
Genome Sequence of Microbacterium sp.
Strain TPU 3598, a Lumichrome Producer

Kazunori Yamamoto,a,b Yasuhisa Asanoa,b

Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Kurokawa,
Imizu, Toyama, Japana; Asano Active Enzyme Molecule Project, ERATO, JST, Kurokawa, Imizu, Toyama, Japanb

ABSTRACT We report here the genome sequence of Microbacterium sp. strain TPU
3598, previously described as a producer of lumichrome. The sequenced genome
size is 3,787,270 bp, the average G�C content is 68.39%, and 3,674 protein-coding
sequences are predicted.

Microbacterium sp. strain TPU 3598 was isolated from soil as an efficient producer
of lumichrome from riboflavin in our previous study (1). Lumichrome is available

as a photosensitizer (2, 3) and fluorescent dye (4, 5). The strain exhibited high produc-
tion of lumichrome by incubation with a medium containing riboflavin, suggesting that
the enzyme catalyzing the conversion of riboflavin to lumichrome was inducibly
produced. We hypothesized that the lumichrome produced by our strain might be
catalyzed by the riboflavin hydrolase, which has been suggested to catalyze the
conversion of riboflavin to lumichrome (6). Recently, Xu et al. identified the ribo-
flavin hydrolase RcaE in the riboflavin catabolic pathway of Microbacterium mari-
typicum strain G10 and expressed the gene in Escherichia coli BL21(DE3) (7),
although they did not show the gene and amino acid sequences. Similar to
M. maritypicum strain G10, our strain belongs to the genus Microbacterium and
produces the enzyme catalyzing the conversion of riboflavin to lumichrome. In
contrast to M. maritypicum, however, our strain is lipase activity negative and
Voges-Proskauer test positive (1, 8). Thus, elucidating the induction mechanism of
riboflavin hydrolase in Microbacterium sp. strain TPU 3598 may be benefical in
increasing the biochemical production of lumichrome.

Genomic DNA from Microbacterium sp. strain TPU 3598 was prepared from the
cultured cells using NucleoBond AXG 100 (Macherey-Nagel, Germany) and NucleoBond
buffer set III (Macherey-Nagel). Genome library preparation and sequence analysis
were performed using the PacBio RSII platform (Pacific Biosciences, USA) at Beijing
Genomics Institute (BGI, China). The sequence analysis yielded 98,855 reads, totaling
687,856,723 bp, with 180-fold coverage of the genome. The sequence reads were
assembled using Celera Assembler version 3 (9) into two high-quality scaffolds (chro-
mosome, 3,787,270 bp; plasmid, 35,712 bp). The G�C contents of the chromosome and
plasmid were 68.39% and 64.05%, respectively.

The genome and plasmid genes were predicted using Glimmer 3.0 (10) for protein-
coding sequences (CDSs). rRNA and tRNA sequences were predicted using RNAmmer
(11) and tRNAscan (12), respectively. The genome of Microbacterium sp. strain TPU 3598
contained 3,674 open reading frames, 46 tRNAs, and six rRNAs. The plasmid contained
42 open reading frames. The 3,552 CDSs (96.67% of all genome CDSs) were matched to
the known genes using the NCBI NR database, and 212 CDSs were classified as enzymes
related to the metabolism of cofactors and vitamins using the Kyoto Encyclopedia of
Genes and Genomes (KEGG) (13).

This genome sequence will enable the elucidation of mechanisms underlying
efficient lumichrome production by Microbacterium sp. strain TPU 3598.
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Accession number(s). This whole-genome sequence has been deposited in DDBJ/
ENA/GenBank under the accession numbers AP017975 (chromosome) and AP017976
(plasmid).
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