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Abstract

Neandertal DNA makes up 2–3% of the genomes of all non-African individuals. The patterns of Neandertal ancestry in
modern humans have been used to estimate that this is the result of gene flow that occurred during the expansion of
modern humans into Eurasia, but the precise dates of this event remain largely unknown. Here, we introduce an
extended admixture pulse model that allows joint estimation of the timing and duration of gene flow. This model leads
to simple expressions for both the admixture segment distribution and the decay curve of ancestry linkage disequilib-
rium, and we show that these two statistics are closely related. In simulations, we find that estimates of the mean time of
admixture are largely robust to details in gene flow models, but that the duration of the gene flow can only be recovered
if gene flow is very recent and the exact recombination map is known. These results imply that gene flow from
Neandertals into modern humans could have happened over hundreds of generations. Ancient genomes from the
time around the admixture event are thus likely required to resolve the question when, where, and for how long humans
and Neandertals interacted.

Key words: admixture dating, human–Neandertal admixture, gene flow, extended admixture pulse, Neandertal, re-
combination clock.

Introduction
The sequencing of Neandertal (Green et al. 2010; Prüfer et al.
2013, 2017; Mafessoni et al. 2020) and Denisovan genomes
(Reich et al. 2010; Meyer et al. 2012) revealed that modern
humans outside of Africa interacted, and received genes from
these archaic hominins (Fu et al. 2014, 2015; Sankararaman et
al. 2014, 2016; Vernot and Akey 2014; Malaspinas et al. 2016;
Vernot et al. 2016). There are two major lines of evidence: First,
Neandertals are genome-wide more similar to non-Africans
than to Africans (Green et al. 2010). This shift can be explained
by 2–4% of admixture from Neandertals into non-Africans
(Green et al. 2010; Prüfer et al. 2013). Similarly, East Asians,
Southeast Asians, and Papuans are more similar to Denisovans
than other human groups, which is likely because of gene flow
from Denisovans (Meyer et al. 2012).

As a second line of evidence, all non-Africans carry geno-
mic segments that are very similar to the sequenced archaic
genomes. As these putative admixture segments are up to
several hundred kilobases (kb) long, it is unlikely that they
were inherited from a common ancestor that predates the
split of modern and archaic humans (Sankararaman et al.
2014; Vernot and Akey 2014). Rather, they entered the mod-
ern human populations through later gene flow
(Sankararaman et al. 2012, 2014, 2016; Vernot and Akey
2014; Vernot et al. 2016).

However, substantial uncertainty remains about when,
where, and over which period of time this gene flow hap-
pened. A better understanding of the location and timing of
the gene flow would allow us to place constraints on the
timing of movements of early humans, and the population
genetic consequences of their interactions.

Archeological evidence puts some temporal boundaries on
the times when Neandertals and modern humans might have
interacted. The earliest currently known modern human
remains outside of Africa is dated to around 188 thousand
years ago (ka) (Hershkovitz et al. 2018; Stringer and Galway-
Witham 2018), and the latest Neandertals are suggested to
have lived between 37 and 39 ka old (Higham et al. 2014;
Zilh~ao et al. 2017). Thus, the time window where Neandertals
and modern humans might have been in the same area
stretches over more than 140,000 years. However, there is
less direct evidence of modern humans and Neandertals in
the same geographical location at the same time. In Europe,
for example, Neandertals and modern humans likely over-
lapped only for less than 10,000 years (Bard et al. 2020).

Genetic Dating of Gene Flow
A common approach to learn about admixture dates from
genetic data uses a recombination clock model: Conceptually,
admixture segments are the result of the introduced
chromosomes being broken down by recombination.
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The first-generation offspring of an archaic and a modern
human parent will have one whole chromosome each of
either ancestry. Thus, the genomic markers in these individ-
uals are in full ancestry linkage disequilibrium (ALD); all ar-
chaic variants are present on one DNA molecule, and all
modern human variants on the other one.

If this individual has offspring in a largely modern human
population, in each generation meiotic recombination will
reshuffle the chromosomes, progressively breaking down
the ancestral chromosome down into shorter segments of
archaic ancestry (Falush et al. 2003; Gravel 2012; Liang and
Nielsen 2014), and ALD similarly decreases with each gener-
ation after gene flow (Chakraborty and Weiss 1988; Stephens
et al. 1994; Wall 2000).

This inverse relationship between admixture time and ei-
ther segment length or ALD is commonly used to infer the
timing of gene flow (Pool and Nielsen 2009; Moorjani et al.
2011; Pugach et al. 2011, 2018; Gravel 2012; Sankararaman et
al. 2012, 2016; Loh et al. 2013; Hellenthal et al. 2014; Liang and
Nielsen 2014; Jacobs et al. 2019). Most commonly, it is as-
sumed that gene flow occurs over a very short duration, re-
ferred to as an admixture pulse, which is typically modelled as
a single generation of gene flow (Moorjani et al. 2011). This
model has the advantage that both the length distribution of
admixture segments and the decay of ALD with distance will
follow an exponential distribution, whose parameter is di-
rectly informative about the time of gene flow (Pool and
Nielsen 2009; Gravel 2012; Liang and Nielsen 2014).

In segment-based approaches, dating starts by identifying
all admixture segments, which can be done using a variety of
methods (Seguin-Orlando et al. 2014; Sankararaman et al.
2016; Vernot et al. 2016; Racimo et al. 2017; Skov et al.
2018). The length distribution of inferred segments is then
used as a summary for dating when gene flow happened.

Alternatively, ALD-based methods use linkage disequilib-
rium (LD) patterns, without explicitly inferring the segments
(Chimusa et al. 2018) (fig. 1B). Instead, admixture dates are
estimated by fitting a decay curve of pairwise LD as a function
of genetic distance, implicitly summing over all compatible
segment lengths (Moorjani et al. 2011; Loh et al. 2013).

Neandertal Gene Flow Estimates
Using this approach, Sankararaman et al. (2012) dated the
Neandertal–human admixture pulse to between 37–86 ka.
Later, Moorjani et al. (2016) refined this date to 41–54 ka
CI95% using an updated method, a different marker ascertain-
ment scheme and a refined genetic map for European pop-
ulations. A date of 50–60 ka was obtained from the analysis of
the genome of Ust’-Ishim, a 45,000-year-old modern human
from western Siberia. The inferred Neandertal segments in
Ust’-Ishim are substantially longer than those in present-day
humans, which makes their detection easier, and adds further
evidence that gene flow between Neandertals and modern
humans has happened relatively recently before Ust’-Ishim
lived (Fu et al. 2014). In addition, we have direct evidence
of gene flow from early modern humans from Oase (Fu et al.
2015) and Bacho Kiro (Hajdinjak et al. 2021), dated to 40 and
45ky, respectively. In genomes from both sites, segments of

recent Neandertal ancestry less than ten generations before
hint at admixture histories with late gene flow in Europe.

Limitations of the Pulse Model
The admixture pulse model assumes that gene flow occurs
over a short time period; however, it is currently unclear how
long a time could still be consistent with the data. This makes
admixture time estimates hard to interpret, as more complex
admixture scenarios might be masked, and so gene flow could
have happened tens of thousands of years before or after the
estimated admixture time.

That admixture histories are often complicated has been
shown in the context of Denisovan introgression into modern
humans, where at least two distinct admixture events into
East Asians and Papuans were proposed (Browning et al.
2018; Jacobs et al. 2019; Choin et al. 2021). Although the
length distributions of admixture segments are similar be-
tween populations, there are differences in the genomic dis-
tribution of admixture segments, and their similarities to the
sequenced high-coverage Denisovan (Browning et al. 2018;
Massilani et al. 2020). In contrast, all Neandertal admixture
segments are most similar to the Vindija Neandertal (Prüfer et
al. 2017), but Neandertal ancestry is slightly higher in East
Asians than Western Eurasians (Meyer et al. 2012; Wall et
al. 2013; Kim and Lohmueller 2015; Vernot and Akey 2015;
Villanea and Schraiber 2019).

One way to refine admixture time estimates is to include
two or more distinct admixture pulses. The distribution of
admixture segment lengths will then be a mixture of the
segments introduced from each event. This is especially useful
if the events are very distinct in time, for example, if one event
is only a few generations back, and the other pulse occurred
hundreds of generations ago (Fu et al. 2014, 2015). In this case,
the admixture segments will be either very long if they are
recent, or much shorter if they are older.

Zhou, Qiu, et al. (2017) extended this model to continuous
mixtures, using a polynomial function as a mixture density.
However, they found that even for relatively short admixture
events, the large number of parameters led to an underesti-
mate of admixture duration (Zhou, Yuan, et al. 2017).

Extended Pulse Model
One drawback of these approaches is that they introduce a
large number of parameters. Even a discrete mixture of two
pulses requires at least three parameters (two pulse times and
the relative magnitude of the two events) (Pickrell et al. 2014),
and the more complex models require regularization schemes
for fitting (Ralph and Coop 2013; Zhou, Yuan, et al. 2017).

Here, we propose an extended admixture pulse model (fig.
1A) to estimate the duration of an admixture event. It only
adds one additional parameter, reflecting the duration of
gene flow, while retaining much of the mathematical simplic-
ity present in the simple pulse model. The extended pulse
model assumes that the migration rate over time is Gamma
distributed, so that the length distribution of admixture seg-
ments has a closed form (fig. 1C and D) with two parameters,
the mean admixture time and duration.
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Conceptually, identifying an extended pulse requires us to
establish that the length distribution of admixture segments
deviates from an exponential distribution. However, other sour-
ces of bias, such as the demography of the admixed population,
the accuracy of the recombination map or details in the infer-
ence method parameters may also introduce similar biases.
Thus, we have to carefully evaluate other potential sources of
bias on whether they might lead to confounding signals.
(Sankararaman et al. 2012; Fu et al. 2014; Moorjani et al. 2016).

Here, we first define the extended admixture pulse model
and derive the resulting segment length and ALD distribu-
tions, and introduce inference schemes for either data. We
then evaluate under which scenarios these two models can be
distinguished. We show that power to distinguish these sce-
narios is higher for more recent events and longer pulses, but
that accurate inference requires high-quality data. Based on
these results, we use data from European genomes (1000
Genomes Project Consortium 2015) and find that for the
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FIG. 1. (A) Neandertal introgression into non-Africans with a multitude of potential admixture durations. (B) The time and duration of admixture
results in different length distributions of introgressed chromosomal segments (gray) containing Neandertal variants (green circles) in high LD to
each other compared with the background (human variants white stars). The ALD approach estimates linkage between the introgressed variants
(green circles), whereas the haplotype approach tries to estimate the segment directly (gray area). (C) Migration rate per generation modeled using
the extended pulse model for different admixture durations (colored lines). The filled area under the curve indicates the boundaries of the discrete
realization of the duration of gene flow td. The dotted line indicates the oldest possible time of gene flow (as defined in the simulations). (D) The
expected LD decay under the extended pulse model.
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case of Neandertal admixture, a simple pulses cannot be dis-
tinguished from continuous admixture over an extended pe-
riod of time, and the data are consistent with a multitude of
durations, up to several tens of thousands of years.

New Approaches
In this section, we present the mathematical description of
the admixture models we use in this paper, and introduce
inference algorithms for estimating the admixture time and
duration from both segment data and ALD.

Admixture Models and Inference
We think of admixture as a series of “foreign” chromosomes
introduced in a population (for a mechanistic model, see, e.g.,
Pool and Nielsen [2009]). Throughout, we assume that alleles
evolve neutrally, and that recombination is independent of
local ancestry. The simple pulse model assumes that all ad-
mixture happens in the same generation, (i.e., all chromo-
somes are introduced to the population at the same time).
To extend this model, we allow chromosomes to enter at
potentially many different time points, such that the migra-
tion rate at time t in the past is given by the function m(t)
(Pool and Nielsen, 2009; Ni et al. 2016). For simplicity, we
assume that the total amount of introgressed material a ¼Ð1

0 mðtÞdt is small, so that segments do not interact, but we
will discuss violations of this assumptions later. For archaic
introgression, a � 0:03, so this assumption is justified.

Over time, recombination splits up the introgressed ge-
nome into smaller pieces, whereas by the neutrality assump-
tion the expected amount of total ancestry remains
approximately the same. Thus, if we measure the size of
chromosomes in recombination units, a chromosome of
size G introduced at time t gives rise to an expected number
of tG segments.

Admixture Segment Lengths
We enumerate the admixture segments in a sample
i ¼ 1 . . . K. We denote the length of the i-th segment as Li

(measured in Morgan) and the time in the past when seg-
ment i entered the population as Ti (measured in genera-
tions). We assume that the Li and Ti are both realizations from
more general distributions L and T that reflect the overall
segment length and segment age distributions, respectively.

To relate m(t) to T, we need to take into account that
older fragments had more time to split up (see, e.g., Pool and
Nielsen 2009). Hence

P Ti ¼ tð Þ ¼ tGmðtÞÐ1
0 tGmðtÞdt

: (1)

The denominator of the right-hand side term in equation
(1) is the expected number of admixture segments,
E½K� ¼

Ð1
0 tGmðtÞdt.

Given Ti, the segment length Li is exponentially distributed
with rate parameter t:

PðLi ¼ ljTi ¼ tÞ ¼ te�tl: (2)

Integrating over T yields the unconditional distribution of
admixture segment lengths:

P Li ¼ lð Þ ¼
ð1

0

P Ti ¼ tð ÞP Li ¼ ljTi ¼ tð Þ dt;

¼ G

E½K�

ð1
0

t2m tð Þe�tldt

and we can think of L as an exponential mixture distribution
with mixture density proportional to tm(t) (Ralph and Coop
2013; Ni et al. 2016; Zhou, Qiu, et al. 2017).

Ancestry Linkage Disequilibrium
Alternatively, the impact of gene flow is often characterized
using ALD, particularly when accurate identification of ar-
chaic segments is difficult. We follow Loh et al. (2013) and
note that the ALD from gene flow in a single event at time t
generations in the past is

Dt ¼ mð1�mÞDxDy � mA; (4)

where m is the fraction of immigrants and Dx;Dy are the
differences in allele frequencies between markers in the
admixing populations. We assume that terms of the order
of m2 can be ignored and that migration is low enough that
changes in the allele frequencies in the admixing populations
can also be neglected (i.e., A ¼ DxDy remains a constant).

At a later generation s, the expected LD between two
markers a distance l apart is

Ds � Dtexpð�lðs� tÞÞ; (5)

due to the decay of LD (Sankararaman et al. 2012). If the
migration rate mf is a function of time, we can add up the
LD introduced at each time t in the past and approximate D
as

Ds ¼ A

ðs

�1
mf

�
tÞexpð�lðs� tÞÞdt: (6)

As we show in the Appendix (Formal Motivation for ALD),
equation (6) satisfies the differential equation

dDs

ds
¼ �lDs þ Amf sð Þ; (7)

where the �lDs-term models the exponential decay of LD
due to recombination, and the AmfðsÞ-term reflects the in-
crease of LD due to admixture (eq. 4).

To connect this equation more directly to the backward-
in-time formulation used in the derivation of the admixture
segment distribution, we set s¼ 0 and invert the flow of time,
such that mðtÞ ¼ mfð�tÞ. We obtain

DðlÞ ¼ A

ð1
0

mðtÞexpð�ltÞdt: (8)

Thus, D can be interpreted as the tail function of an ex-
ponential mixture with mixture density m. Alternatively, the
integral in equation (8) is also the (scaled) moment-
generating function of m with argument�l.
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The distribution of admixture segment lengths (eq. 3) and
the ALD function (eq. 8) are closely related—in the Appendix
(Connection between Admixture Segment Length
Distribution and ALD Function) we show that

D lð Þ ¼ EðKÞ
G

ð1
l

P xð Þ x� lð Þdx (9)

PðlÞ / D00ðlÞ: (10)

It follows that both functions uniquely determine each
other. Consequently, they contain identical information to
estimate admixture dates.

Both for the segment and ALD models we use simplifying
assumptions that ignore the effects of genetic drift, the re-
combination between introgressed segments and the replace-
ment of older introgressed material. In the Appendix, we
discuss these approximations and show that particularly
the replacement of admixed material can be accommodated
by replacing m with

meðtÞ ¼ mðtÞexp �
ðt

0

mðsÞds

� �
; (11)

which can be interpreted as the probability of the event that
migration happened at time t, and no more migration hap-
pened later on.

The Simple Pulse Model
Under the simple pulse model, all fragments enter the pop-
ulation at the same time tm, and T is a constant distribution.
We can formalize this model by using a Dirac delta function
which integrates to one if the integration interval includes tm

and zero otherwise:

mðtÞ ¼ adtm
ðTiÞ; (12a)

PðTiÞ ¼ dtm
ðTiÞ; (12b)

We obtain the exponential distribution of admixture frag-
ments under this model (Moorjani et al. 2011):

PðLi ¼ lÞ ¼ tme�tml (13a)

DðlÞ / e�tml; (13b)

where here and in the remainder of this section we omit the
constant term from D, which is not relevant for fitting the LD
decay. The expected segment length under a simple pulse
model is given by

E L½ � ¼ 1

tm
(14a)

and the variance by

Var L½ � ¼ 1

t2
m

: (14b)

The Extended Pulse Model
For the new extended pulse model, we assume that the mi-
gration rate m(t) follows a rescaled Gamma distribution so
that the total contribution of migrant alleles is a. It is conve-
nient to parameterize the migration rate as C k; tm

k

� �
. for t

� 0 and k � 1.
Using this parameterization, the denominator of equation

(1) is tmaG and

P Ti ¼ tð Þ ¼ t

tm
m tð Þ (15a)

¼ 1

C kð Þ tm

k

� �k
tk�1e�t k

tm (15b)

for t � 0 and k � 2, which is is the density of a C kþ 1; tm

k

� �
-

distribution with moments

E T½ � ¼ kþ 1

k
tm

Var T½ � ¼ kþ 1

k2
t2
m ¼

kþ 1

k
ðtd

4
Þ2:

(16)

Here, we define the admixture duration td ¼ 4tmk�
1
2, as a

convenient measure for the duration of gene flow. If k is low,
then td will be large and gene flow extends over many gen-
erations. In contrast, if k is large, then td � 0 and we recover
the simple pulse model (fig. 1C and D).

The distribution of segment length is calculated by plug-
ging equation (15b) into equation (3) and integrating:

P L ¼ ljk; tmð Þ ¼
ð1

0

1

C kð Þ tm

l

� �k
tk�1e�t k

tm te�tldt

¼ t�k
m

kþ 1

lþ k

tm

0
BB@

1
CCA

kþ2

:

The distribution in equation (17) is known as a Lomax or
Pareto-II distribution, which is a heavier-tailed relative of the
Exponential distribution. Under the extended pulse model,
the expected segment length will be the same as under the
simple pulse model (eq. 14a):

E L½ � ¼ k

tm

1

ðkþ 1Þ � 1
¼ 1

tm
(18)

but the variance is larger:

Var L½ � ¼ ðkþ 1Þ
ðk� 1Þ

1

t2
m

: (19)

We obtain the ALD-function from equation using the
moment-generating function of m(t):

Dt lð Þ / 1þ tml

k

� 	�k

: (20)
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The Constant Migration Model
The simple pulse model can be thought of as the extreme
case of the extended pulse model when k!1, that is, the
pulse gets infinitely short. In the other extreme, the extended
pulse model approaches a model of constant migration. In
this case, the last migration event at a particular location is
exponentially distributed with rate m (eq. 11), which is a
model considered by Pool and Nielsen (2009). Setting
tm ¼ 2

m ; k ¼ 2, we obtain

mðtÞ ¼ mexpð�mtÞ � Cð1;mÞ (21a)

PðTi ¼ tÞ � C 2;mð Þ (21b)

P Li ¼ lð Þ ¼ 2m2

ðmþ lÞ3
(21c)

D lð Þ / m

mþ l
: (21d)

Equation (21c) differs slightly from equation (6) in Pool
and Nielsen (2009) because we approximate the expected
number of segments with n ¼ Kt, versus theirs n ¼ 1þ Kt
(however, they converge to each other for large Kt).

Estimation of Admixture Times
For inference, either the admixture segment lengths or ALD
can be used. Assuming the admixture segment lengths are
known, equation (17) is the likelihood function and can be
used for inference. For inference using ALD, we follow
Moorjani et al. (2011) and use the decay of ALD with genetic
distance as a statistic. Following Moorjani et al. (2016), we add
an intercept A and a constant c modeling background LD:

ALD � Ae�tm l þ c (22)

ALD � A 1þ tm

k
l

� ��k

þ c: (23)

Results
Here, we investigate under which scenarios we can distinguish
the simple and extended pulse models, and when we can
infer parameters under either model. We start with an ideal-
ized scenario of simulations under the model, and then con-
tinue with more realistic coalescent simulations using
msprime (Kelleher et al. 2016).

Power Analysis under the Model
In the easiest case, we assume that segments are known and
we simulate directly under the model (eq. 17) and evaluate
under which conditions we can tell the two models apart
using likelihood-ratio tests on the simulated segments. For
this purpose, we compare two scenarios, one where gene flow
happened 1,500 generations ago, which reflects Neandertal
gene flow inferred from present-day individuals. In the second
scenario, which reflects inference from ancient modern hu-
man data, the samples are taken 50 generations after gene
flow ended. We vary pulse durations from 1 to 2,500

generations, and sample between 100 and 100,000 unique
segments. As the simple pulse model is an edge case of the
extended pulse model with k!1, standard likelihood the-
ory does not apply, and we use empirical significance cutoffs
(Kozubowski et al. 2008).

The resulting log-likelihood ratios are given in figure 2.
In general, we find that power to distinguish the model
increases with pulse duration and the amount of data, and
that it is easier to distinguish the models when gene flow
had been more recent. For example, with 10,000 unique
segments we need an event lasting around 1,000 genera-
tions before we are able to confidently distinguish an ex-
tended from a simple pulse (fig. 2) using present-day data.
In contrast, by sampling closer to the admixture event we
are able to distinguish an extended pulse already with a
duration of 40–60 generations.

Population Genetic Model Comparisons
In the previous section, we have shown that we can distin-
guish long pulses from instantenous gene flow under idealized
conditions. As a more realistic scenario, we perform popula-
tion genetic simulations using msprime (Kelleher et al. 2016).
Throughout, we simulate 3% Neandertal admixture into non-
Africans using a demographic model of archaic introgression
(supplementary fig. 1B, Supplementary Material online) with
a mean admixture time of 1,500 generations ago and varying
durations. We simulate 20 chromosomes of length 150 MB,
using either a constant recombination map or the HapMap
recombination map (International HapMap Consortium
2007). This results in �10; 000 introgressed segments. We
then perform inference using either the simulated segments,
segments inferred from the data (Skov et al. 2018), or ALD
calculated using ALDER (Loh et al. 2013). We further vary
recombination rate settings as 1) inference and simulation
under constant recombination rate (Constant/Constant); 2)
simulation using the HapMap genetic map (International
HapMap Consortium 2007), and inference using no correc-
tion (HapMap/Constant); 3) simulation using HapMap, cor-
rection using a different map (HapMap/AAMap) (Hinch et al.
2011); 4) and inference using the same map used for the
simulations (HapMap/HapMap).

Using these simulations, we perform model comparisons
(fig. 3A). For segments, we again use the likelihood-ratio and
find that the results for the simulated segments closely match
the simulations under the model (fig. 2), showing that our
model is a good approximation in the parameter range of
interest. In contrast, we find that for inferred segments, results
greatly depend on the recombination rate used: For a con-
stant recombination rate, results are similar, but for the
HapMap-recombination map, we do not have any power
to distinguish these scenarios. As we fit ALD using nonlinear
least squares, no formal model-comparison framework exists.
Qualitatively, we plot the normalized residual sum-of squares
(RSS) and find that they increase with td for both recombi-
nation scenarios, suggesting that the difference between the
two models increase.

Next, we evaluate parameter inference. In figure 3B, we
present estimates of the mean admixture times, admixture
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duration and the fitted segment and ALD distributions, re-
spectively. We find that the mean admixture times are rea-
sonably accurately estimated in most scenarios, the exception
being the inferred segments when using the variable
(HapMap) recombination map. The admixture duration esti-
mates are often less accurate, and in most cases has very large
variation between simulations.

We detect a slight, but consistent underestimate of the
mean admixture times, which increases with td. For the seg-
ments, this underestimate is likely due to the slight downward
bias caused by recombination and coalescence between
admixed segments (Liang and Nielsen 2014, see also
Appendix Genetic Drift and Recombination). For ALD, this
bias is much less severe, particularly for inference under the
extended pulse model. For scenarios where the recombina-
tion map is misspecified, tm is estimated to be only around
half of its true value (supplementary fig. 2, Supplementary
Material online). However, we find that in some cases, the
extended pulse model provides a better estimate of tm by
estimating the pulses to be extremely long.

In figure 3C, we show examples of the estimated segment
length and ALD distributions compared with the simulated
data. For these log-plots, the slope of the curve corresponds
to the estimate of tm, and the deviation from linearity reflects
the duration of gene flow. In all cases, we find that the
expected decay is very close to linear, matching our finding
that power to differentiate these old events is limited. We find
that particularly when using a constant recombination map,
all three summaries give a very close fit, and the segment
length and ALD-decay distribution closely follow their expect-
ations, which is consistent with the generally good parameter
estimates under these conditions. In the case of a variable
recombination map, we find that particularly inferred

fragments perform poorly, which is reflected by a substantial
downward bias of tm and td.

Comparing Effect Sizes for Technical Covariates
As we find that ALD performs as good or better than inferred
segments (fig. 3), we focus on ALD for the remainder of this
article. Our next goal is to more carefully evaluate the relative
importance of common assumptions made in the inference
of admixture times, under both the simple and extended
pulse models in the ALD framework on the bias and accuracy
of estimates of tm under either model.

In particular, we use a Bayesian generalized linear model
(GLM) framework to contrast the effect of extended gene
flow on admixture time inference with 1) the effects of a
simple/complex demographic history (supplementary fig. 1,
Supplementary Material online); 2) recombination map var-
iation; 3) the ALD ascertainment scheme; 4) d0, the minimum
genetic distance between variants; and 5) the number of
makers used to estimate the ALD curve (see Materials and
Methods for details). For each modeling parameter and gene
flow model, we use a simple model as the base case, and we
study the impact of a more “realistic” alternative model.

In figure 4, we present the estimated effect sizes for these
six variables and four key interaction terms. To model bias, we
fit a model to the standardized difference between the true
and estimated mean admixture time, and to model accuracy,
we us the absolute deviation (Materials and Methods, sup-
plementary table 1, supplementary fig. 3, and supplementary
table 2, Supplementary Material online). These effect sizes are
estimated using simulations under all possible parameter
combinations on a scenario with admixture happening
1,500 generations ago (supplementary figs. 4 and 5,
Supplementary Material online).
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As a baseline, for comparison, we define a standard model
using a simple demography (supplementary fig. 1A,
Supplementary Material online) and a constant recombina-
tion rate. This baseline model results in unbiased estimates of
tm under the single pulse model with low deviation of 0.08
(0.02–0.14 CI95%), and a slight upward bias 0.21 (0.15–0.28) for
the extended pulse model.

The effect of simulating an extended-pulse gene flow only
results in a slight bias of �0.17; (�0.21 to �0.13) for the
simple pulse and no bias for inference under the extended
pulse model (�0.11; �0.15 to 0.07). In contrast, uncertainty
in the genetic map causes by far the largest downward bias
(simple pulse:�1.22,�1.29 to�1.16; extended pulse:�0.74,
�0.80 to �0.67) with high deviation in the estimates (sup-
plementary fig. 3, Supplementary Material online). The more
complex demography results in an underestimate of tm, pre-
sumably because of increased genetic drift, for both the sim-
ple pulse (�0.27, �0.33 to 0.22) and extended pulse models
(�0.43, �0.49 to �0.38). The remaining parameters largely
only have very minor effects, the biggest of which is changing
the minimum cutoff from 0.05 to 0.02 cM.

Application to Neandertal Data
Our next aim is to apply our model on the case of Neandertal
gene flow into Eurasians. We estimate the Neandertal admix-
ture pulse from the 1000 Genomes data (1000 Genomes
Project Consortium 2015) and three high-coverage
Neandertal genomes (Prüfer et al. 2013, 2017; Mafessoni et
al. 2020) by fiting pulses with durations ranging from 1 gen-
eration up to 2,500 generations to the ALD-decay curve (fig. 5,
supplementary table 3, Supplementary Material online).
Plotting these best-fit ALD curves shows the extremely slight
difference predicted under these drastically different gene
flow scenarios (fig. 5A). The difference between scenarios

becomes more apparent if we log-transform the y-axis (fig.
5B), where we see that ongoing gene flow results in a heavier
tail in the ALD distributions. However, these LD values are
very close to zero, and are thus only very noisily estimated.

For short gene flows (less than 1,000 generations), our
estimates for tm are very similar and identical to the simple
pulse, at around 1,682 (1,526–1,839 CI95%) generations.
Extremely high values of td result in slightly higher values of
tm with overlapping compatibility intervals; but all predict
that Neandertals would have survived until 30 ka, for which
the archeological evidence is extremely sparse (Hublin 2017).
From the RSS, the models perform equally well, with longer
extended pulses of gene flow achieving marginally better fits
(supplementary table 4, Supplementary Material online).
Therefore, we find that all scenarios are compatible with
the observed data, and that there is little power to differen-
tiate these cases from genetics alone.

Sampling Closer to the Admixture Event
Since Neandertal gene flow happened long in the past, much
of the signal has been lost, and we have shown that in this
scenario, power to distinguish different scenarios is low.

However, we have also shown in figure 2 that inference is
easier for more recent gene flow, a case that is relevant for
many study systems. We investigate this in a series of simu-
lations where the time between sampling and gene flow is
smaller (fig. 6). We use the simple demographic scenario with
a constant-sized populations (supplementary fig. 1,
Supplementary Material online), and use ALD for inference
using the optimized settings for the Neandertal case (ascer-
tainment scheme ¼ LES and d0¼ 0.05 cM).

In figure 6A and B, we show the accuracy of estimating td

and tm for increasingly longer pulses, sampled 50 generations
after gene flow ended. The corresponding comparison of

St
an

da
rd

 M
od

el

Ex
te

nd
ed

 P
ul

se

Va
ry

in
g

R
ec

om
bi

na
tio

n

C
om

pl
ex

D
em

og
ra

ph
y

d0
 =

 0
.0

2

H
ES

n 
SN

P 
= 

5%

In
te

ra
ct

io
n

n 
SN

P 
= 

5%
/H

ES

In
te

ra
ct

io
n

C
om

pl
ex

 D
./V

ar
yi

ng
 R

.

In
te

ra
ct

io
n

d0
 =

 0
.0

2/
H

ES

In
te

ra
ct

io
n

d0
 =

 0
.0

2/
Va

ry
in

g 
R

.

bias

−1.0

−0.5

0.0

0.5

St
an

da
rd

iz
ed

 d
if.

 e
st

./s
im

. t
im

e

Model Simple Pulse Extended Pulse

FIG. 4. GLM effect sizes for the bias between simulated and estimated mean admixture time and 95% CI for the parameters between the simple and
extended pulse models: gene flow (simple/extended), recombination rate (constant/varying), demography (simple/complex), minimal genetic
distance (0.02/0.05 cM), SNPs used for ALD calculation (100%/5%), and ascertainment scheme (LES/HES). Estimates are calculated across all
possible combinations of parameters. Dotted horizontal line indicates unbiased admixture estimates.

Iasi et al. . doi:10.1093/molbev/msab210 MBE

5164

https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msab210#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msab210#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msab210#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msab210#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msab210#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msab210#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msab210#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msab210#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msab210#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msab210#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msab210#supplementary-data


model fit is depicted in supplementary figure 6,
Supplementary Material online. For these cases, we find
that inference of tm under the simple pulse model works
well for the shortest pulses but becomes increasingly down-
ward biased as td increases. Estimates of tm are less biased for
inference under the extended pulse model, where we get
accurate estimates particularly if recombination is constant.
In the scenarios with a variable recombination rate, we find
that for short, recent pulses, all corrections give good results,
but for longer pulses, particularly assuming a constant recom-
bination rate leads to a stronger bias. We also find that we are
able to accurately infer the admixture duration, particularly if
the recombination rate is constant.

In 6C and D, we keep the pulse duration constant at td ¼
800 but move it successively further into the past. For the first
two cases of tm¼ 450 and tm¼ 500 where the pulse is recent,
we again obtain good parameter estimates, but performance
deteriorates for tm � 600, which also results in low power to
distinguish the simple and extended pulse model (supple-
mentary fig. 6, lower panel, Supplementary Material online).

Discussion
In this article, we introduce a new population genetic model
for dating extended pulses of gene flow. Our model has just
two parameters, that can be interpreted as the mean time
and duration of gene flow; and has simple closed form sol-
utions for the segment length and ALD distributions. We

show that both the instantaneous pulse and constant migra-
tion models are special cases of our model, where the dura-
tion is extremely short or long, respectively. We also
demonstrate that the segment length distribution and
ALD-decay can be directly transformed into each other; in
particular, the segment-length distribution is proportional to
the second derivative of the ALD-decay curve. This makes our
theory and models generally applicable beyond gene flow
between Neandertals and humans. In fact, we find that we
have little resolution for the parameter settings relevant for
archaic gene flow, as the data resulting from simple and ex-
tended pulses long in the past are extremely similar. In con-
trast, we have much more power to estimate the duration of
gene flow from events in the recent past, a scenario relevant
for many hybridizing species. One limitation of our approach
is that we assume that the overall amount of introduced
material is low, and that we ignore the effects of genetic drift
and selection.

Previous approaches to date Neandertal–human gene
flow have focused almost entirely on the mean time of
gene flow using a simple pulse model, for which reasonably
tight credible intervals can be estimated (Sankararaman et al.
2012; Moorjani et al. 2016). Under this model, the credible
intervals of this time are bounds of when gene flow between
Neandertals and early modern humans could have happened.

Our estimate of the tm for Neandertal gene flow of 1,682
generations corresponds to a mean time estimate of 49 ky
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(assuming a generation time of 29 years; Moorjani et al. 2016),
with bounds of 44–54 ky. This is in almost perfect agreement
with the previous result of Moorjani et al. (2016) (41–54 ky),
which is based on largely the same method. However, here we
show that models of extended gene flow with td up to a
thousand generations provide very similar fits to the data;
and that marginally better fits are achieved with very long
gene flows. However, these models all would have

Neandertals survive until around 30 ka, whereas archeological
evidence for Neandertals surviving beyond 40 ky is increas-
ingly sparse (Hublin 2017), so that these models of extremely
long gene flow might be rejected on these grounds.

Our finding that the observed data are compatible with
models involving hundreds of generations of gene flow means
that while likely substantial amounts of gene flow happened
around these mean times, gene flow might have also
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happened tens of thousands of years before or after. This is of
great practical importance, as it makes linking genetic admix-
ture date estimates with biogeographical events much more
difficult (Sankararaman et al. 2012; Lazaridis et al. 2016; Douka
et al. 2019; Jacobs et al. 2019; Vyas and Mulligan 2019).

The discovery of early modern human genomes dated to
40,000–45,000 ya with very recent Neandertal ancestors less
than ten generations ago (Fu et al. 2014; Hajdinjak et al. 2021)
illustrates that gene flow likely happened over at least several
thousand years. In general, inference based on ancient
genomes (Fu et al. 2014, 2015; Moorjani et al. 2016;
Hajdinjak et al. 2021) promises to resolve some of these dating
issues, as inference is substantially easier when admixture is
more recent, as the time difference between gene flow and
sampling time is much lower (figs. 2 and 6). However, using
these genomes for dating leads to further hurdles, particularly
pertaining to the spatial distribution of admixture events;
whereas we can assume that the spatial structure present
in initial upper paleolithic modern humans is largely homog-
enized in present-day people, the introgression signals ob-
served in Bacho-Kiro and Oase could be partially private to
these populations, and thus these populations may have a
different admixture time distribution than present-day
people.

The uncertainty over the duration of Neandertal gene flow
also has some implications for selection on introgressed
Neandertal haplotypes. Neandertal alleles have been sug-
gested to be deleterious in modern human populations due
to an increased mutation load (Harris and Nielsen 2016; Juric
et al. 2016). Some details of these models may be affected if
migration occurred over a longer time. For example, Harris
and Nielsen (2016) suggested that an initial pulse of gene flow
of up to 10% Neandertal ancestry might be necessary to ex-
plain current amounts of Neandertal ancestry, with very high
variance in the first few generations after gene flow. More
gradual gene flow could mean that such high admixture
proportions were never reached, but rather a continuous
migration–selection balance process persisted for the contact
period, where deleterious Neandertal alleles continually en-
tered the modern human populations, but were selected
against immediately. However, in terms of the overall fre-
quencies, there is likely little difference. For example, Juric et
al. (2016) showed using a two-locus model that the frequen-
cies of Neandertal haplotypes alone cannot be used to dis-
tinguish different admixture histories.

In addition, we find that modeling and method assump-
tions have an impact on admixture time estimates that are of
a similar or larger magnitude than the effect of assuming a
one-generation pulse. In particular, recombination rate vari-
ation poses a practical limitation to the accuracy of admixture
date estimates for old gene flow, and has to be very carefully
considered when making inferences about admixture times.
A possible reason is that both an extended pulse as well as a
nonhomogeneous recombination map lead to an admixture
segment distribution that deviates from the expected expo-
nential distribution. Throughout, we measure segment
lengths and LD-decay distance in recombination units.
Misspecification of the recombination rate will increase the

variance in ALD or segment lengths, which might be con-
founded with a longer admixture pulse (Sankararaman et al.
2012). Therefore, population-specific fine-scale recombina-
tion maps are needed for accurate admixture time estimates,
at least for admixture that happened more than a thousand
generations ago. Estimates of more recent admixture appear
to be more robust, perhaps because coarser-scale recombi-
nation maps are better estimated, differ less between popu-
lations (Hinch et al. 2011) and the error relative to fragment
length is substantially lower.

To further refine admixture time estimates, time series
data from more admixed early modern human and
Neandertal genomes are needed. In particular, measures
based on population differentiation (Wall et al. 2013;
Browning et al. 2018; Villanea and Schraiber 2019) hold
much promise to understand the different events that con-
tributed to archaic ancestry in modern humans. Although
Neandertal ancestry in present-day people has been largely
homogenized due to the substantial gene flow between pop-
ulations, samples from both the Neandertal and early modern
human populations immediately involved with the gene flow
could refine when and where this gene flow happened.

Materials and Methods

Power Analysis under the Model
To test the power to distinguish the simple from an extended
pulse we simulated 100, 1,000, 10,000, and 100,000 unique
times Ti from a Gamma distribution, with shape parameter
kþ 1 and scale k=tm, setting tm to 1,500 generations. Segment
lengths Li are obtained by sampling for each Ti from an ex-
ponential distribution with rate parameter Ti for present day
samples and T

ðcloserÞ
i ¼ Ti � tm � td=2� 50 for sampling 50

generations after the end of gene flow. We obtain maximum-
likelihood estimates for the simple (Eq. 13a) and extended
pulse (Eq. 17) using the optim function implemented in R (R
Core Team 2019).

Coalescent Simulations
We further test our approach on coalescence simulations
using msprime (Kelleher et al. 2016). We focus on scenarios
mimicking Neandertal admixture and choose sample sizes to
reflect those available from the 1000 Genomes data (1000
Genomes Project Consortium 2015). For ALD simulations,
we simulate 176 diploid African individuals and 170 diploid
non-Africans, corresponding to the number of Yoruba (YRI)
and Central Europeans from Utah (CEU). For inference based
on segments, we simulated 50 diploid non-Africans. Since
three high-coverage Neandertal genomes are available
(Prüfer et al. 2013, 2017; Mafessoni et al. 2020), we simulate
three diploid Neandertal genomes.

The demographic parameters are based on previous stud-
ies dating Neandertal admixture (Sankararaman et al. 2012;
Fu et al. 2014; Moorjani et al. 2016; Skov et al. 2018). In the
“simple” demographic model (supplementary fig. 1A,
Supplementary Material online), the effective population
size is assumed constant at Ne ¼ 10; 000 for all populations,
the split time between modern humans and Neandertals is
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10,000 generations, and the split between Africans and non-
Africans is 2,550 generations. The migration rate from
Neandertals into non-Africans was set to zero before the split
from Africans, to ensure that there is no Neandertal ancestry
in Africans. For a more complex scenario of human popula-
tion history, we followed Skov et al. (2018) and used a similar
demographic model, but only simulated the Europeans. We
changed the Ne for the ancestral humans, out-of-Africa bot-
tleneck and ancestral Eurasians to 7,000, 250, and 5,000, re-
spectively. The effective population size for Neandertals was
set to 5,000 and the split time of non-Africans is kept the
same as in the ALD simulations (2,550 generations ago) (sup-
plementary fig. 1B, Supplementary Material online).

For each individual, we simulate 20 chromosomes with a
length of 150 Mb each. The mutation rates are set to 2� 1
0�8 and 1:2� 10�8 per base per generation for the “simple”
and “complex” models, respectively. The recombination rates
are set to 1� 10�8 per base pair per generation for the sim-
ple demography and 1:2� 10�8 per base pair per generation
for the complex demographic model, unless specified
otherwise.

Since inferring archaic segments is slow, we use 25 repli-
cates for scenarios where we compare segment-based and
ALD-based inference and use 100 replicates when we only
perform ALD-based inference.

Simulating Admixture
We specify simulations under the extended pulse model using
the mean admixture time tm and the duration td. We recover
the simple pulse model by setting td¼ 1, up to errors due to
discrete generations. To obtain the migration rates in each
generation, we use a discretized version of the migration den-
sity (eq. 15b), which we then scale to the approximate
amount of Neandertal ancestry in non-Africans (a ¼ 0:03).

Recombination Maps
Uncertainties in the recombination map were previously
shown to influence admixture time estimates
(Sankararaman et al. 2012, 2016; Fu et al. 2014). To investigate
the effect of more realistic recombination rate variation, we
perform simulations using empirical recombination maps.
For the GLM, we use the African-American map (Hinch et
al. 2011) for simulations and for the remaining simulations we
use the HapMap phase 3 map (International HapMap
Consortium 2007). For simplicity, we use the same recombi-
nation map (150 Mb of chromosome 1, excluding the first
and last 10 Mb) for all simulated chromosomes. When sim-
ulating under an empirical map, with the analysis assuming a
constant rate (i.e., no correction), we use the mean recombi-
nation rate from the respective map to calculate the genetic
distance from the physical distance for each SNP. The mean
recombination rate is calculated from the 150-Mb map
(1:017 cM

Mb AAMap, 0:992 cM
Mb HapMap). For inference, each

segment is either assigned a length based on its physical
length (“constant”), the African-American map or HapMap
recombination map, depending on the inference scenario.

Estimating Admixture Time from Simulated Segment
Data
For estimating admixture time and duration from intro-
gressed segments, we either used the simulated segment
lengths directly or alternatively added an inference step using
the HMM from Skov et al. (2018). We only considered in-
ferred segments with an average posterior probability of 0.9 or
higher. Furthermore, we use an upper and lower cutoff for
inferred segment length of 0.05 and 1.2 cM. We fit the simple
(eq. 13a) and extended pulse (eq. 17) using the optim func-
tion implemented using R 4.0.3 (method¼“L-BFGS-B”) with
lower and upper constrains being 1 and 5,000 for tm and 2
and 1010 for k, respectively.

Estimating Admixture Time from ALD Data
Ascertainment Scheme
Since ALD for ancient admixture events can be quite similar
to the genomic background, SNPs need to be ascertained to
enrich for Neandertal informative sites in the test population.
This removes noise and amplifies the ALD signal
(Sankararaman et al. 2012). We evaluate the impact of the
ascertainment scheme by contrasting two distinct schemes
(Sankararaman et al. 2012; Fu et al. 2014). The lower-
enrichment ascertainment scheme (LES) only considers sites
that are fixed for the ancestral state in Africans and polymor-
phic or fixed derived in Neandertals. The higher-enrichment
ascertainment scheme (HES) is more restrictive in that it
further excludes all sites that are not polymorphic in non-
Africans.

ALD Calculation
The pairwise weighted LD between the ascertained SNPs a
certain genetic distance d apart is calculated using ALDER
(Loh et al. 2013). A minimal genetic distance d0 between
SNPs is set to either 0.02 or 0.05 cM. This minimal distance
cutoff removes extremely short-range LD, which might also
be due to inheritance of segments from the ancestral popu-
lation (incomplete lineage sorting ILS) and not gene flow.

Parameter Estimates
We estimate parameters by fitting the ALD-curve to equa-
tions (22) and (23) using a nonlinear least square approach
implemented in the nls function in R 4.0.3 (algo-
rithm¼“port”) with lower and upper constrains being 1
and 5,000 for tm and 1=1010 and 1/2 for 1=k, respectively.
To achieve better conversion, we prefit the functions using
the estimates of the DEoptim optimization (Ardia et al. 2016)
as starting parameters for the nls function. To improve esti-
mates for td, we run the fitting using ten iterations to avoid
local optima. We select the estimate with the lowest RSS.

Modeling Parameter Effect Sizes
To estimate the effect size of the different parameters (eq. 24)
we use a Bayesian GLM, where E is the response, and A;M;
D; R; S; and G are binary predictors.
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The model can be written as

Ei � Normalðli; rÞ

li ¼ aþ baAi þ bmMi þ bdDi þ brRi þ bsSiþ

bgGi þ bsaSiAi þ bmaMiAi þ bdrDiRi þ bmrMiRi

a � Normalð0; 2Þ

ba; bm; bd; br; bs; bg; bsa; bma; bdr; bmr � Normalð0; 2Þ

r � Exponentialð1Þ

;

(24)

where the variables define

• ascertainment scheme: Ai ¼ LES/HES
• minimal genetic distance: Mi ¼ 0:02cM=0:05cM
• demography: Di ¼ simple/complex
• recombination rate: Ri ¼ constant/variable
• n SNPs used: Si ¼ 100%/5%
• gene flow model: Gi ¼ simple pulse (SP)/extended pulse

(EP)

We fit two models, a primary model aimed at investigating
the bias of our estimates, and a second model aimed at in-
vestigating the deviation. In the first case, the response vari-
able Ei is

Ei ¼
test � tsim

rtest

;

and in the second case we use the absolute error

Ei ¼
jtest � tsimj

rtest

;

where r is the standard deviation of test. We also modeled the
interaction between number of used SNPs and the ascertain-
ment scheme (bsa), minimal distance and ascertainment
(bma), demography and recombination (bdr), and minimal
distance and recombination(bmr).

We perform simulations using all possible parameter com-
binations. For the effect of the amount of SNPs, that is, accu-
racy of the ALD estimates, we downsampled the data by
randomly choosing 5% of the overall SNPs for ALD calcula-
tion. We define a standard model having a constant recom-
bination rate, simple demography and gene flow, LES
ascertainment, and d0 ¼ 0:05. The genetic distance is
assigned from the physical position using the average recom-
bination rate of the African-American genetic map (i.e., as-
suming the recombination rate is constant over the
simulated chromosome given by this value) for simulations
under a variable recombination rate. For each of the possible
sets of parameters, we simulate 100 replicates each and fit
ALD-decay curves. We excluded a small number of

simulations for which either the simple pulse or extended
pulse curve could not be estimated (87 out of 6,400).

We assume a Normal likelihood because it is the maxi-
mum entropy distribution in our case. We obtained the pos-
terior probability using a Hamiltonian Monte Carlo MCMC
algorithm, as implemented in STAN (Carpenter et al. 2017)
using an R interface (Stan Development Team 2018;
McElreath 2020). The Markov chains converged to the target
distribution (Rhat¼ 1) and efficiently sampled from the pos-
terior (supplementary tables 1 and 2, Supplementary Material
online).

Estimating Neandertal Admixture Time
We estimate the Neandertal admixture time distribution us-
ing ALD from the 1000 Genomes data (1000 Genomes
Project Consortium 2015), together with the Altai, Vindija,
and Chagyrskaya high-coverage Neandertals. We include the
107 unrelated individuals from the YRI as representatives of
unadmixed Africans and all CEU as admixed Europeans. We
only consider biallelic sites and determine the ancestral allele
using the Chimpanzee reference genome (panTro4). We used
the CEU-specific fine-scale recombination map (Spence and
Song 2019) to convert the physical distance between sites
into genetic distance.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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Appendix: Derivation and Approximation
Details

Formal Motivation for ALD
In the main text, we motivate the ALD decay using the
intuitive argument of “adding up” ALD introduced at dif-
ferent generations in the past. Here we present a more for-
mal derivation: In one generation, LD changes due to LD-
decay through recombination, and through the introduc-
tion of new ALD through migration.

D tþ 1ð Þ ¼ 1� r �m tð Þð ÞD tð Þ þ DXDYm tð Þ
� ð1� rÞDðtÞ þ AmðtÞ;

where A is a constant and r the map distance between the
pair of markers. The approximation in the second line is
valid if we ignore the effect of new introgressed material
replacing older introgressed material.

This leads to the following linear differential equation:

dD

dt
¼ �rDþ Am tð Þ: (A2)

It is straightforward to verify that equation (6) is a solu-
tion to this equation:

D tð Þ ¼ A

ðt

�1
m sð Þexpð�r t� sð ÞÞds

dD

dt
¼ d

dt
A

ðt

�1
m
�

sÞexpð�rðt� sÞÞds

� �

¼ Am tð Þ þ
ðt

�1

d

dt
Am sð Þexpð�r t� sð ÞÞ

� �
ds

¼ Am tð Þ � r

ðt

�1
Am sð Þexpð�r t� sð ÞÞds

¼ Am tð Þ � rD tð Þ;

where the third line follows from Leibniz’ integral rule.

Replacement during Pulse
The “old”-LD also changes due to addition of new intro-
gressed material, which is accommodated using

dD

dt
¼ � r þm tð Þð ÞDþ Am tð Þ: (A4)

This equation has solution

DðtÞ ¼ A

ðt

�1
exp �r t� sð Þ �M s; tð Þ½ �m sð Þds; (A5)

where

Mðs; tÞ ¼
ðt

s

mðxÞdx;

which can be interpreted as contributing how much LD has
decayed from introgression time s to the observation time t
due to replacement from new introgressed material.

This follows from

D tð Þ ¼ A

ðt

�1
m sð Þexp �r t� sð Þ �

ðt

s

m xð Þdx

� �
ds

dD

dt
¼ d

dt
A

ðt

�1
mðsÞexp �rðt� sÞ �

ðt

s

mðxÞdx

� 	
ds

� �

¼ Am tð Þ þ
ðt

�1
Am sð Þ d

dt
exp �r t� sð Þð Þexp �

ðt

s

m xð Þdx

� 	� �
ds

¼ Am tð Þ � r þm tð Þð Þ
ðt

�1
Am sð Þexp �r t� sð Þð Þ

exp �
ðt

s

m xð Þdx

� 	
ds ¼ Am tð Þ � r þm tð Þð ÞD;

where the derivative can be evaluated using the product
rule:

d

dt
exp �rðt� sÞð Þ ¼ �rexpð�r t� sð ÞÞ

d

dt
exp �

ðt

s

mðxÞdx

� 	
¼ �m tð Þexp �

ðt

s

mðxÞdx

� 	
:

Changing the flow of time and setting t¼ 0 as in the
main text, times, this results in

DðlÞ ¼ A

ð1
0

exp –lrt½ �exp �Mb tð Þ½ �mb tð Þdt; (A7)

where again mbðtÞ ¼ mð�tÞ and

MbðtÞ ¼
ðt

0

mbðxÞdx:

This motivates the “effective” migration rate

meðtÞ ¼ mbðtÞexp½�MbðTÞ�;

for the case of constant migration, MbðtÞ ¼ mt and
mbðtÞ ¼ me�mt, which is an exponential density (Pool
and Nielsen 2009).

Connection between Admixture Segment
Length Distribution and ALD Function
Here, we describe how the admixture segment length dis-
tribution P(l) and the ALD function D(l) are interconnected
(under the assumptions of this work) and in fact uniquely
determine each other as claimed in the main text (eqs. 9
and 10).

Following the models outlined in the main text, through-
out we assume that admixture is rare and that conse-
quently admixture segments do not interact. Using these
assumptions, we first describe how the admixture segment
length distribution uniquely determines the ALD function,
and second how the ALD function in reverse uniquely
determines the admixture segment length distribution.
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From the Admixture Segment Length
Distribution to the ALD Function
Without loss of generality, we assume that derived allele
frequencies are 0 in the target and 1 in the admixture source
population, otherwise the resulting ALD curve can be
reweighted with a constant factor A as in equation (4).

We start by noting that two-point ALD between two loci
can be written as:

D ¼ x11 � p � q;

where x11 denotes the frequency of 11 haplotypes and p and
q the allele frequencies at these two loci. Under the assump-
tion that introgressed segments do not interact with each
other, genome-wide excess 11 haplotypes beyond random
association (p � q for each pair of loci) originate from pairs of
markers on the same introgressed segments. To get the
genome-wide average D, we therefore have to sum over
the contribution of 11 haplotypes from introgressed seg-
ments of all lengths.

For all pairs of markers a map distance l apart, only seg-
ments of length x> l contribute pairs of markers at distance
l. Let us first describe a single introgressed segment of length
x. In the limit of long chromosome (of length G) and of high
marker density, a fraction ðx� lÞ=G of all pairs of markers at
distance l fall both onto this segment. Then, denoting the
expected number of segments of length x as E(x), we sum
over all segment lengths x> l to get:

D lð Þ ¼ 1

G

ð1
l

E xð Þ x� lð Þdx: (A8)

The expected number of segments of a given length E(x)
can be directly derived from the segment length distribu-
tion viaE½K�, the total number of all introgressed segments:

EðxÞ ¼ PðxÞE½K�: (A9)

Plugging equation (A9) into equation (A8) yields:

D lð Þ ¼ E½K�
G

ð1
l

P xð Þ x� lð Þdx: (A10)

Equation (A10) now allows one to directly calculate D(l)
from P(l), which shows that P(l) uniquely determines D(l).

From the ALD Function to the Admixture
Segment Length Distribution
To derive the inverse relationship, we start by differentiat-
ing D(l) twice with respect to l (d

dl). Using equation (A10)
and the Leibniz integral rule yields:

D0 lð Þ ¼ �E K½ �
G

ð1
l

P xð Þdx

D00 lð Þ ¼ E½K�
G

P lð Þ:

Simple rearrangement and plugging in the reweighting
of LD with A (that we omitted above) yield:

P lð Þ ¼ 1

A

G

E½K�D
00 lð Þ: (A11)

Thus, D(l) uniquely determines P(l).

For the Continuous Admixture Model
For the concrete case of the continuous admixture model,
we derived explicit formulas for both the ALD function and
the admixture segment length distribution (eqs. 3 and 8).
We can validate the above derived functional relationships
(eq. A10) directly and show that the more general deriva-
tion above holds for these specific formulas central for this
work.

To check the relationships, we start with reiterating the
explicit formulas (eqs. 3 and 8):

P lð Þ ¼ G

E½K�

ð1
0

t2m tð Þexpð�ltÞdt (A12)

DðlÞ ¼ A

ð1
0

m
�

tÞexpð�ltÞdt: (A13)

First, plugging equation (A12) into the functional rela-
tionship equation (A10) yields:

E K½ �
G

ð1
l

P xð Þ x� lð Þdx ¼
ð1

l

dx

ð1
0

dt t2m tð Þexpð�xtÞ x� lð Þ

¼
ð1

0

dt t2m tð Þ
ð1

l

dxexpð�xtÞðx� lÞ
:

1

t2
expð�ltÞ ¼

ð1
0

m tð Þexpð�ltÞdt:

If we reweight the right-hand side with the allele-
frequency differences A, it becomes D(l) from equation
(A13), which finishes the validation that the first functional
relationship equation (A10) holds.

To verify the second functional relationship (eq. A11), we
differentiate D(l) twice and multiply with 1

A
G

E½K�:

1

A

G

E½K�D lð Þ ¼ G

E½K�

ð1
0

m tð Þ d2

dl2
expð�ltÞdt

¼ G

E½K�

ð1
0

t2m tð Þexpð�ltÞdt ¼ P lð Þ:

Genetic Drift and Recombination
Our model assumes that Neandertal segments in the hu-
man population always recombine with non-Neandertal
haplotypes, and that the effect of genetic drift can be
neglected. In this appendix, we discuss some possible exten-
sions of the model to incorporate aspects of genetic drift
and recombination between admixture segments.

Single Pulse Theory of Recombination
between Fragments
Under our modeling assumptions, we show that ELi ¼ t�1

m ,
but this ignores recombination between introgressed ma-
terial. Under a single pulse, Liang and Nielsen (2014) showed
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that under the SMC model (McVean and Cardin 2005) the
expectation is reduced as

ELi ¼ tmð1� aÞ½ ��1; (A14)

and under the SMC’ model (Marjoram and Wall 2006) this
is

ELi ¼ 2N 1� að Þ 1� exp � tm

2N

� �� i�1

:

�

Using a Taylor expansion around N!1 and ignoring
terms of the order 1

N2, this can be approximated as

ELi � tm 1� að Þ 1� tm

4N

� �h i�1

; (A15)

which makes the similarity to the SMC model more apparent.
This is compared with ELi ¼ 1

tm
as we obtained from

equation (14a). The ð1� aÞ-term models recombination
between adjacent introgressed segments; and the

1� tm

4N

� �
can be thought of reflecting genetic drift.

The justification for both of these formulas is that they
are geometric mixtures of exponential distributions (Liang
and Nielsen 2014), which are themselves exponential.
Under the extended pulse model, the segment length dis-
tribution is no longer exponential, so the segments may
have a more complicated mixture distribution.

For the case of Neandertal admixture, assuming gene
flow happened over a short duration, these equations
can be used to estimate the error made from ignoring
drift and recombination between Neandertal segments.
As a � 0:03; tm � 1; 600; N � 10; 000, and so the
expected combined error of these two terms is on the
order of 10%.

Effect of Reduced “Effective” Recombination
and Coalescence
In the ALD framework, we can take further complications
into account. For example, we can motivate

• an “effective” recombination rate rðtÞ ¼ rð1� aðtÞÞ
that takes into account as the admixture fraction
increases, some recombination events will be between
introgressed material, and we denote the total amount
of introgressed material by time t as aðtÞ.

• the allele frequencies in the admixing populations may
change, so that we replace the constant A ¼ DxDy by
AðtÞ ¼ DxðtÞDyðtÞ.

• genetic drift will fix some haplotypes, which then can no
longer decay. This happens at rate 1

2NðtÞ.

Taken together, the analogous equation is

dD

dt
¼ � r 1� a tð Þð Þ þm tð Þ þ 1

2NðtÞ

� �
Dþ A tð Þm tð Þ:

(A16)

This equation is still a first-order nonhomogeneous
linear differential equation, so the solution will have the
same form

DðtÞ ¼
ðt

�1
exp½�F s; tð Þ�m sð ÞA sð Þds; (A17)

where

F s; tð Þ ¼
ðt

s

r 1� a xð Þð Þ �m xð Þ � 1

2N xð Þ

� �
dx

¼ r t� sð Þ � r

ðt

s

a xð Þdxþ
ðt

s

m xð Þdxþ
ðt

s

1

2NðxÞ dx;

For example, if we assume N, A(t), and a are all constant,
and migration is a simple pulse at tm

Dt lð Þ ¼ A

ðt

0

dtm
sð Þexp � s

2N

� �
exp �l 1� að Þsð Þds

Dt
00 lð Þ / expðltm 1� að ÞÞ:
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