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Abstract

The vast expansion of protein sequence databases provides an opportunity for new protein

design approaches which seek to learn the sequence-function relationship directly from nat-

ural sequence variation. Deep generative models trained on protein sequence data have

been shown to learn biologically meaningful representations helpful for a variety of down-

stream tasks, but their potential for direct use in the design of novel proteins remains largely

unexplored. Here we show that variational autoencoders trained on a dataset of almost

70000 luciferase-like oxidoreductases can be used to generate novel, functional variants

of the luxA bacterial luciferase. We propose separate VAE models to work with aligned

sequence input (MSA VAE) and raw sequence input (AR-VAE), and offer evidence that

while both are able to reproduce patterns of amino acid usage characteristic of the family,

the MSA VAE is better able to capture long-distance dependencies reflecting the influence

of 3D structure. To confirm the practical utility of the models, we used them to generate vari-

ants of luxA whose luminescence activity was validated experimentally. We further showed

that conditional variants of both models could be used to increase the solubility of luxA with-

out disrupting function. Altogether 6/12 of the variants generated using the unconditional

AR-VAE and 9/11 generated using the unconditional MSA VAE retained measurable lumi-

nescence, together with all 23 of the less distant variants generated by conditional versions

of the models; the most distant functional variant contained 35 differences relative to the

nearest training set sequence. These results demonstrate the feasibility of using deep gen-

erative models to explore the space of possible protein sequences and generate useful

variants, providing a method complementary to rational design and directed evolution

approaches.

Author summary

The design of novel proteins with specified function and biochemical properties is a long-

standing goal in bio-engineering with applications across medicine and nanotechnology.

Despite the impressive achievements of traditional approaches, a great deal of scope

remains for the development of data-driven methods capable of exploiting the record of

natural sequence variation available in protein databases. Deep generative models such as
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variational autoencoders (VAEs) have shown remarkable success in synthesising realistic

data samples across a range of modalities, driving recent interest in developing such mod-

els for proteins. However, experimental evidence for the viability of such techniques in

practical protein design settings remains scarce. Here we show that VAEs trained on the

family of luciferase-like oxidoreductases can be used to generate functional variants of the

luxA bacterial luciferase. We compare the use of raw and aligned sequences as input to the

model, providing evidence that models trained on aligned data are better able to learn

functional constraints. Finally, we demonstrate the possibility of controlling desired prop-

erties of the designed sequences, by using conditional versions of the VAE models to

increase the solubility of the wild-type luxA sequence from P. luminescens.

Introduction

Recombinant proteins have found uses in many medical and industrial applications where it is

frequently desirable to identify protein variants with modified properties such as improved sta-

bility, catalytic activity, and modified substrate preferences. The systematic exploration of pro-

tein variants is made extremely challenging by the enormous space of possible sequences and

the difficulty of accurately predicting protein fold and function. Directed evolution approaches

enable a more or less random local search of sequence space but are typically limited to the

exploration of sequences differing by only a few mutations from a given natural sequence [1,

2]. When knowledge of the protein structure is available, computer aided rational design can

help identify interesting modifications [3]. Beyond the identification of sequence variants,

computational approaches have enabled the generation of small synthetic protein domains

that mimic natural folds while using sequences that are distant from what is seen in nature [4–

6]. These techniques take advantage of structural information and physical modeling, as well

as statistical analysis of amino-acid conservation and co-evolution. Recent progress has also

been made in the rational design of proteins with artificial folds from scratch [7–9]. All these

computational design approaches nonetheless remain for now limited in their success and in

the types of protein they can model.

Machine learning methods provide an alternative and potentially complementary approach

capable of exploiting the information available in protein sequence and structure databases.

Natural sequence variation provides a rich source of information about the structural and bio-

physical constraints on amino acid sequence in functional proteins, but the unlabelled nature

of much of the available data provides a challenge for straightforward supervised learning

methods. The framework of generative modelling shows promise for exploiting this informa-

tion in an unsupervised manner. Generative models are machine learning methods which seek

to model the distribution underlying the data, allowing for the generation of novel samples

with similar properties to those on which the model was trained [10]. In recent years, deep

neural network based generative models such as Variational Autoencoders [11, 12], Generative

Adversarial Networks [13], and deep autoregressive models [14–16] trained on large datasets

of images [13], audio [15], text [17, 18], and even small molecules [19], have been shown to be

capable of generating novel, realistic samples. Generative models can also easily be adapted to

include auxiliary information to guide the generative process, by modelling the distribution of

the data conditioned on the auxiliary variables. Such conditional generation is of particular

interest for protein design where it is frequently desirable to maintain a particular function

while modifying a property such as stability or solubility.
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While there have recently been several successes in applying deep learning techniques to

modelling protein sequences in tasks including contact prediction [20], secondary structure

prediction [21, 22], and prediction of the fitness effects of mutations [23], the possibility of

applying generative modelling methods in the design of new sequences has only very recently

begun to be explored [24–31], and experimental evidence for the viability of these techniques

is scarce. To realise the promise of generative models in protein engineering, work remains to

be done in understanding the consequences of various design choices, the strengths and limi-

tations of different types of model and the possibilities for integration into existing engineering

workflows.

One particularly important consideration is the nature of the input representation to the

model. Many traditional successes in protein sequence analysis have relied on features derived

from multiple sequence alignments of related proteins, which simplify the inference of struc-

tural and functional constraints from sequence data [32]. Indeed, evolutionary information

from alignments has previously proven useful in protein design and engineering [33–35].

However, alignments become large and unreliable as more distant proteins are added [36],

placing an effective limit on the diversity of sequences that can be related in this way. For

this reason, several recent works have explored deep learning methods which are capable of

fully exploiting the data in sequence databases by working with raw sequence inputs. Deep

sequence models such as LSTMs and transformers trained on datasets spanning the entire

range of known sequences have been shown to learn representations which distill structural

and functional information from the sequence [37, 38]. Despite these promising results, it

remains unclear whether the representations learned are more informative than simple fea-

tures computed from local alignments [39] and the generative capacity of these models, though

acknowledged, is almost entirely unexplored.

Here, as a practical illustration of the application of deep generative design to protein engi-

neering, we developed variational autoencoder (VAE) models capable of generating novel

variants of bacterial luciferase, an enzyme which emits light through the oxidation of flavin

mononucleotide (FMNH2). We proposed separate architectures to work with raw and aligned

sequence input which, when trained on a family of almost 70000 luciferase-like protein

sequences, learned representations capturing functional information at a variety of scales and

generated novel sequences displaying patterns of amino acid usage characteristic of the family.

Moreover, conditional versions of the models trained with auxiliary solubility information

enabled control of the predicted solubility level of generated sequence variants. In order to

confirm the generative capacity of the models, they were used to generate variants of the luxA
subunit of the luciferase from Photorhabdus luminescens. A number of the variants generated

by each model were selected for synthesis and assessed for function when expressed as recom-

binant proteins in E. coli.

Results

Generative VAE models for protein families

Variational autoencoders (VAEs) are deep latent variable models consisting of two subnet-

works in an autoencoder structure [11]. The encoder network learns to map data points to

low-dimensional ‘latent vectors’, while the decoder network learns to reconstruct data points

from their low-dimensional latent encodings. Either raw or aligned protein sequences can be

passed as input to a VAE model by representing them as fixed-size matrices whose columns

contain ‘one-hot encoded’ representations of the identity of the amino acid at each position in

the sequence (Fig 1). When trained on a training set of sequence inputs of the same kind, a

VAE thus learns a latent representation of the content of each sequence. A prior enforcing
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smoothness on the representations output by the encoder ensures that novel sequences can be

generated either by varying the latent representation around that of existing sequences, or by

sampling from the prior distribution over the latent vectors, and then feeding the resulting vec-

tors through the decoder. This latent variable-governed generative process is particularly

attractive for design applications because it can straightforwardly be used to bias generation

towards particular regions of sequence space, either by sampling from the vicinity of the latent

representations of target sequences, or by facilitating optimization based strategies which

search the latent space for novel sequences with desirable properties [19, 40].

As a practical testbed for deep generative protein design, we chose to work with a dataset of

69,130 homologues of bacterial luciferase obtained from InterPro [41] (IPR011251). We

worked with two versions of the dataset: one containing raw unaligned sequences, and one

constructed from a multiple sequence alignment (MSA) of the dataset built using Clustal

Omega (Materials and methods). Alignments of large protein families can be very wide, pre-

senting a challenge for methods seeking to model variation at all positions. We chose instead

to build models capable of generating variants of a single target protein, the luciferase luxA
subunit from P. luminescens. We therefore dropped all columns of the MSA which were unoc-

cupied in the luxA target. We split the dataset into a training set and a holdout validation set,

using the same split for both aligned and raw sequences. In order to avoid highly similar

sequences occurring in the training and validation sets, we first clustered all the sequences

using mmseqs2 [42], and then added clusters chosen at random to the validation set until the

total number of sequences in the validation clusters reached 20% of the total. In order to assess

generalisation to a range of distances from the training set, three train-validation splits were

created using sequence identity thresholds of 30%, 50% and 70% in the clustering. Since our

ultimate goal was the generation of variants with reasonably close similarity to the target

Fig 1. Schematic representation of the input representation and VAE models used in the study. Models take as input either raw or aligned

sequences. In the latter case, the inputs correspond to the rows of an MSA of the luciferase family. Only columns of the MSA corresponding to positions

(highlighted in red) present in the target protein (marked with �) are retained. In both cases, the sequences are one-hot encoded before being fed into

the model. Different architectures were used depending on the type of sequence input. The model developed to work with aligned sequences (MSA

VAE) used fully-connected feed-forward networks in both the encoder and the decoder. The model developed to work with raw sequences (AR-VAE)

comprised a CNN encoder and a decoder which combined upsampling with autoregression. The decoder sequentially outputs predictions for the

identity of the amino acid at each point in the sequence, conditioned on the upsampled latent representation together with the previous amino acids in

either the input sequence (during training, blue arrow) or the generated sequence (when being used generatively, red arrow).

https://doi.org/10.1371/journal.pcbi.1008736.g001
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protein, we mainly used the split at a clustering threshold of 70% sequence identity for the

development of models, but report amino acid reconstruction accuracies on all three splits in

S1 Table.

Following models previously developed to model the fitness consequences of mutations

[23, 43], we used a standard design of fully connected feed-forward encoder and decoder net-

works for the models taking aligned input (MSA VAE, Materials and methods). Preliminary

experiments with a similar architecture on unaligned sequence data yielded poor results,

with the generated sequences often failing to register as hits when scored with the family pro-

file HMM from PFAM [44]. In a VAE with a feed-forward decoder, the output variables are

conditionally independent given the latent variables, meaning that all information about

local conditional dependencies must be stored implicitly in the latent variables. The impor-

tance of capturing such local dependencies in unaligned sequence data makes autoregressive

models such as recurrent neural networks (RNNs), which can be trained to explicitly model

the relevant conditional distributions, a natural choice. VAEs can be enhanced with autore-

gressive decoders to reduce the burden on the latent space to capture local information, and

architectures based on this principle have been used to model images, text and molecules

[16, 17, 19, 45].

To handle raw sequences we therefore designed a model incorporating a convolutional

encoder as well as a hybrid decoder [46] containing feed-forward and autoregressive compo-

nents (AR-VAE, Materials and methods). We found that this hybrid structure was crucial in

allowing the model to fit sequences containing hundreds of amino acids, and helped ensure

that the latent space was used, partially circumventing the well-documented optimization diffi-

culties that arise when training VAE models with autoregressive decoders [17, 46]. As an initial

confirmation of the advantages of the chosen architecture, we scored a set of 3000 sequences

generated by sampling from the prior of the AR-VAE model with the family’s profile HMM.

As baselines we also computed HMM scores for sets of sequences generated by the MSA VAE

model, and by a model having the same architecture as MSA VAE trained on raw sequence

data. The vast majority of sequences generated by both MSA-VAE and AR-VAE were scored

as hits by the HMM (96.8% and 99.7% respectively, at an E-value threshold of 0.001), whereas

the sequences generated by the baseline model trained on raw inputs only scored as hits just

over half the time (57.3%).

Models learn representations encoding features relevant to biological

function

To model the distribution of sequences within a protein family, VAEs develop internal repre-

sentations of the content of sequences at multiple resolutions. To explore the biological signifi-

cance of these representations we first examined the weights in the output layer of the decoder.

At each point in the sequence this layer is parameterised by a weight matrix whose columns

represent learned ‘embeddings’ of amino acid identity, which combine with the network’s hid-

den representation via a softmax transformation to output the probabilities of observing each

amino acid at that point. If the weights of this layer are tied across all positions, as was the case

for AR-VAE models, a single set of embeddings is obtained. Visual inspection of a two dimen-

sional projection of these embeddings obtained using PCA indicates that they reflect the bio-

chemical properties of the various amino acids: for example the negatively charged amino

acids (D and E) and the positively charged amino acids (K, R and H) cluster tightly together

(Fig 2), while the second principal component seems to separate the hydrophobic amino acids

(both the hydrophobic and aromatic groups in the legend) from the polar amino acids, recapit-

ulating the major groupings in traditional classification schemes [47]. As further validation of
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the biological relevance of these embeddings we found that the cosine similarities between

embeddings for pairs of amino acids were correlated with the entries in the BLOSUM 62 sub-

stitution matrix (Fig 2). Finally, to understand the models’ representations at a more global

level, we examined the distribution of latent vectors associated with sequences coming from

distinct sub-families within the set of luciferase-like proteins. The InterPro sub-families form

visually distinct clusters in the space of the first two principal components, especially for the

model trained on the MSA (Fig 3), indicating that global information about functional and

evolutionary relationships between sequences is captured in the latent variables.

Models reproduce patterns of amino acid usage characteristic of members

of the family

Protein families are characterised by statistical features that reflect the shared evolutionary his-

tory and related structure and function of members of the family. Patterns of amino acid con-

servation at individual positions reflect the presence of functionally important sites and are

used by profile HMMs to identify family members [48], while correlations in amino acid usage

Fig 2. Amino acid representations learnt by VAE models capture biochemical properties. Left: pairwise cosine

similarities between amino-acid output embeddings from an AR-VAE model trained on unaligned sequences correlate

with amino acid substitution scores in the BLOSUM 62 substitution matrix (Spearman ρ = 0.423, n = 190); right:

projection of AR-VAE output embedding weights onto first two principal components groups embeddings

corresponding to biochemically related amino acids.

https://doi.org/10.1371/journal.pcbi.1008736.g002

Fig 3. Organization of latent space reflects functional groupings. Visualisation of the latent representation of

validation set sequences for MSA VAE (left) and AR-VAE (right), projected onto first two prinicipal components and

coloured by sub-family annotation derived from InterPro. Only sequences belonging to one of the 9 largest sub-

families are shown.

https://doi.org/10.1371/journal.pcbi.1008736.g003
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at pairs of positions are signatures of structurally constrained evolutionary covariation which

can be used to infer contacts between residues [49–51]. Models such as VAEs which seek to

learn the distribution of sequences in the family can be evaluated for their capacity to repro-

duce these characteristic statistical features. To further probe the ability of the AR-VAE and

MSA VAE models to generate realistic sequences, we therefore calculated first- and second-

order amino acid statistics from the sets of 3000 sequences previously generated by sampling

from the prior of each model and compared them to corresponding statistics calculated from

the sequences in the training set. Making a comparison of these statistics requires an alignment

of the generated sequences to the training sequences. Such an alignment is automatically

available for MSA VAE; for AR-VAE we used Clustal Omega to jointly align all training and

generated sequences, and again filtered columns based on the alignment of the target luxA
sequence. Given these alignments, we computed single-site amino acid frequencies at all posi-

tions and pairwise amino acid frequencies and covariances [32, 52] at all pairs of positions for

both the subset of the alignment corresponding to generated sequences and the subset corre-

sponding to training sequences (Fig 4). Both VAE models were able to reproduce the statistics

observed in the natural sequences reasonably well, with the MSA VAE sequences showing

especially good agreement. As a simple baseline, we also sampled a set of 3000 sequences from

the PFAM profile HMM for the family, and compared statistics at match states to statistics at

positions assigned to match states when aligning the training set to the model. By construction,

HMM models ignore interactions between residues, and therefore generate sequences which

show similarity to natural sequences in first order statistics (patterns of conservation) but

whose covariances are (approximately) zero. We note that detailed direct comparison of the

results between models is challenging due to the statistics being computed from different

model-specific alignments, and in the case of the HMM model, due to the fact that it was not

trained on the same data. Nonetheless, the analysis serves to illustrates the fact that the VAE

models, in contrast to simpler profile models, are able to reproduce second-order statistics

without being fit to them directly, and, in the case of AR-VAE, without requiring aligned

input data.

To obtain a more qualitative understanding of the kinds of dependencies that the models

were able to capture, we used the direct coupling analysis software CCMPred [51] to identify

the most strongly ‘coupled’ pairs of positions in the generated sequences. Direct coupling anal-

ysis seeks to explain the observed (first and second-order) amino acid statistics in terms of

couplings between positions in a statistical model [32]. The most strongly coupled pairs of

positions in natural family alignments are good predictors of contacts in protein 3D structure

[50, 51]. We therefore compared the couplings inferred from generated sequences to the con-

tacts in the 3D structure of luxA by visualising the resulting predicted contact maps (Fig 5).

Whereas the MSA VAE generated sequences which exhibited strong dependencies between

positions at a range of distances, yielding an inferred contact map bearing a reasonable resem-

blance to the ground truth, the sequences generated by the AR-VAE showed a bias towards

local couplings.

Experimental validation of generated sequences

Novel luminescent variants generated from latent vicinity of a target luminescent

protein. Bacterial luciferase is a heterodimeric enzyme which catalyzes the light-emitting

reaction responsible for the bioluminescence of a number of bacterial species. The two homol-

ogous subunits, encoded by the genes luxA and luxB, have different roles: the luxA subunit

contains the active site, while the luxB subunit is thought to provide conformational stability

[53]. Since the luciferase activity is primarily encoded by the luxA gene, we sought to generate
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novel variants of the luxA subunit, taking as our seed sequence the luxA protein from the spe-

cies P. luminescens (UniProt id: P19839). For both AR-VAE and MSA VAE models we gener-

ated a set of candidate variants by sampling latent vectors from the neighbourhood of the

latent space encoding of P19839 (Materials and methods) and passing them through the

decoder. To validate these candidates, 12 sequences from each model were selected for synthe-

sis (S1 File), spanning a range of distances (17-48 total differences including substitutions and

deletions) to P19839.

To assess the activity of the generated variants, the sequences were synthesised and

expressed from a plasmid in an E. coli strain carrying the luxCDBE genes on a second plasmid.

9 of the 11 successfully synthesised sequences generated by the MSA VAE showed measurable

luminescent activity, compared to 6 of 12 generated by the model trained on unaligned

sequences (Fig 6). Furthermore, the MSA VAE sequences showed a level of luminescence

Fig 4. Statistics computed from alignments of generated sequences to natural sequences from the training set. Similarity of statistics between

generated and natural sequences reflect the ability of models to capture important types of sequence variation. Single-site amino acid frequencies (left)

capture patterns of residue conservation at each position in the alignment, while co-occurrence frequencies (centre) and covariances (right) between

amino acid identities at different pairs of positions reflect patterns of evolutionary covariation which may indicate structural or functional constraints.

Sequences were generated by sampling from the prior of the VAE models. For MSA VAE the resulting sequences were already aligned; for the raw

sequences generated by AR-VAE, a new MSA was first constructed by running Clustal Omega on the set of sequences sampled from the model together

with the natural sequences in the training set, using the bacterial luciferase family PFAM profile HMM as an External Profile Alignment, following

which statistics for generated and natural sequences were computed from the corresponding subsets of the alignment. As a baseline we also report

results for statistics generated by the profile HMM from PFAM. In this case the training set statistics were computed from the alignment of the training

sequences to the profile HMM.

https://doi.org/10.1371/journal.pcbi.1008736.g004
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comparable to that of the wild-type protein, while the AR-VAE sequences tended to have

reduced luminescence. Remarkably, there was no evidence in a drop-off in luminescence as

the distance from the wild type increased for the sequences generated by the model trained on

the MSA. This was not true for sequences generated by the model trained on the unaligned

family members. Comparison of the generated sequences to other luxA sequences from the

training set revealed that several of the more distant variants from both models were closer to

other training set sequences than they were to the seed P. luminescens luxA. This was especially

true for the MSA VAE, indicating that this model’s latent space is organised in such a way as

to encourage the exploration of functional regions of sequence space lying between existing

Fig 5. Comparison of inter-residue couplings inferred from generated sequences to contacts in the 3D structure of a luxA protein. Left: contact

map of luxA, showing 1000 closest contacts separated by at least 4 sequence positions. Centre and right: top 1000 couplings inferred from sequences

generated by MSA VAE and AR-VAE respectively, coloured by distance between residues in luxA 3D structure. Couplings were predicted using

CCMPred on samples of 3000 sequences, and only couplings between residues separated by at least 4 sequence positions were shown. The patterns of

inferred couplings reflect the dependencies captured by the models: while MSA VAE captures realistic dependencies between positions at a range of

distances, the sequences generated by AR-VAE exhibit a bias towards local dependencies.

https://doi.org/10.1371/journal.pcbi.1008736.g005

Fig 6. Luminescence measurements for synthesised protein sequences generated from latent vectors sampled from the neighbourhood of the

encoding of the P. luminescens luxA sequence. Left: luminescence of sequences generated by VAE models trained on raw (AR-VAE) or aligned (MSA

VAE) sequences from the family of luciferase-like proteins (mean across fifteen replicates, error bars represent standard deviation). Wild-type sequence

luminescence is displayed as a dashed green line. The dashed grey line represents the detection threshold, conservatively set to twice the mean

untransformed luminescence of a strain lacking luxA. Distance is computed as number of substitutions and indels relative to wild type. The MSA VAE

model was able to generate functional sequences with large numbers of differences to wild type, whereas the AR-VAE model seemed to introduce

deleterious mutations more rapidly. Center and right: measurements of both solubility and luminescence for sequences generated by VAE models

conditioned on predicted solubility level show that conditional models can be used to engineer increased-solubility variants of a luxA sequence while

preserving function. Solubility is reported as the ratio of the amount of protein present in the supernatant to the total amount in both supernatant and

pellet of lysed E. coli cells over-expressing the protein, as measured by a dot blot assay (mean of four technical replicates, error bars represent standard

deviation).

https://doi.org/10.1371/journal.pcbi.1008736.g006
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sequences. Even taking this into account, the luminescent MSA VAE variants were all between

18-35 substitutions (including deletions) from any training set sequence.

Conditional VAEs enable enhancement of solubility of a luxA protein. In order to

assess the ability of our models to generate novel functional sequences with specified biophysi-

cal properties we further sought to use conditional variants of the VAE models to increase the

solubility of the P19839 luxA sequence. Proteins frequently aggregate and precipitate when

expressed at high concentrations [54]. This phenomenon is a challenge in a wide range of

applications, from the production of protein therapeutics to the study of protein biochemistry

and structure, leading to interest in engineering of increased-solubility variants [55]. We con-

sidered P19839 to be a suitable target to test the use of conditional VAE models for solubility

engineering as it was predicted to be insoluble by a recent sequence-based computational solu-

bility prediction method, protein-sol [56], with subsequent experimentation confirming that it

was indeed recovered in the insoluble fraction when expressed in E. coli (S1 Fig).

Training sequences were grouped into three equally-sized bins by predicted solubility value

calculated using protein-sol and the bin label was used as the conditioning variable when train-

ing conditional versions of both AR-VAE and MSA VAE models, corresponding to a specifica-

tion of either low, medium or high solubility for the sequence. P19839 was assigned to the low

solubility bin. In order to generate variants with increased solubility, we sampled latent vectors

from the neighbourhood of the encoding of P19839 and passed them through the decoder

together with the conditioning variable, which was fixed to a value corresponding to either

medium or high solubility. To check that conditioning was successful, we generated 100

sequences at each solubility level from the conditional AR-VAE and MSA VAE models, and

calculated predicted solubility values for the new sequences (Fig 7). Both models were able to

control the predicted solubility level fairly successfully while introducing only relatively few

additional mutations compared to the original decoding. Moreover, comparison with the pre-

dicted solubility of P19839’s closest neighbours in the training dataset reveals that the condi-

tioned sequences are predicted to be much more soluble than any training dataset sequence at

an equivalent distance to P19839 (S2 Fig). Repeating similar analyses for models trained with

different random seeds, we found that while there was some variability in the level of predicted

solubility of variants across seeds for both conditional and unconditional models, conditional

models consistently enabled sampling of higher solubility variants (S3 Fig).

Fig 7. Computational analysis of variants generated by conditional VAE models conditioned on predicted solubility level. Left: distribution

of predicted solubilities of sequences generated when conditioning on each of three solubility levels (median and upper and lower quartiles

indicated with horizontal lines); centre: difference in amino acid composition percentages between generated variants at highest solubility level

and original P19839 luxA sequence, including values for combined amino acid features used in protein-sol prediction algorithm; right:

distribution of charge of luxA variants generated by conditioning on high (top) and medium (bottom) solubility levels. For comparison, the

charge of the original P19839 luxA sequence is shown as a dashed line, the average charge for high solubility sequences in the training set is

shown as a solid green line, and the average charge for medium solubility sequences in the training set is shown as a solid red line).

https://doi.org/10.1371/journal.pcbi.1008736.g007
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To understand the changes being made by the conditional VAE models to increase protein-

sol’s predicted solubility values, we computed several of the features used as inputs by protein-

sol for both the generated sequences and training sequences. The features for generated

sequences tended to have values which were shifted from P19839’s values towards those exhib-

ited on average by soluble sequences from the training set (Fig 7). For example, when asked to

produce sequences at the highest solubility level, the models produced sequences with more

negative charge than P19839, by favouring substitutions of neutral or positively charged resi-

dues with negatively charged aspartic (D) and glutamic (E) acids (Fig 7).

Finally, we randomly selected 6 sequences from each of the two increased solubility levels

for each model for synthesis, and measured luminescence as well as solubility. To measure sol-

ubility, the protein variants were cloned on a pET28/16 plasmid with a His tag and expressed

in Rosetta E. coli cells for 3H, followed by mechanical lysis and centrifugation. The amount of

luxA protein present in the supernatant and in the pellet were measured by performing a dot

blot assay using an anti-HisTag antibody, and the average fraction in the supernatant across

four replicates was taken as a measure of solubility. 5 out of 12 sequences generated by the

MSA VAE model showed clearly improved solubility and 4 out of these maintained a high

luminescence level (Fig 6). Almost all sequences generated by AR-VAE showed signs of

improved solubility, and out of the 4 sequences with a considerable fraction (>10%) in the

supernatant, 3 maintained a high luminescence level. In both cases these improvements were

achieved while introducing only a relatively small number of mutations to the wild type (12-

26), highlighting that conditioning separated information about solubility from information

about general protein content successfully enough to be useful for fairly sensitive engineering.

Model likelihoods predict observed luminescence values. A crucial assumption in the

use of generative models for design is that by learning the distribution of sequences in a partic-

ular family, the model captures patterns of sequence variation that underlie function. In prac-

tice, this is achieved by training the model in such a way as to maximise the likelihood of the

sequences in the family, since these were arrived at by a process of natural selection operating

on a common or related set of functional constraints. If quantitative measurements of function

are available for a (heldout) set of mutated family members, then the relationship between the

likelihood assigned to these sequences by the trained model and their observed functional val-

ues can be used to test this assumption [23, 29, 57, 58]. Previous work adopting this approach

for the unsupervised prediction of the fitness effects of mutations has demonstrated state of

the art performance using VAE models trained on MSAs [23].

As a final test of the ability of our models to capture functional constraints, we therefore

sought to use the full set of synthesised sequences and corresponding luminescence measure-

ments to evaluate the extent to which the likelihoods of our models were predictive of the

experimentally determined luminescence values. To score the sequences we retrained MSA

VAE and AR-VAE models with three different random seeds, to avoid bias when comparing

sequences generated by different methods due to allowing a model to score its own genera-

tions. For both the MSA VAE and AR-VAE models we computed approximations to the likeli-

hood for each sequence via the ELBO (Materials and methods). As baselines we additionally

considered scores obtained from the BLOSUM 62 substitution matrix, and the PFAM profile

HMM for the family (Materials and methods). The scores from the VAE models and baselines

were compared to the experimentally determined luminescence values for the full set of

sequences generated by both unconditional and conditional models, together with the luxA
wild-type sequence.

To assess the models’ scores we computed three metrics: two measures of the rank correla-

tion between the scores and the observed luminescence values, and one classification metric.

For the former, as well as the Spearman rank correlation we report a nonlinear rank
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correlation that is more sensitive to the bimodality of the data, and whose use has previously

been suggested in this context [57]. For the latter we report an AUC score measuring the abil-

ity of the models to separate the sequences into luminescent and non-luminescent. The results

are shown in Table 1. Across all metrics, the likelihoods of both VAE models perform better

than either of the baseline scores, with the MSA VAE likelihoods the highest scoring in each

case, demonstrating the ability of this model to learn functional constraints from natural

sequence variation.

Discussion

We have developed variational autoencoder models capable of generating novel functional

variants of a luminescent protein when trained on a set of homologues of the target. Computa-

tional analysis of separate VAE models developed for raw sequences and aligned sequences

suggested that the version trained on MSA data more plausibly reproduced the statistical fea-

tures characteristic of the structural and functional constraints on members of the family

arrived at and maintained over the course of evolution. Experimental validation confirmed

that a significant fraction of variants of a target luxA protein generated by both models were

functional, while confirming the strengths of the MSA model, which generated a set of variants

which almost without exception retained high levels of luminescence despite diverging by as

many as 35 amino acid differences from any protein in the dataset.

The application of generative models to multiple alignments of protein families is not new.

Markov random field models with pairwise couplings between residues are the basis of the

most successful unsupervised contact prediction methods [50, 51]. Recent advances in efficient

inference methods for these models have been shown to permit the generation of sequences

which accurately reproduce the low-order statistics from natural MSAs [52, 59], and a concur-

rent work has demonstrated the successful application of these methods to protein design [60].

However, such models are restricted to modelling low-order dependencies among variables

and require aligned inputs, motivating the exploration of more flexible and expressive classes

of model. VAEs are able to capture higher-order relationships between variables, can be modi-

fied to straightforwardly and flexibly incorporate conditioning information, and learn latent

spaces which offer various possibilities for controlled generation, including the local sampling

strategy employed here. In cases where additional data relating sequences to some property of

Table 1. Metrics assessing ability of model scores to predict experimental luminescence values.

AUC Spearman Mapped

BLOSUM score 0.57 0.14 0.28

PFAM HMM score 0.76 0.50 0.45

AR-VAE ELBO 0.92 0.57 0.76

MSA VAE ELBO 0.96 0.61 0.79

Scores derived from VAE and baseline models were compared to experimentally determined luminescence

measurements for all tested variants. The AUC metric measures the ability of the model scores to distinguish

between luminescent and non-luminescent sequences, where here all sequences with less than 5% of the raw WT

luminescence level are included in the non-luminescent group, to approximately reflect the bimodality in the

measured values. ‘Mapped’ refers to the robust rank correlation described in [57], which maps model scores to the

experimental scale by assigning the sequence with the nth highest score the nth highest experimental value, then

computes the Pearson correlation. This metric is more sensitive to bimodal data that the Spearman rank correlation.

When computing it, we use the log10-transformed luminescence values. For the VAE models, the reported metric is

the mean across identical models trained with three different random seeds.

https://doi.org/10.1371/journal.pcbi.1008736.t001
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interest is available, the continuous latent space facilitates the conversion of (discrete) sequence

optimisation problems to more straightforward continuous optimisation problems [19].

Finally, VAEs can be adapted to handle raw sequence data, permitting the generation of

full-length sequences and offering the possibility of training on sequence data from multiple

families.

Previously, it was shown that VAE models trained on multiple sequence alignments of sin-

gle protein families could be used to predict the fitness consequences of mutations, by compar-

ing the approximate likelihoods of mutant and wild-type sequences under the model [23, 43].

Unlike these prior works we focus on the generative capabilities of VAE models, and, when

working with aligned sequence input, filter the alignment in such a way as to allow the genera-

tion of full variant sequences of a single target protein. While we found VAEs trained on

aligned sequence data to be effective at reliably generating functional variants at a range of dis-

tances to a target protein, there are nonetheless shortcomings to this approach. Building a

training dataset for this model requires the construction of a large multiple sequence align-

ment. Even where sufficient related sequences are available this poses challenges. Such align-

ments will often have a very large number of columns, and while a relevant subset of columns

can be retained, as done here, this restricts the sequence variety that can be generated, since

only one or a handful of sequences will be fully represented in the retained columns. More-

over, the construction of large alignments remains a difficult problem with a trade-off in this

context between the decline in alignment accuracy associated with the arbitrary addition of

extra homologous sequences [36] and the desire to use large numbers of sequences to exploit

the capacity of the model and fit it reliably.

Here we chose to work with a relatively large family, and sought to exploit this diversity to

fit expressive models. Nonetheless, retraining identical models on randomly selected subsets of

the training data, we found that models trained on only thousands of sequences still success-

fully distinguished between luminescent and non-luminescent sequences (S4 Fig), indicating

that such techniques are applicable beyond the large family studied here. Indeed, prior work

fitting VAEs on MSA data has demonstrated strong results across a range of family sizes, albeit

with the additional use of biologically motivated priors and Bayesian treatment of the model

weights [23].

The possibility of sidestepping the issues associated with alignments is a key advantage of

models trained on raw sequence data. In principle such models would make it possible to

leverage the full variety of protein sequence information by, for example, pretraining models

on entire protein sequence databases [30, 37, 38, 61]; fine-tuning of such models on individual

families has shown promise for some prediction tasks and may facilitate generalisation to

smaller sequence families [30, 37, 38, 62], though application of similar techniques to genera-

tive models for sequence design remains to be demonstrated. Conditional VAEs with feed-for-

ward decoders have previously been used to generate sequences with specified metal binding

sites or structural topologies when trained on raw sequences spanning multiple families [26].

Other recent work has used deep autoregressive models without latent variables to handle raw

sequence data, inspired by similar approaches in natural language processing [29, 30, 37].

Here, seeking to combine the advantages of latent variable models and autoregressive models,

we showed that a VAE with an autoregressive decoder could be used to generate realistic

sequences when trained on the members of a single family, and provided experimental valida-

tion of the function of a number of generated luxA variants. However, we also found that this

model seemed to be less effective at capturing the long-range dependencies between amino

acids at different positions than the MSA-based model. Closing this performance gap is an

important challenge for future work if the potential advantages of training models on raw

sequence data are to be fully realised. Other sequence models such as transformers might be

PLOS COMPUTATIONAL BIOLOGY Generating functional protein variants with variational autoencoders

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008736 February 26, 2021 13 / 23

https://doi.org/10.1371/journal.pcbi.1008736


better suited to capturing long-range interactions and have already shown promise in model-

ling proteins [38, 39, 61]. More fundamentally, evaluating the capability of alternative kinds of

model in silico requires quantitative measures of the quality of generated sequences, and this,

too, remains a difficult problem.

The successful generation of full, functional variants at a range of distances to a given engi-

neering target opens the door to a multitude of applications in the field of protein design. Here

we showed that using conditional variants of the models it was possible to generate new vari-

ants with modified biophysical properties in a controlled way, by generating variants of a luxA
protein with increased solubility relative to wild-type. More generally, a model capable of guid-

ing exploration of distant regions of functional sequence space could be used to significantly

improve the efficiency of existing design approaches [63], or to constrain the search of

sequence space for proteins with desirable properties [19, 40]. The ability to generate novel

sequences with a desired function is an important desideratum in protein engineering

approaches, and while here we have shown that straightforward conditioned generation is suf-

ficient to generate novel, functional sequences satisfying basic biochemical criteria, we expect

that combining these kinds of methods with existing engineering techniques will result in even

more powerful and widely applicable methods for protein sequence design.

Materials and methods

Dataset construction

Selection of sequences. All sequences containing a luciferase-like domain (IPR011251)

were downloaded from InterPro [41]. Sequences longer than 504 amino acids were discarded.

The remaining 69130 sequences were clustered using mmseqs2 [42] with a sequence identity

threshold of 70%. To create a validation set, clusters were randomly removed from the training

set until the number of sequences in all of the removed clusters was 20% of the total. The same

train/validation split was used for models irrespective of whether they took as input aligned or

unaligned versions of the sequences.

Multiple sequence alignment. To create a multiple sequence alignment from the dataset,

the full set of training and validation sequences were aligned using Clustal Omega [36] using

the profile HMM of the bacterial luciferase family from PFAM [44] as an external profile align-

ment to guide the creation of the MSA. The resulting MSA was very wide, presenting potential

modelling challenges. To circumvent these, only a subset of columns were retained on the

basis of the target protein (details below).

Input representation. All sequences are represented as fixed size matrices by one-hot

encoding the amino acids, such that a sequence of length L is represented by a L × 21 matrix

(a gap/padding character is used together with the 20 standard amino acids). When raw

sequences are used as input, a fixed input size is ensured by right padding sequences up to a

length 504 (and dropping sequences exceeding this length). When aligned sequences are used

as input, all columns in the MSA which are assigned gaps in the alignment of the target luxA
protein P19839 are dropped, leaving 360 columns.

Variational autoencoders

VAEs [11] posit a set of latent variables z associated with each input x and model the joint dis-

tribution p(x, z) = pθ(x|z)p(z) of the latents and the observations. The distribution pθ(x|z) over

the values of the observed variables given the latents is parametrised by a neural network (the

‘decoder’) with weights θ, and p(z) is a prior over the latents, typically chosen to be a factorised

Gaussian distribution. An inference model qϕ(z|x) parametrised by a second neural network
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(the ‘encoder’) is introduced to approximate the intractable posterior pyðzjxÞ ¼
pyðxjzÞpðzÞR

pyðxjzÞpðzÞdz
,

allowing the construction of a training objective representing a lower bound on the log-likeli-

hood (the Evidence Lower Bound or ELBO):

Lð�; y; xÞ ¼ Eq�ðzjxÞ
½log pyðxjzÞ � DKLðq�ðzjxÞjjpðzÞÞ� � log pyðxÞ : ð1Þ

Jointly maximising this objective over a set of training examples with respect to the weights

of the two networks enables the generative model and the inference model to be learned

simultaneously.

The VAE framework offers flexibility in the architectures of the encoder and decoder net-

works. In a standard setup in which feed-forward networks are used for both encoder and

decoder, the observed variables are conditionally independent given the latents. A more flexi-

ble output distribution can be obtained by instead decoding autoregressively [17, 45]. That is,

given a latent vector z, the output sequence x = (x1, . . ., xL) is generated one position at a time,

with the decoder modelling the conditional distributions pθ(xi|x1, . . ., xi−1, z) of each output xi

given the values of its predecessors and the latents. This corresponds to modelling the distribu-

tion of x given z in the factorised form pθ(x|z) = ∏i pθ(xi|x1, . . ., xi−1, z).

A VAE can straightforwardly be adapted to model the distribution of the data conditioned

on auxiliary variables c by conditioning the encoder and decoder networks on these variables

[64]. The objective then becomes

Lð�; y; xÞ ¼ Eq�ðzjx;cÞ
½logpyðxjz; cÞ � DKLðq�ðzjx; cÞjjpðzjcÞÞ� : ð2Þ

Model architecture

MSA VAE. Both the encoder and the decoder are fully connected neural networks with

two hidden layers. We experimented with a range of layer sizes and latent dimensions, settling

on 256 units per hidden layer and a latent dimensionality of 10 unless otherwise specified.

ReLU activations were used for hidden units, and softmax activations for the output units.

AR-VAE. We used a convolutional neural network for the encoder, consisting of 5 layers

of 1D convolutions of width 2. Apart from the first layer, the convolutions were applied with a

stride of 2. The first layer used 21 filters; this number was doubled in each successive layer.

PReLU activations were used, and batch normalization was applied in each layer. The size of

the latent dimension was 50.

The decoder consisted of two components, similar to the decoder in a ‘hybrid’ autoregres-

sive VAE model developed for text [46]: an ‘upsampling’ component, which contained 3 layers

of transposed convolutions to ‘upsample’ the latent vector to a sequence of the same length as

the output sequence; and an autoregressive component, which was a GRU with 512 units

which took as input at each timestep the full sequence of previous amino-acids and upsampled

latent information, and output the predicted identity of the amino acid at the next timestep.

Optimization difficulties have been reported when training VAEs with powerful autore-

gressive decoders [17, 46]. To address these we followed [17] in applying dropout to the amino

acid context supplied as input to the GRU during training, such that 45% of the amino acid

context was masked out, forcing the network to rely on the information transmitted via the

upsampled latent code together with the conditional information in the masked amino acid

sequence to make its prediction.

Conditioning on predicted solubility. Solubility predictions were made for all proteins

by running the protein-sol [56] software on the full sequences. The resulting solubility predic-

tions were continuous values ranging between 0 and 1. We discretized this information by
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binning the sequences into 3 equally-sized bins corresponding to low, mid and high solubility.

Bin membership was fed as a one-hot encoded categorical variable as additional input to both

encoder and decoder in conditional versions of the models.

Details of model training and selection procedures

Models were trained using SGD with a batch size of 32 and the validation set was used to mon-

itor performance at the end of each epoch as measured by ELBO loss and amino-acid recon-

struction accuracy. Unless otherwise specified, the Adam optimizer was used with a learning

rate of 0.001. We also monitored the reconstruction accuracy of P19839, the luxA protein

which had been selected for synthesis. This single-datapoint reconstruction accuracy was con-

sidered when choosing model hyperparameters together with the other two metrics and the

evaluations described above. In particular, weights from the epoch which showed the best

reconstruction accuracy of P19839 without evidence of overfitting (i.e. increase in validation

loss) were saved and used to generate the variants of P19839 that were tested experimentally.

Computational analysis of generated sequences

For each model, a set of 3000 sequences was generated by sampling latent vectors from the

prior and decoding greedily. Before further analysis, we constructed an alignment of the

sequences generated by AR-VAE to the training sequences, following the procedure used to

create the training alignment for MSA VAE. In detail, we ran Clustal Omega on the sequences

from the training set together with the generated sequences, using the profile HMM to guide

the alignment, and subsequently dropped all columns unoccupied in the row corresponding to

the P19839 luxA sequence. We used the EVCouplings python package [65] to compute both

single site amino acid frequencies and pairwise co-occurrence frequencies separately for the

aligned generated sequences and the aligned training sequences. Gap frequencies were not

included in the comparison between generated and training statistics. To infer couplings we

ran CCMPred on the aligned generated sequences. We used EVCouplings to compare the

resulting couplings to contacts in the 3D structure of the luxA protein, aggregating structure

information from three luxA structures in PDB (1luc, 3fgc and 1brl).

Scoring of sequences with experimentally determined luminescence values. The likeli-

hood of the VAE models was approximated via the ELBO, with 200 samples used to compute

an average ELBO for each sequence. As baselines we took the score obtained by summing the

BLOSUM scores of all substitutions, and the log-odds score for the sequence returned by scor-

ing it with the PFAM profile HMM for the family of luciferase-like proteins. HMMER was

used to compute log odds scores.

Selection of variants for synthesis

In total 48 sequences were synthesised and tested for function as luciferase luxA subunits.

These corresponded to 12 sequences for each of four models: unconditional and conditional

versions of the MSA VAE trained on aligned sequences, and unconditional and conditional

versions of the AR-VAE model trained on raw sequences.

Unconditional generation. Unconditional models trained on aligned and unaligned

sequence data were used to generate sets of candidate luminescent luxA proteins. 12 sets of

sequences were selected for synthesis from each model. To generate the sequences, first the

one-hot encoded P19839 luxA sequence was passed through the encoder of the VAE model to

obtain the mean and variance for the factorised Gaussian posterior distribution over the latent

variables. To enhance diversity, each dimension of the posterior variance was scaled up by a

fixed factor (of 4 for MSA VAE, 1 for the AR-VAE model). 500 latent vectors were sampled
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from the resulting scaled posterior distribution for each model. In the case of AR-VAE a fur-

ther source of randomness was added to the autoregressive decoding process through temper-

ature sampling (T = 0.5). The resulting sequences were separated into 6 approximately equally

sized bins based on the number of differences from the input protein. 2 variants were chosen

at random from each of these bins for synthesis, allowing variants having a range of distances

to the original P19839 sequence to be tested.

Conditional generation. Mean and variance parameters for the posterior distribution

over the latent variables were obtained by passing the one-hot encoded P19839 luxA sequence

together with its one-hot encoded original solubility level (low) through the encoder. Sequence

diversity was generated differently for the two types of model. For the MSA VAE, 100 latent

vectors were sampled from the posterior for each of the two increased solubility levels (mid

and high), and sequences were generated by passing the vectors together with the desired con-

ditioning values through the decoder. For the AR-VAE models, the mean latent vector was

used to generate all variants, with diversity amongst the 100 candidates generated for each con-

ditioning level coming from temperature sampling (T = 0.3). 6 sequences were selected at ran-

dom from each desired solubility level for each model. To prevent over-similarity amongst the

synthesised sequences, members of pairs of selected sequences with less than 3 differences

between them were replaced at random until all pairs satisfied this diversity criterion.

Synthesis and cloning of sequence variants

The genes corresponding to the different variants of luxA were synthesized by Twist Biosci-

ence. The variants were amplified from synthesized DNA fragments using primers F342/F343

(S4 File) and cloned under the control of the T7 promoter and upstream of C-terminal His-

Tag sequence in plasmid pET28/16 [66] amplified with primers F340/F341 (S4 File) through

Gibson assembly [67]. All plasmids were verified by Sanger sequencing. To study the function

of the variants, the resulting plasmids were introduced in E. coli DH5 alpha carrying all the

other genes of the P. luminescens lux operon on plasmid pDB283. This plasmid was obtained

by deletion of luxA from plasmid pCM17 [68] by amplification using primers B731/LC545

and B732/LC327 (S4 File), followed by Gibson assembly of the two PCR fragments. Transfor-

mants were selected on LB agar containing kanamycin (50 μg/ml) and ampicillin (100 μg/ml).

The plasmids described here are readily available from the authors upon request.

Bioluminescence measurements

Strains were restreaked from −80˚C stocks on LB agar plates with kanamycin (50 μg/ml) and

ampicillin (100 μg/ml). Pictures of the plates were taken with a C400 Azure Biosystem imager.

The luminescence of 15 isolated colonies for each strain was measured. The acquisition time

was adapted to the luminescence level. The reported relative luminescence units (RLUs) are

normalized to the acquisition time used in each picture (S2 File).

Protein solubility measurements

The recombinant plasmids were transformed into E. coli Rosetta cells. The transformants were

grown in liquid Luria-Bertani medium containing chloramphenicol (20 μg/ml) plus ampicillin

(100 μg/ml) at 30˚C until mid exponential phase (OD = 0.8-0.9). Isopropyl-β-D-thiogalacto-

pyranoside (IPTG, 1 mM) was added to induce recombinant protein production and incuba-

tion was pursued for 3 h. Cells were resuspended in 1 ml of lysis buffer (Hepes 50 mM pH7.5,

NaCl 0.4 mM, EDTA 1mM, DTT 1 mM, Triton X-100 0.5%, glycerol 10%), and then lysed on

ice with a precellys homogenizer (Bertin Technologies) using the micro-organism lysing kit

VK01 with the following conditions: 5 times for 30 s at 7800 rpm with 30 s of pause between
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homogeneization steps. Soluble proteins were separated from aggregated proteins and cellular

debris by centrifugation at 5000 g and 4˚C for 20 min. Pellets containing protein aggregates

were resuspended in 1 ml of lysis buffer. For Western blot analysis, the samples were prepared

in Laemmli buffer with addition of 10% beta-mercaptoethanol and denatured at 95˚C for 5

min. Soluble and insoluble fractions were run on a 4-12% Bis-Tris sodium dodecyl sulfate

polyacrylamide gel electrophoresis (SDS-PAGE). Proteins were transferred to a nitrocellulose

membrane (Invitrogen), which was blocked in 3% skim milk in PBS for 30 min and was suc-

cessively incubated with primary (Anti-HisTag diluted 1:500 or Anti-GroEL diluted 1:1000 in

blocking buffer) antibody and secondary antibody (diluted 1:10000) conjugated to DyLight

800 (Tebu), and detected under chemiluminescent imaging system (LI-COR Odyssey Instru-

ment). The His tag was detected using the mouse monoclonal Anti-His-Tag antibody

(Abcam). The GroEL control was detected with the mouse anti-GroEL monoclonal antibody

(Abcam). Three washes for 5 min in PBS were performed after each incubation step. For dot

blot analysis, 2% SDS and 10% β-mercaptoethanol were added to the samples before denatur-

ing for 10 min at 95˚C. 5μl of the denatured samples were directly spotted on the nitrocellulose

membrane and the antibody hybridization performed as for the Western blot. Protein levels

were calculated using the Image Studio software package. Solubility data for the synthesised

sequences is provided in S3 File.

Variants excluded from analysis

In total 48 variants were selected for synthesis. Two variants were excluded from all analysis

of experimental results: the first, one of the unconditional MSA VAE generations, was not

synthesised successfully; the second (mc-1 5-9) showed insufficient expression levels to achieve

reliable measurements (see S1 Fig).

Supporting information

S1 Fig. Quantitative analysis of solubility for each variant of luxA in comparison with wild

type luxA. A. LuxA tagged with a His-tag was quantified by western blot in the supernatant (S,

soluble fraction) and in the pellet (P, insoluble fraction) compared to the empty vector pET28.

GroEL was used as loading control. The His tag was detected using the mouse monoclonal

Anti-His-Tag antibody, whereas the GroEL control was detected with the mouse anti-GroEL

monoclonal antibody. The molecular mass is given in kilodaltons and indicated to the right of

the membrane. Arrowheads indicate the position of recombinant proteins. The levels of solu-

bility for variants of luxA generated by models trained on aligned (B) or raw (C) sequences

were analysed by dot blotting. Aliquots of 5 μl of soluble (S) and insoluble (P) fractions from

IPTG-induced Rosetta cells overexpressing variants of luxA were spotted on nitrocellulose

membrane and their intensities were quantified using the Image Studio software package. The

dot blots of 4 technical replicates used to compute solubility are shown.

(TIF)

S2 Fig. Comparison of predicted solubility of sequences generated by conditioning vs natu-

ral sequences from training set by distance to luxA WT. Mean and standard deviation of

predicted solubility for 500 sequences generated by the conditional MSA VAE at the highest

conditioning level, binned by distance to P19839 luxA, together with predicted solubility for

all training sequences at equivalent distances (black crosses).

(TIF)

S3 Fig. Predicted solubility of top variants generated by conditional and unconditional

MSA VAE models across 10 random seeds. To compare conditional and unconditional
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models, we retrained 10 initialisations of both versions of the MSA VAE model using different

random seeds. 500 variants were sampled from the posterior of the unconditional MSA VAE

models and the highest level of the conditional models. For each random seed and each model,

we computed the predicted solubility values of all sequences within 30 amino acid differences

to luxA P19839. As a measure of the ability of the models to generate diverse high-solubility

variants, we show the mean of the 50th highest predicted value across seeds. Error bars repre-

sent standard deviations. Three initialisations of the conditional model and three initialisations

of the unconditional model generated insufficient variants within the distance threshold and

were therefore excluded.

(TIF)

S4 Fig. Performance of models retrained on subsets of the training data. To assess the

dependence of the models’ ability to learn functional constraints from naturally occurring

sequences on the number of training sequences, we created reduced training sets by ran-

domly subsampling the full training set. For each reduced dataset size, three different ran-

dom subsets of the training set of that size were sampled and used to retrain models. The

luxA WT sequence was included in all training sets. After training, models were assessed by

their ability to predict the luminescence of the synthesised variants, using the same metrics

as in Table 1.

(TIF)

S1 File. Generated sequences.

(FA)

S2 File. Luminescence measurements.

(XLSX)

S3 File. Solubility measurements and predicted solubility values for sequences generated

by conditional models.

(CSV)

S4 File. Oligonucleotidue sequences.

(FA)

S1 Table. Amino acid reconstruction accuracies on heldout clusters by cluster sequence

identity threshold used to construct train/test split. To test generalisation to more distant

family members, we retrained models using three different train/test splits, each of which was

constructed by holding out clusters at a particular sequence identity threshold. In each case

clusters were randomly added to the holdout set until the number of sequences in the holdout

set was 20% of the total. Baseline VAE is a baseline model with the same architecture as MSA

VAE, but the same latent dimension as AR-VAE, trained on raw sequence data.

(TIF)
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