells on
Which It
Acts/Function

Mode of
Action/Mechanism References

Cytokine,
superfamilyTNF

TNF-α (Tumor
necrosis factor α)

Macrophages/
monocytes

Perform miscellaneous
functions within the
cells during acute
inflammation, and it
activates and
proliferates naïve and
effector T cells.

Diverse signaling
pathways lead to
necrosis or apoptosis.

[46–48]

Chemokine (CXC
Family) IL-8

Mainly by
macrophages
/monocytes and
some other cell types
like epithelial cells,
endothelial cells,
smooth muscle cells,
and airways

It has a direct effect on
immune cells and
polymorphonuclear
cells.

IL-8 is considered a
prognostic and
therapeutic factor for
wound healing.

[49–51]

Eicosanoid
inflammatory
mediators

Leukotriene (LT) Mast cells

Create inflammatory
cascade, effect on
leukocytes, and
stenosis of smooth
muscles.

Their mode of action
depends on the
effective binding with
G-protein-coupled
receptors, and every LT
receptor has an
abnormal expression
pattern and function.

[52–55]

Cytokine IL-1β
Dendritic cell,
activated
macrophages

Pro-inflammatory
cytokine and held in
inflammation,
autoimmune
conditions, and pain.

IL-1β binds to the IL-1
type 1 receptor (IL-1R1),
leads to the illustration
of inflammation, and
has the potency to
induce fever when
delivered exogenously.

[56–58]

Cytokine IL-12 Dendritic cells

IL-12 receptors are
present on T cells and
NK cells, stimulating
TH1 and NK cell
growth while inhibiting
TH2 cell responses.

This molecule produces
interferon (IFN-γ),
encourages the
differentiation of T
helper 1 (TH1) cells,
and provides a link
between innate
defenses and adaptive
defenses.

[59–61]

Cytokine IL-33

Cellular damage area
of bronchial
epithelial cells,
airway, endothelial
cells of high
endothelial venules

Generally, mast cells
become degranulated
when exposed to IL-33,
and the effect also
occurs in basophils and
granulocytes.

It enhances Th2
responses. [62–65]

(TGF-β) family TGF-β

Monocytes/
macrophages,
lymphocytes and
platelets

In addition to
interacting with the
surrounding cells, this
TGF-β acts on smooth
muscle cells, immune
cells, and endothelial
cells.

The condition causes
angiogenesis and
immunosuppression,
which makes cancer
more aggressive.

[66,67]

CC Family
Chemokine
Scavenger Receptor

CXCL-10 Dendritic cell and
macrophages

This protein controls
the differentiation of
naive T cells into T
helper 1 (Th1) cells and
mediates immune cell
migration to the foci.

This CXCL-10
chemokine binds to the
CXCR-3 receptor to
produce its effects in
the cell.

[56,68–70]
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Table 1. Cont.

Family Cytokine, Pro-Inflammatory
Factor Secreted by

Types of Cells on
Which It
Acts/Function

Mode of
Action/Mechanism References

Signaling
proteins IF

Natural killer (NK)
cells, activated T cells,
dendritic cells and
macrophages.

Several cells, including
monocytes,
macrophages,
T-lymphocytes, glia,
and neurons, have IFN
receptors.

When IFN-γ is
produced, its effects are
antiviral, antimicrobial,
antitumor, and
immunomodulatory.
IFN proteins beta,
alpha, and gamma are
what produce those
effects.

[56,71–73]

Cytokine IL-18 Monocyte/macrophage

IL-18 activates th1 cells,
and CD8+ T and
natural killer (NK) cells
are enhanced by it.

It increases the
cytotoxic activity of
CD8+ T cells and NK
cells by upregulation of
FasL.

[74,75]

3. COVID-19 and the Cytokine Storm

Hyperactive host immune responses result in an excessive inflammatory response to
the SARS-CoV-2 virus, popularly known as the “cytokine storm”. As far as we know, there
is no universally accepted definition for cytokine storms or cytokine release syndromes.
A study found that an auto-amplifying cascade of cytokines triggered by an immune
system unregulated by different triggers such as infection, malignancy, and arthritis, can
be a “cytokine storm” [76]. Similarly, another study suggested that cytokine storms are
caused by systemic inflammation caused by infections and drugs and often result in exces-
sive activation of the immune system and the release of pro-inflammatory cytokines [77].
A cytokine storm occurs when cytokines are released to be harmful to host cells. Dysreg-
ulated cytokine production damages healthy cells of the lungs, further spreading to the
heart, kidney, vessels, and other organs. Moreover, cytokine storm may also depend on
entry and binding of SARS-CoV-2 spike protein with membrane serine proteases of the
host [78]. Entry of SARS-CoV-2 into respiratory epithelial cells induces immune cells along
with the production of inflammatory cytokines due to the weak response of interferon
(IFN).Downregulation of some immune system-associated signaling pathways regulate
the immune response of pathogenic Th1 cells and CD14+CD16+monocytes that results
in infiltration of macrophages and neutrophils in lung tissues, leading to the cytokine
storm [79].

Cytokine storms can be readily identified in disorders with elevated cytokine levels.
A complex question is whether certain cytokines help control infections while at the same
time harming the host. This is mostly due to the fact that some cytokines help control
infections while being harmful at the same time [80]. Cytokine storm is a broad term
including characterization of immune system dysfunction by symptoms of inflammation
leading to multi-organs failure in the case of inadequate treatment. Cytokine concentration
may vary according to the cause and treatments against it. C-reactive proteins (CRPs) are
considered as the diagnostic marker for inflammation. These CRPs are non-specific, and
their elevated level indicates the severity of the disease [81,82]. In patients with severe
COVID-19, C-reactive protein (CRP) levels in the blood are markedly elevated [83]. CRP
is synthesized and released by the liver in response to the stimulation of interleukin-6.
Researchers have identified the presence of both pro-and anti-inflammatory CRP, which
can be used for monitoring the extent of tissue damage associated with the pathogenesis of
COVID-19 [84].In a study by McElvaney et al., it was found that severe COVID-19 patients
show higher levels of IL-1β, IL-6, and sTNFR1, but lower levels of IL-10 than the patient
with mildly infected COVID-19 patients [85]. Levels of IL-6 and TNF-α in the serum can be
considered for the COVID-19 patient treatment and management for the clinical trials, to
guide resource allocation and therapeutic options [86].
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Various immune cells such as macrophages and mast cells are responsible for the
secretion of pro-inflammatory cytokines IL-1, TNF-α, IL-6, GSCF, IL-7, MIP1A, IL-2, and
IP10, and chemokines such as CCL-2, CCL-3, CCL-5, CXCL-8, CXCL-9, and CXCL-10,
leading to the innate immune response in the body [87,88]. The more-than-usual secretion of
these pro-inflammatory cytokines attracts T cells, neutrophils, and macrophages, including
many more immune cells to the site of infection from the circulation. These immune cells,
in bulk, destabilize endothelial cell-to-cell interaction, cause damage to the capillaries and
alveoli, and damage the vascular barriers, resulting in severe lung injury [89]. Cytokine
storms develop symptoms according to the increased cytokines. Unregulated secretion of
TNF-α and IFN-γ may result in fever, fatigue, vascular leakage, and lung injury. Another
essential cytokine, IL-6, can cause coagulation leakage, complement system activation, and
cause vascular leakage [90–92]. Adding to the complexity, most mediators involved in
cytokine storms manifest pleiotropic downstream effects, and their biological activities
are often interdependent. There will neither be a linear nor a constant interaction of these
mediators. However, measurements of their quantitative levels are not always indicative of
pathogenicity. Understanding this complex interplay allow us to know the limitations of
targeting single mediators and intervening in the acute inflammatory response [93].

Interferons (IFNs) are the main secretory immune response to provide the defense
against viral infection. IFNs work as the first line of defense against viral infection and
help in viral clearance through the modulation of innate and adoptive immune systems.
In the case of SARS-CoV-2 infection, an elevated level of IFNs can regulate the cytokine
storms by removing the SARS-CoV-2 virus. IFNs regulate various signaling pathways such
as nuclear factor-κB (NF-κB), IFN regulatory factor 3/7 (IRF3/7), and activator protein-1
(AP-1). Activation of these pathways further activates Janus kinase 1 (JAK1)/tyrosine
kinase 2–signal transducer and activator of transcription 1/2 (STAT1/2) pathway. These ac-
tivated pathways promote the formation of STAT1/2/IRF9 complex, resulting in increased
production of IFN-stimulated genes (ISGs) [94,95].

4. Stem Cells and Stem Cell Therapy

The stem cells are believed to be precursors of diverse tissues capable of self-renewal
and provide replacement cells for a broad range of tissue types. The inner cell mass of
the embryonal blastocyst is the primary source of embryonic stem cells. Stem cells can
also be isolated from different sources such as the umbilical cord, fetal liver, adipose
tissues, and bone marrow. Many cytokines are synthesized and secreted by stem cells
that stimulate cell recruitment, angiogenesis, immunomodulation, neuroregeneration, and
extracellular matrix remodeling. In addition to generating various cell types, stem cells can
differentiate into other types of cells, such as endothelial cells, pericytes, myofibroblasts, and
keratinocytes, which may play a role in wound healing [96–99]. Stem cells can essentially be
of three types: embryonic stem cells (ESCs), adult stem cells, and mesenchymal stem cells
(MSCs). Embryonic stem cells can be isolated from the inner cell mass of the early embryo,
and these cells have high regenerative potential. Adult stem cells can be isolated from
various sources such as cord blood, placenta, bone marrow, peripheral blood, adipose tissue,
and menstrual blood. One of the types of adult stem cells, MSCs, is very efficient types of
stem cells, having therapeutic, immunomodulatory, and regenerative properties [100].

Compared to other therapeutic strategies, MSCs are viewed as more attractive since
they are multipotent, have a high proliferation rate, and are free from social or ethical
issues [101]. MSCs have a similar morphology to fibroblasts. Hence, it is difficult to iden-
tify them morphologically. There are, however, cellular markers that can help identify
MSCs [102]. Because of their immune-evasive nature, MSCs release factors that allow them
to remain immune from rejection mechanisms for an extended period, allowing them to
have the desired therapeutic effect [103]. MSCs can give rise to several cells, such as stromal
cells, myoblasts, adipocytes, osteoblasts, endothelial cells, and chondrocytes [104]. MSCs ex-
hibit anti-inflammatory and immunomodulatory benefits by expressing anti-inflammatory
cytokines, inhibiting inflammatory T-cell proliferation, and inhibiting monocyte maturation
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as shown in Figure 1 [105–108]. MSCs are plastic-adherent stromal cells expressing biomark-
ers such as CD1025, CD73, and CD90, and devoid of a few biomarkers, including CD45,
CD11b, CD19, and many more [109]. The properties of human mesenchymal stem cells,
such as the production of paracrine factors VEGF (vascular endothelial growth factor), FGF
(fibroblast growth factor), and HGF (hepatocyte growth factor), which promotes angiogen-
esis, neovascularization, and cell survival, have made them a well-known candidate for
cell-based therapies for many years [110]. Due to the potential use of mesenchymal stem
cells (MSC) in autologous transplantation, these cells are of great clinical interest. MSCs
have been used in several trials, including this one, and many others are undergoing testing.
Recently, reports revealed that 2000 patients were treated with allogeneic or autologous
MSCs for various diseases by autologous or culture-expanded MSCs [111].
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Figure 1. Modulation of immune system by different types of stems cells to prevent cytokine storm.

In recent years, studies have emphasized the paracrine properties of MSC and the
mechanism of release of extracellular vesicles containing mRNAs, regulatory molecules,
bioactive molecules, and the production of regulatory substances overall, rather than
on the direct differentiation and replacement of cells by MSC [112,113]. A new cellular
therapy that uses mesenchymal stem cells from bone marrow is BM-MSCs. However,
clinical implementation of these BM-MSCs still remains challenging. Although the first
generation infusion of BM-MSCs was found to be safe according to meta-analysis, still many
uncertainties exist, such as hemato-compatibility, side effects of large doses, and safety
of adipose tissue and perinatal tissue-derived products [114–119]. Mesenchymal stem
cells can be beneficial for generating many kinds of organs and treating various diseases.
Genomic alterations in these MSCs can improve survival rate, growth factor secretion, and
increased migration [120]. MSCs can modulate the immune system, leading to the varied
responses of immune cells. They can inhibit T-cells’ cytotoxicity and proliferation, resulting
in the inactivation of T-cells [121]. Table 2 shows the stem cells used as a therapy for various
diseases and their mode of action.
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Table 2. Stem cell type, source, and their mechanism of action.

S. No. Stem Cell Type of Cell Isolated from Which
Portion Mode of Action References

1. Mesenchymal Stem
Cell (MSC)

Multipotent stem
cells

Fetal liver, bone marrow,
umbilical cord, menstrual
blood, dental pulp,
adipose tissues, etc.

They perform an endogenous
repair of stem cells and prevent
the excessive release of cytokines
from the immune system.

[122]

2. Hematopoietic Stem
Cells (HSCs)

HSCs are pluripotent
and have ambient
self-renewal
efficiency.

HSCs are predominantly
found in the bone marrow
region, sternum, femur
portion, umbilical cord,
and even in a few
segments of peripheral
blood.

Regulated in two forms of
mechanism. The first mechanism
says they control the G0 phase,
and in another mechanism it is
fate determination, i.e., either
differentiation or self-renew)

[123–127]

3. Epithelial Stem Cells
(ESCs)

ESCs are multipotent
stem cells due to
self-renewal
capability
throughout the life
and/or unipotent
progenitor cells.

They were isolated from
the different layers of skin,
i.e., from ectoderm,
mesoderm, and
endoderm.

In its action, various
cellular-signaling mechanisms
take parts, such as bone
morphogenetic protein, WNT,
and Sonic Hedgehog, which play
a prominent part. These
signaling pathways govern the
conserved mechanisms behind
the self-renewal capability of
adult epithelial structures.

[128,129]

4. Neural Stem Cells
(NSCs)

They are self-renewal
and multipotent stem
cells,

In the adult mammalian
brain, the sub-granular
zone and subventricular
zone have the reservoir of
NSCs.

The formation of new
hippocampal NSCs and its
cellular mechanism taking part
in it, along with a decrease in
neurogenic potential is still
unclear and therapeutic cargoes
exchange in horizontal to host
cell through extracellular vesicles
is also not fully understood.

[130,131]

5. Embryonic Stem
Cells (ESCs)

The ESCs or human
embryonic stem cells
(hESC) possess
tremendous
pluripotent property
and an extraordinary
proliferative and
growth capacity.

These ESCs are isolated
from the mammalian
blastocyst.

The ESCs mechanism of action
depends on transcription factors
associated with four genes viz.,
Sox2, Oct4, Tcf3, and Nanog that
maintain pluripotency.

[132–134]

6. Adult Stem Cells
(ASCs)

These are
multipotent,
undifferentiated cells
that renew
themselves and
preclude them into
specialized cell types.

ASCs can be isolated from
blood, bone marrow, skin,
adipose tissue, and liver.

Due to environmental stimuli,
ASCs release biologically active
compounds that lead to exerting
paracrine action on different
neighboring cells and hence
leading to repair, tissue
protection, regeneration,
self-renewal, and proliferation
taking place.

[135–138]

7. Induced Pluripotent
Stem Cells (iPSCs)

These are (iPSCs)
genetically
engineered from
somatic cells and
pluripotent.

These are isolated from
human adult somatic cells.

The remarkable feature of iPSCs
to differentiate it into required
specialized cell types and this
property provides a source for
innovative cell therapies with
unlimited cell sources.

[139–142]

8. Umbilical
cord-derived MSCs

They are multipotent
stem cells.

Isolated from the human
embryo.

The mechanism of action (MOA)
is still unknown [143]

5. Stem Cell Therapy for COVID-19 and Cytokine Storm

As infection of COVID-19 is increasing globally with its new variants Omicron and
XE, this is high time to find a complete treatment apart from the vaccine to prevent COVID-
19. The XE variant is a combination of BA.1 and BA.2 variant of omicron in which BA.2
is already spreading 10% faster thanBA.1 variant [144]. Many studies are going on to
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explore the role of stem cells in suppressing the cytokine storm during COVID-19, as MSCs
are found to have an efficient immunomodulatory role [100]. Various studies related to
COVID-19 and cytokine storm have demonstrated that cytokine levels vary in COVID
patients according to the severity of the disease. Patients with less coronavirus load
expressed low levels of inflammatory cytokines and enhanced levels of epidermal growth
factor (EGF), platelet-derived growth factor (PDGF), and vascular endothelial growth
factor (VGEF); while patients with a heavy dose of coronavirus expressed a higher level
of pro-inflammatory cytokines [145]. MSCs therapy in the case of stem cell therapies
is an efficient therapy to treat various diseases, and COVID-19 is one of them. MSCs
express various surface markers such as CD-73, CD-90, and CD-105, having the ability
to differentiate into MSCs progeny, which are minimal criteria for defining multipotent
mesenchymal stromal cells [109]. MSCs have many cell surface markers such as CD146 and
CD200, which are unique and non-differentiating in nature. They also possess some matrix
and MSC markers such as CD29, CD44, CD71, CD73, and CD105. These markers give
MSCs immunotolerant and immunomodulant properties in damaged tissues along with
regenerating and rejuvenating properties by exerting their effects on immune cells including
T and B lymphocytes, dendritic cells, and macrophages [146–148]. SARS-inflammatory
Cov-2 response can be used as a primary approach for eliminating the virus. SARS CoV-2
entry results in the release of pro-inflammatory molecules such as interleukin (IL), tumor
necrotic factors alpha (TNF-α), and multiple interferons (IF). These can restore and control
the immune system, which is helpful for cell therapy [149]. Different investigations have
revealed that impairment of mesenchymal stem cells (MSCs) raises the entry of viruses and
their pathogenicity [150]. In addition, MSCs mechanism modulates the immune system;
these cells have the right to regulate the growth and function of immune cells by reducing
the production of TNF-α; MCP1; and anti-inflammatory cytokines such as IL-10 and 12,
which result in reduced differentiation and block dendritic cells by generating inflammation
and activation of different immune cells [151,152]. As shown in Figure 2, a Mesenchymal
stem cell (MSCs) injection in a patient suffering from COVID-19 reduces the secretion of
interleukins and inflammatory factors, which prevent further SARS-CoV-2 infection and
can be used as a viable alternative treatment option [153].
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MSCs have a high proliferation rate and the least social and ethical issues. Due to their
ability to self-renew and to differentiate into multiple cell types, stem cells are attractive
as an option in cell therapy in the clinic. These cells can be easily obtained from various
sources such as fatty tissues, umbilical cord, fetal liver, and bone marrow [101]. Although,
stem cell therapies have made some progress, they still have remained relatively slow due
to ethical and legal restrictions [154]. MSCs might activate the immune system to prevent
the exaggerated release of cytokines, chemokines, and reactive immune cells, resulting in
endogenous repair. In a study, researchers performed 10x RNA sequencing to understand
the mechanism of MSCs action on COVID-19. In MSCs, ISGs (interferon-stimulated genes)
played a significant role in their resistance to viral infections compared to their differentiated
descendants [155]. ISGs prevent viral infection by expressing themselves. MSCs can
inhibit the action of excessively active immune cells by releasing various cytokine and anti-
inflammatory factors including TGF-β and prostaglandin E2 (PGE2) [156]. Moreover, MSCs
can enhance the production of lymphocytes and regulatory dendritic cells to increase their
antiviral characters that can ultimately lead to a decrease in pro-inflammatory cytokines
such as IL-6, IL-8, and TNF-α. These cytokines are the main markers of inflammation and
reactive oxygen species to decrease the oxidative stress and inflammation [157]. MSCs
can also protect the alveolar epithelial cells by reducing inflammation and normalize the
lung functions by modulating pulmonary microenvironment and inhibiting pulmonary
fibrosis [158]. MSCs can stimulate alveolar stem cells to repair and regenerate healthy
lung parenchyma cells [159]. In addition, many secreted factors having pharmacological
effects from MSCs can be used to treat COVID-19. Genetic modification of MSCs to
make them able to secrete bioactive molecules is another approach that can be used to
treat COVID-19 [160]. Moreover, MSCs can inhibit the abnormally activated T-cells and
macrophages, and apart from this, they also can turn them into regulator T-cells and anti-
inflammatory macrophages. MSCs prevent pro-inflammatory cytokines from secreting as
well, thereby reducing cytokine storms [161]. Apart from the immune system modulation,
MSCs hinder the differentiation of monocytes into dendritic cells (DC), resulting in the
downregulation of inflammatory cytokines and upregulation of regulatory cytokines. Leng
and colleagues recently published an investigation of MSCs in COVID-19 patients from
China. Specifically, seven out of ten patients were given intravenous infusions of clinical-
grade allogeneic MSC, while the other three patients received saline as a placebo. Two of
three patients developed ARDS in the placebo-treated group or expired after 14 days, but
rest seven MSC-treated patients recovered. On comparing the MSC-treated group with the
placebo group, there was a noticeable reduction in systemic inflammation with a 10-fold
decrease in CRP levels, a lower TNF-α level, and increased IL-10 levels [17]. Furthermore,
a decrease in serum levels of pro-inflammatory cytokine TNF-α and an increase in anti-
inflammatory cytokine IL-10 in patients with COVID-19 following MSC transplantation
suggests efficient regulation of cytokine storms [162].

6. Challenges in Stem Cell Therapy

The main challenge in stem cell therapy is the isolation and culture of MSCs. The
donor’s age is an essential factor for transplantation because it becomes difficult to obtain
an efficient number of MSCs from an aged donor. Apart from age, genetic traits and
the donor’s medical history are also essential to consider. Moreover, if a donor obtains
MSCs with any form of disease such as diabetes, a loss of function of these cells can be
seen [163–166]. Although MSCs are the safest population of stem cells having negligible
risk of endogenous teratogenic potential, some of the MSCs can lead to adverse effects after
their in-vivo transplantation [167]. Moreover, MSCs’ immunomodulatory properties are
generally not recommended for use in infectious diseases, especially in bacterial infections,
which require a robust immune response to eliminate. It was surprising to find out that
preclinical evidence indicated that MSCs could enhance antibacterial processes and decrease
overactive immune responses, resulting in lethal acute respiratory distress syndrome
(ARDS) [168].
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7. Conclusions

COVID-19 is a globally emerging public threat, and treatment of the severely in-
fected patient is an international issue of consideration. The prevention and treatment
of COVID-19 are ongoing through many therapies, but a complete cure is yet to come.
MSCs emerged as an attractive and readily available source that can be further processed to
overcome COVID-19 and cytokine storm. However, there are some barriers such as donor
heterogeneity, lack of in vitro expansion, and absence of standard procedures to manipu-
late cells, limiting the potential use of MSCs as therapy against COVID-19 and cytokine
storm. Apart from some limitations, MSCs have plasticity and a huge immunomodulatory
effect resulting in anti-cytokine storm therapy. If it becomes possible to standardize the
therapeutic procedures and sources of MSCs, it will be possible to deal with the COVID-19
and cytokine storm with the help of stem cell therapy.
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