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This study had two goals: to clarify the relationship between electroencephalographic
(EEG) features estimated while non-native speakers listened to a second language (L2)
and their proficiency in L2 determined by a conventional paper test and to provide a
predictive model for L2 proficiency based on EEG features. We measured EEG signals
from 205 native Japanese speakers, who varied widely in English proficiency while they
listened to natural speech in English. Following the EEG measurement, they completed
a conventional English listening test for Japanese speakers. We estimated multivariate
temporal response functions separately for word class, speech rate, word position, and
parts of speech. We found significant negative correlations between listening score and
17 EEG features, which included peak latency of early components (corresponding to
N1 and P2) for both open and closed class words and peak latency and amplitude of
a late component (corresponding to N400) for open class words. On the basis of the
EEG features, we generated a predictive model for Japanese speakers’ English listening
proficiency. The correlation coefficient between the true and predicted listening scores
was 0.51. Our results suggest that L2 or foreign language ability can be assessed using
neural signatures measured while listening to natural speech, without the need of a
conventional paper test.

Keywords: EEG, language proficiency, speech, foreign language, second language, multivariate temporal
response function

INTRODUCTION

Second language (L2) education is becoming increasingly important in the era of globalization.
English has become a lingua franca for speakers of different native languages, and English language
education has spread to many parts of the modernized world. One important aspect of L2 education
is the method of assessment. Currently, several major tests of English as an L2, such as Test of
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English as a Foreign Language, are available for assessing English
proficiency. Taking advantage of sophisticated statistical theories,
such as Item Response Theory (Wainer et al., 2000), these tests
are able to reliably assess L2 proficiency.

However, conventional L2 tests treat language processing
as a “black box” and use behavioral responses generated after
language processing as the basis of assessment. For example,
in a typical listening comprehension test, one listens to L2
sentences and is required to choose the most appropriate answer
from multiple choices. The test score is determined by the
answers chosen, not by the actual mental processes that occurred
while the sentences were being processed. When the answer
is wrong, something must have gone wrong in the process of
listening comprehension, but that usually remains unknown in
conventional tests.

Brain imaging allows us to obtain detailed information about
language processing. Advances in brain imaging technology have
made it possible to visualize language processing in the human
brain (Poeppel, 2014). Event-related brain potentials (ERPs),
in particular, can reveal the millisecond-by-millisecond time
courses of neural activity involved in language processing as it
unfolds in the brain (Luck, 2014).

Past ERP studies have suggested that the possibility that L2
ability can be assessed by neural signatures alone. A rich body of
research has shown that proficiency in an L2 is one of the major
factors that determine brain responses to stimuli in that language
(for review, Caffarra et al., 2015). For example, ERPs recorded
from L2 learners vary as a function of L2 proficiency. Syntax-
related ERP components such as the P600 are often missing
or reduced in size in low-proficiency L2 learners. The N400
component, which is modulated by semantic factors, is usually
present even in low-proficiency learners, but their N400 latencies
may be later than those of high-proficiency learners (Ojima et al.,
2005). Overall, an increase in L2 proficiency leads to systematic
changes in neural signatures (Kotz, 2009), which could be used
systematicity for the assessment of L2 proficiency.

To achieve this goal, we must first address the problems
associated with the ecological validity of brain imaging studies of
language. In most neuroimaging experiments, linguistic stimuli
are presented in a unit-by-unit manner. For example, ERP studies
of sentence processing in the visual modality commonly present
words in the center of the display, one word at a time (Kutas
and Hillyard, 1980). However, such a mode of reading is rarely
experienced in daily life. Functional magnetic resonance imaging
studies and auditory ERP studies are less artificial because they
usually present one whole sentence at a time (Friederici et al.,
1993; Embick et al., 2000); yet, even so, everyday language
involves reading or listening to a series of sentences continuously.
To tackle these problems, our present study not only chose the
auditory presentation mode but also used natural conversations
and monologs as stimuli, each of which consisted of a series of
sentences representing a cohesive story.

In addition, a significant proportion of the sentence stimuli
in these experiments contained some form of violation, such as
syntactic errors or semantic incongruencies (e.g., Neville et al.,
1991; Friederici et al., 1993). This violation paradigm is useful
for probing a particular aspect of linguistic processing, such as

syntax and semantics. In this paradigm, approximately 25–50%
of the sentence stimuli contain a violation to ensure a sufficiently
high signal-to-noise ratio for the violation condition. This leads
to a further reduction in ecological validity because the rate
of anomalies (e.g., inadvertent grammatical mistakes or slips of
the tongue) is far lower in typical language use; such phrase
structure violations commonly used in these paradigms are rarely
encountered in everyday language.

Another important problem with previous studies concerns
sample size. In a typical ERP study of L2 processing, the
experimental group consists of approximately 10–20 participants
(Caffarra et al., 2015); studies with >50 participants in total
are uncommon. The use of brain imaging for the assessment of
L2 ability requires imaging data from L2 learners with a wide
range of proficiency. Results from different studies cannot be
combined to achieve this range because different experimental
settings likely produce different results, even in the same set of
participants. This necessitates that L2 learners with a broad range
of proficiency levels be tested in a single study that uses consistent
experimental parameters.

Our study aimed to identify electroencephalographic (EEG)
indices that show a relationship with L2 proficiency and to
develop a predictive model for L2 proficiency based on these EEG
indices. We measured EEG signals from >200 native Japanese
speakers with a wide range of English proficiency. To ensure high
ecological validity, we presented natural speech without artificial
interruptions within or between sentences that mimicked a
situation of normal speech listening. Furthermore, the speech
stimuli did not contain any violations, such as syntactic errors
or semantic incongruencies; they consisted purely of well-
formed and meaningful sentences. For analysis of cortical speech
processing, we applied a multivariate temporal response function
(mTRF) approach. The mTRF can be thought of as a filter
that describes the linear transformation of ongoing multivariate
stimuli to ongoing neural response (Crosse et al., 2016). This
makes it possible to separate the overlapping responses caused
by different, temporally close features. Therefore, this approach
is ideal to analyze EEG signals for natural speech. In fact,
this approach has been used in several studies on lower-order
processing, such as speech envelopes and phonemes, and higher-
order processing, such as semantic processing during listening
to natural speech. (Di Liberto et al., 2015; Broderick et al.,
2018; Etard and Reichenbach, 2019; Paul et al., 2020). In the
present study, we targeted word processing during listening
to natural speech. First, we estimated mTRF separately for
word class (open or closed), because previous ERP studies have
shown a differential characteristic of ERPs between open class
words and closed class words (closed class words elicit a slow
negative shift with an onset of 400 ms; Brown et al., 1999;
Munte et al., 2001). In addition, we estimated mTRF separately
for word position, speech rate, and parts of speech. We then
investigated whether the latencies and amplitudes of the TRF
components were related to the participants’ English listening
comprehension scores for Japanese speakers, conducted after
the ERP experiment. Finally, we generated a predictive model
for Japanese speakers’ English listening proficiency based on
the EEG indices.
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MATERIALS AND METHODS

Participants
Two-hundred and five adult monolingual native Japanese
speakers (98 females) who learned English as their first foreign
language participated in the experiment (age range 20–39 years).
All participants had normal or corrected-to-normal vision
and normal hearing. They had no history of neurological or
psychiatric disease. The data of six participants were excluded
from the analysis because their EEG data contained large artifacts.
In the remaining 199 participants (96 males and 103 females;
24.2 ± 4.8 years old), the learning experience of English was as
follows: 140 started learning English at age 12 years when English
education becomes compulsory, 49 began learning English
between the ages of 6 and 11 years, and the remaining 10 began at
age 0–5 years. Handedness for the participants was as follows: 192
right-handed [laterality quotient (LQ) ≥ 70 in 181 participants]
and 7 left-handed (LQ ≤ −70 in 3 participants) as confirmed
by the Edinburgh Handedness Inventory (Oldfield, 1971). The
study was approved by the Ethics Committee for Human and
Animal Research of the National Institute of Information and
Communications Technology, Japan. All participants provided
informed consent to participate in the study.

Materials
We selected 33 samples of English speech, 17 conversations
and 16 monologs from the listening tests of EIKEN (EIKEN
Foundation of Japan, https://www.eiken.or.jp/eiken/en/), which
is one of the most widely used English-language testing programs
in Japan. The grades of speech were as follows: six conversations
(mean length: 16.3 ± 1.1 s) and six monologs (18.0 ± 1.4 s)
from Grade 3, which corresponds to level A1 of the Common
European Framework of Reference for Languages (CEFR)1; four
conversations (30.0 ± 1.9 s) and four monologs (30.4 ± 4.2 s)
from Grade Pre-2, which corresponds to CEFR level A2; four
conversations (30.8 ± 2.3 s) and four monologs (32.6 ± 3.1 s)
from Grade 2, which corresponds to CEFR level B1; and three
conversations (35.9 ± 1.2 s) and two monologs (71.0 ± 1.0 s)
from Grade Pre-1, which corresponds to CEFR level B2. The
numbers of speech stimuli for each grade were determined so that
the numbers of words would be roughly the same across grades.
The topics of the speech stimuli ranged widely, such as work,
daily life, nature, science, travel, and history.

We focused on EEG responses to the following stimulus
features to investigate the relationship between brain activity
and English proficiency: word class (open or closed), parts of
speech, speech rate, and word position. Parts of speech for
all words were identified with Text Inspector2, a web tool
for analyzing texts. We then divided the parts of speech into
the following 15 classes: general noun, proper noun, verb,
adjective, adverb, and number, which are referred to as open class
words; article/determiner, pronoun, interrogative word (wh-
word), relative pronoun, BE verb, auxiliary verb, preposition,
and conjunction, which are referred to as closed class words;

1http://www.eiken.or.jp/eiken/en/grades/
2https://textinspector.com/

and others (Supplementary Table 1). The open and closed class
words were further divided into three classes based on their
positions within each speech stimulus (i.e., beginning, middle,
and end positions), except for interrogative sentences that were
presented at the end of the speech stimuli. Speech rates for
each word were determined as syllable per minute (SPM), which
was calculated for each sentence containing the word. On the
basis of a previous study that reported that the mean SPM
rate for adult native speakers of American English is 250 ± 25
(standard deviation, SD; Robb et al., 2004), the open and closed
class words were divided into two classes based on their speech
rates: fast (SPM ≥ 230) and slow (SPM < 230). In addition,
all phonemes were identified using Penn Phonetics Lab Forced
Aligner for English3, an automatic phonetic alignment toolkit.
The phonemes were classified by their articulatory properties:
short vowel, long vowel, diphthong, plosive, affricate, fricative,
nasal, liquid, and semivowel (Supplementary Table 2). A native
English speaker (American man) identified the onset time for
each word and phoneme and the onset and offset times for
each sentence by listening to the speech stimuli and checking
the sound waveforms and spectrograms using WaveSurfer4, an
open-source speech/sound analysis tool (Figure 1).

EEG Experiment
The experiment was divided into four blocks. The first and third
blocks consisted of nine and eight conversations, respectively,
and the second and fourth blocks each consisted of eight
monologs. In each block, the grade of speech increased in order
from Grade 3 (easy) to Grade Pre-1 (difficult). The stimulus
sequence of each trial was as follows. First, the instruction
“Press” was visually presented on a liquid crystal display (EIZO
Corporation, Japan) that was placed in front of the participant.
Each speech stimulus started with the participant pressing a
key, and stimuli were presented binaurally through earphones
(RHA Technologies Ltd., United Kingdom). The participants
were instructed to fixate on a fixation point (+) presented in the
center of the display while listening to the speech stimuli. Each
conversation/monolog was followed by only one question (e.g.,
“How many people were at the meeting yesterday?” or “Why
is Mr. Carson disappointed in Beth?”). Following the question,
four choices were presented on the display. The participants were
instructed to press one of the keys (1–4) that corresponded to
their answer or to press 0 if they did not understand the speech
stimuli. We calculated the accuracy rate for the questions in
the EEG experiment for each participant. The visual and audio
stimuli were presented using the Presentation stimulus delivery
software (Neurobehavioral Systems, Inc., United States).

Electroencephalographic and electrooculogram (EOG) signals
were continuously measured throughout all blocks using an
eight-channel wireless EEG device and measurement software
(Polymate Mini AP108 and Mobile Acquisition Monitor 2.02,
Miyuki Giken Co. Ltd., Japan). Active electrodes were placed on
Fz, Cz, Pz, FC5, and FC6 locations according to the International
10–10 system for EEG measurement, on the lateral of and above

3https://web.sas.upenn.edu/phonetics-lab/facilities/
4https://sourceforge.net/projects/wavesurfer/
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FIGURE 1 | Outline of mTRF estimation for the word features in English speech.

the left outer canthus for EOG measurement, and on the left
earlobe for re-reference. All signals were sampled at 500 Hz
using the forehead as the ground and the right earlobe as the
online reference. Audio stimuli were presented stereophonically;
one channel contained the speech stimuli to be presented to the
participants, and the other contained a square wave as a trigger to
indicate the onset of each speech stimulus, which was input into
the EEG device to synchronize the EEG and EOG signals with
the speech stimuli.

English Listening Scores
After the EEG experiment, participants completed the
EIKEN Institution Based Assessment (EIKEN Foundation
of Japan, Japan) English listening test for Japanese speakers for
approximately 20 min. The test scores (EIKEN CSE listening
scores) correspond to CEFR levels as follows: <429 corresponds
to level A1, 430–502 to A2, 503–602 to B1, 603–689 to B2, and
690–720 to C1 or higher5.

EEG Analysis
Preprocessing of the EEG data was carried out using MATLAB
(MathWorks Inc., United States) and the EEGLAB toolbox

5https://www.eiken.or.jp/eiken/en/association/products/; https://www.eiken.or.
jp/eiken/en/grades/

(Delorme and Makeig, 2004). All recorded signals were re-
referenced to the average of both earlobes offline. After applying
a bandpass FIR filter between 0.5 and 50 Hz (3,300th order),
the signals were resampled at 200 Hz. Artifact subspace
reconstruction was performed to remove transient, large-
amplitude artifacts from the EEG data6. We then applied
independent component analysis to the data, and artifactual
components caused by eye movements and blinks were removed.
Finally, we applied a low-pass FIR filter of 7 Hz (1,320th order)
to the EEG data.

For each speech stimulus, we prepared four kinds of stimulus
matrices (features × points) at the same sampling rate as the
preprocessed EEG data: (1) word class (open and closed), (2)
word position (beginning, middle, and end), (3) speech rate
(fast and slow), and (4) parts of speech (Figure 1). 9 types of
phonemes classified by the articulatory properties and sentence
beginnings and endings were also added to each stimulus matrix.
Each stimulus matrix consisted of time-aligned impulses with
a value of 1 at the onset time for each feature and 0 at the
other times. We used the mTRF toolbox in MATLAB (Crosse
et al., 2016) to compute mTRFs that describe the linear mapping
between stimulus features and the preprocessed EEG data for
each electrode using each stimulus matrix. The continuous EEG

6https://sccn.ucsd.edu/wiki/Artifact_Subspace_Reconstruction_(ASR)
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response was assumed to consist of convolutions of the stimulus
vectors and TRFs:

Rch (t) =
Nc∑
i=1

wc
i ⊗ Sci (t)+ ε ch (t) , (1)

where Rch(t) is the continuous EEG response at time point t of
the chth channel, SiC(t) is the stimulus vector of the ith feature in
the cth stimulus matrix, wi

C is the TRF of the ith feature in the
cth stimulus matrix, NC is the number of the features in the cth
stimulus matrix, and εch(t) is the residual response in the ch-th
channel. The TRF weights over the range of time lags from−200
to 1,500 ms, relative to the onset of each feature, were estimated
using ridge regression with a regularization parameter, λ, of
102. Optimization of the regularization parameter was performed
using leave-one-out cross-validation (LOOCV) employing the
mTRFcrossval function (Crosse et al., 2016). For each participant,
TRFs for each channel were calculated for every ridge parameter
(λ = 1, 10, 102, 103, and 104) for each trial. Then, the trials
were rotated 33 times, such that each trial was used as the test
data and the remaining trials were treated as the training data.
For each channel, averaged TRFs over single-trial TRFs for the
training set were used to predict the neural response for the test
trial; this was repeated for each of the different ridge parameters.
This process was performed repeatedly until all trials were applied
to the test data of each participant. Mean square errors (MSEs)
between the actual and predicted responses were averaged over
trials, channels, and participants (Paul et al., 2020). Finally, we
obtained the optimal ridge parameter that showed the lowest
MSE. We estimated the TRFs separately for word class, word
position, speech rate, and parts of speech.

The TRFs were averaged across all 199 participants for each
feature and identified three components: the N1, P2, and a late
component (i.e., N400 for open class words and slow negativity
for closed class words). We used the amplitudes and peak
latencies of the three components for each feature and electrode
as potential indices for predicting English proficiency. We
determined the latency ranges to estimate the mean amplitudes
of each component based on the grand-averaged TRF waveforms
for the open and closed class words (Figure 2). For the N1 and
P2 components, the amplitude of each TRF for each electrode
was averaged within a latency range of 90–140 ms and 190–
250 ms, respectively; these latency ranges are common to open
and closed class words. For the late components, the amplitude
of each TRF for each electrode was averaged within a latency
range of 300–600 ms for the open class words and 500–800 ms for
the closed class words. Furthermore, the late components were
analyzed separately for speech rate, word position, and parts of
speech. In the TRFs for the open class words with each speech
rate and those for the open class words in each word position
the mean amplitudes within a latency range of 300–600 ms were
calculated for each feature (i.e., fast, slow, beginning, middle,
and end). In order to estimate the word position effect on the
late component for the open class words (i.e., the N400), we
calculated the differences in amplitude between the beginning,
middle, and end positions. In the TRFs for each part of speech,
mean amplitudes were calculated within a latency range of

300–600 ms for each open class word (i.e., general/proper noun,
verb, adjective, and adverb) and 500–800 ms for each closed class
word (i.e., article/determiner, pronoun, BE verb, auxiliary verb,
and preposition). The TRFs for numbers, interrogative words,
relative pronouns, and conjunctions were excluded from the
analysis because we did not find a clear slow negativity in the
grand-averaged waveforms.

Similarly to the amplitude analysis, peak latencies of the
N1 and P2 were determined for each word class. For the late
components, peak latencies were detected separately for speech
rate, word position, and parts of speech. To detect peak latencies,
we used a dynamic time warping (DTW) algorithm, which
is a technique to non-linearly map two temporal sequences
that vary in time or speed (Sakoe and Chiba, 1978). DTW
has been used to automatically detect peak latencies of ERP
components (Assecondi et al., 2009; Zoumpoulaki et al., 2015).
First, we detected the peak latencies of grand-averaged TRF
waveforms across all participants for each feature. Then, the TRF
for each participant and the grand-averaged TRF were mapped
onto a common time axis using DTW, so that the time point
corresponding to the peak latency obtained from the grand-
averaged TRF was automatically identified. The grand-averaged
TRFs for the pronouns, BE verbs, and auxiliary verbs had no clear
peaks; therefore, the latency for these features were not used for
further analysis. We calculated the latency differences of the late
component between the beginning, middle, and end positions.
A total of 117 EEG features were used for subsequent analyses.

Correlation Analysis and Score
Prediction
Pearson correlation coefficients (r) were calculated to assess the
relationships between each electrophysiological feature and the
EIKEN CSE listening scores. EEG features with | r| ≥ 0.2
were used to predict individual listening scores. In cases where
| r| ≥ 0.2 was observed for multiple electrodes for a feature,
we used the electrode with the highest r. The EEG features
were transformed into z-scores before further analyses. For the
prediction model, we trained a least absolute shrinkage and
selection operator (LASSO) regression model using the selected
EEG features. The loss function of the LASSO is

L (β) =
1

2N

N∑
i=1

(yi − β0 − xTi β)2
+ λ

M∑
j =1

∣∣βj∣∣ , (2)

where N is the number of training data, M is the number of
features, β0 and β are regression coefficients, yi and xi are the
true listening score and EEG feature vector at the ith sample,
respectively, and λ is a regularization hyperparameter. The model
was evaluated using LOOCV. For all 199 samples, one sample was
used as test data and the remaining samples were used as training
data. The optimal hyperparameter, λ, in the regularization term
of LASSO was selected from 500 evenly spaced values ranging
between 0 and 5 by performing the 10-fold cross-validation in
which λ with the minimum root MSE (RMSE) was selected by
the training data. This procedure was performed repeatedly until
all samples were applied to the test data. Finally, we calculated
Pearson correlation coefficients to evaluate the concordance
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FIGURE 2 | Grand-averaged TRFs across all 199 participants for open and closed class words. Two early components, corresponding to N1 and P2, are shown in
the TRFs for both open and closed words at all three channels. The peak latencies were slightly shorter in the TRFs for the closed class words (N1: 110 ms; P2:
210 ms at Cz) than those for the open class words (N1: 120 ms; P2: 215 ms at Cz). The TRFs for the open class words showed a late component, corresponding to
the N400, and the TRFs for the closed class words showed a later and slower negativity. The peak latencies for the open class words and the closed class words at
Cz were 455 and 700 ms, respectively. Gray shades show the latency ranges used to estimate the mean amplitudes of each component: 90–140 ms for the N1
(light gray), 190–250 ms for the P2 (median gray), and 300–600 and 500–800 ms for the late component for the open and closed words (dark gray).

between the true and predicted listening scores. To estimate the
contribution of the features, regression coefficients of each EEG
feature were averaged across all models, and their absolute values
were normalized in the range of 0 to 1.

Analysis on the Effect of Age of
Acquisition
The age of acquisition (age at which the learner started L2
acquisition) has long been suspected to be a critical factor
influencing ERP responses elicited by L2 stimuli, particularly in
the domain of syntax (Weber-Fox and Neville, 1996), although
it remains unclear how much influence it actually has on the
brain activity involved in L2 processing (Caffarra et al., 2015).
Therefore, as an additional analysis, we calculated Spearman
correlation coefficients to assess the relationships between the age

of acquisition and the English listening score and between the age
of acquisition and each EEG feature.

RESULTS

Task Accuracy and English Listening
Scores
The accuracy for the task in the EEG experiment ranged from
0.09 to 1.00 (mean ± SD: 0.73 ± 0.02; median: 0.82). The
scores for the English listening test conducted after the EEG
experiment (EIKEN CSE listening scores) ranged from 328 to 687
(mean± SD: 539.1± 67.4; median: 551.0). These results indicate
that participants ranged widely in English listening proficiency
level. We found a high correlation between task accuracy and
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listening score (Spearman correlation coefficient ρ = 0.81; 95%
confidence interval: 0.74, 0.87; p= 3.23× 10−48).

Characteristics of the Grand-Averaged
TRFs for the Open and Closed Class
Words
The grand-averaged TRFs for the open class words across all
199 participants showed three components that corresponded to
the N1, P2, and N400 (Figure 2), all at midline channels. The
peak latencies at Cz were 120, 215, and 455 ms, respectively.
Similarly, the grand-averaged TRFs for the closed class words
showed three components corresponding to N1, P2, and a slow
negativity (Figure 2). The peak latencies at Cz were 110, 210,
and 700 ms, respectively. To clarify the differences in the neural
responses between different levels of English proficiency, we
analyzed grand-averaged TRFs for the open and closed class
words separately from individuals who showed higher listening
scores (n = 49; mean score 611 ± 23; CEFR B2 level or higher;
Figure 3A) and lower listening scores (n = 51; mean scores
446 ± 49; CEFR A1/A2 level; Figure 3D). These waveforms
indicated that the temporal characteristics of the responses
differed between the two groups. The individuals with lower
scores showed longer peak latencies of the N1, P2, and N400
(125, 230, and 530 ms at Pz, respectively) for the open class
words compared with those with higher scores (120, 200, and
420 ms, respectively). They also showed longer peak latencies of
the N1 and P2 (115 and 215 ms at Cz, respectively) for the closed
class words compared with those with higher scores (110 and
205 ms, respectively).

Correlations Between English Listening
Scores and EEG Features
In order to investigate whether the peak latencies and amplitudes
of each component were linearly related to the listening scores,
we calculated Pearson correlation coefficients. Including the peak
latencies of the aforementioned open and closed class words,
17 EEG features of the N1, P2, N400, and slow negativity
showed significant correlations (| r| > 0.2) with the listening
scores (Table 1). The N1 peak latencies of both the open and
closed class words were negatively correlated with the listening
scores (open class: Pz, r = −0.23, p = 1.5 × 10−3, Figure 3C;
closed class: Cz, r = −0.28, p = 7.3 × 10−5, Figure 3E).
However, no significant correlation was found between N1
amplitudes and listening scores. Similarly to the N1, P2 peak
latencies of the open (Cz, r = −0.21, p = 2.7 × 10−3; Pz,
r = −0.30, p = 1.2 × 10−5, Figure 3C) and closed class
words (Cz, r = −0.23, p = 1.3 × 10−3, Figure 3E; Pz,
r = −0.22, p = 2.0 × 10−3) were negatively correlated with the
listening scores. In addition, the P2 amplitudes of the open class
words were negatively correlated with the listening scores (Cz,
r =−0.31, p= 1.0× 10−5, Figure 3B).

As for the late component (i.e., N400 for the open class
words and the slow negativity for the closed class words),
negative correlations with the listening scores were found for
the amplitudes of both word classes (open class: Cz, r = −0.20,
p = 3.9 × 10−3, Figure 3B; closed class: Cz, r = −0.27,

p = 1.6 × 10−4, Figure 3F) and also in the peak latencies of the
open class words (Pz, r = −0.30, p = 2.0 × 10−5, Figure 3C).
Furthermore, the relationship between the late components and
the listening scores were investigated in terms of the speech rate,
parts of speech, and word position. For the speech rate, the
correlation coefficient was more negative for slow speech (Cz,
r = −0.24, p = 7.8 × 10−4; Pz, r = −0.38, p = 3.4 × 10−8) than
for fast speech (Cz, r = −0.22, p = 1.9 × 10−3; Figures 4A,B).
For parts of speech, the following features showed negative
correlations with the listening scores: peak latencies of general
nouns (Cz, r = −0.24, p = 5.8 × 10−4; Pz, r = −0.33,
p = 1.0 × 10−6, Figures 4C,D), proper nouns (Cz, r = −0.22,
p= 2.1× 10−3), verbs (Pz, r=−0.21, p= 2.9× 10−3), adjectives
(Cz, r = −0.21, p = 2.7 × 10−3), adverbs (Fz, r = −0.23,
p = 1.3 × 10−3), and amplitude of BE verbs (Cz, r = −0.21,
p = 3.1 × 10−3). For word position, the difference in amplitude
between the beginning and end positions in the speech stimuli
(i.e., beginning-end) was negatively correlated with the listening
scores (Pz, r =−0.21, p= 2.5× 10−3, Figures 4E,F).

Predictive Model for English Proficiency
Based on EEG Features
Using the 17 EEG features, we predicted listening scores using
LASSO regression. The regularization parameter, λ, optimized
using 10-fold cross-validation ranged from 0.83 to 2.25, where
12 to 14 features were selected, and the RMSE for the training
data ranged from 56.9 to 60.2. The Pearson correlation coefficient
between the true and predicted scores of the test data was 0.51
(95% confidence interval: 0.40, 0.60; p = 2.9 × 10−14), and
the mean absolute difference between the true and predicted
listening scores was 40.6 ± 36.1 (Figure 5A). The features
that showed high contribution to the prediction (>0.5) were as
follows (Figure 5B): P2 amplitudes of the open class words (the
contribution value: 1.00); peak latencies of the N400 for slow
speech (0.86), general nouns (0.83), verbs (0.55), and adjectives
(0.50); amplitudes of the slow negativity for BE verbs (0.71); and
N1 latencies of the closed class words (0.53).

Correlations With Age of Acquisition
The age of acquisition did not show any correlation (Spearman
correlation coefficient, | ρ| < 0.2) with the English listening score
or any of the EEG features.

DISCUSSION

In this study, we measured EEG signals while native Japanese
speakers with widely ranging English proficiency levels listened
to English natural speech to estimate the TRFs for various
types of word features (i.e., word class, word position, speech
rate, and parts of speech). Our results showed significant linear
correlations between listening scores and EEG responses for
several word features. The most important result of our study
was that English proficiency for non-native speakers could
be predicted on the basis of EEG responses; we observed
good concordance between the real and predicted listening
scores (correlation coefficient of 0.51). Previous EEG studies
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FIGURE 3 | Differences in TRFs between open and closed class words by English proficiency. (A) Grand-averaged TRFs for open class words across 49
participants with higher listening scores (blue) and across 51 participants with lower listening scores (red). The peak latencies of the N1, P2, and N400 components
(Pz) were longer in the participants with lower scores (125, 230, and 530 ms, respectively) than those with higher scores (120, 200, and 420 ms, respectively).
(B) The mean P2 and N400 (Cz) amplitudes of the open class words were negatively correlated with the listening scores. (C) The N1, P2, and N400 peak latencies
(Pz) of the open class words were negatively correlated with the listening scores. (D) Grand-averaged TRFs for the closed class words (Cz) across 49 participants
with higher listening scores (blue) and across 51 participants with lower listening scores (red). The peak latencies of the N1 and P2 components were longer in the
participants with lower scores (115 and 215 ms, respectively) than in those with higher scores (110 and 205 ms, respectively). (E) The peak latencies of the N1 and
P2 (Cz) of the closed class words were negatively correlated with the listening scores. (F) The mean amplitudes of the slow negativity (Cz) of the closed class words
were negatively correlated with the listening scores.

in late L2 learners demonstrated differential responses between
groups with high and low L2 proficiency by comparing the
neural responses of words comprising semantic incongruencies
or syntactic violations with those of congruous/correct words
(Ojima et al., 2005; Rossi et al., 2006; Newman et al., 2012;
Bowden et al., 2013). To the best of our knowledge, there has
not been any study that has predicted L2 proficiency using EEG
responses. Evidence that L2 proficiency can be estimated using
brain activity was demonstrated in a recent functional near-
infrared spectroscopy (fNIRS) study. Lei et al. (2020) achieved
high accuracy (∼80%) for classifying high and low L2 proficiency
by applying machine learning on fNIRS data. In addition to
the classification, their study differed from our study in that
spatial brain activation information was used. In our study, we
used temporal activation information for regression to predict
L2 proficiency to take advantage of the high temporal resolution
of EEG. Our results demonstrated that L2 proficiency could be

predicted from the cortical responses within 1 s (N1, P2, and
late components) of the input of each word during continuous
speech. The use of EEG signals enabled the direct evaluation
of rapid L2 processing in the brain that is not possible with
conventional tests.

We found negative correlations between the N1 peak latencies
of both word classes and the listening scores. The N1 component
is involved in the perception of auditory stimuli and is modulated
by selective attention, where amplitudes are higher for attended
than unattended stimuli (Hillyard et al., 1973; Hink et al.,
1978; Hansen and Hillyard, 1980). The importance of selective
attention in L2 learning has been previously shown. In a previous
ERP study, Batterink and Neville (2014) showed that L2 learners
who spontaneously direct greater attention to open class words
rather than closed class words when processing L2 input gain
better syntactic learning. In eye-tracking studies on Japanese
learners of English, participants who paid more attention to the

Frontiers in Human Neuroscience | www.frontiersin.org 8 July 2021 | Volume 15 | Article 665809

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-665809 July 12, 2021 Time: 17:25 # 9

Ihara et al. L2 Proficiency Prediction by EEG

TABLE 1 | Electroencephalographical features showing correlation (| r| > 0.2) with
the listening scores.

Component Feature Ch r (95% CI) p values

N1 Open class lat Pz −0.23
(−0.37, −0.07)

1.5 × 10−3

Closed class lat Cz −0.28
(−0.42, −0.13)

7.3 × 10−5

P2 Open class lat Cz −0.21
(−0.33, −0.09)

2.7 × 10−3

Pz −0.30
(−0.43, −0.16)

1.2 × 10−5

amp Cz −0.31
(−0.44, −0.15)

1.0 × 10−5

Closed class lat Cz −0.23
(−0.36, −0.09)

1.3 × 10−3

Pz −0.22
(−0.33, −0.10)

2.0 × 10−3

Late
component

Open class lat Pz −0.30
(−0.43, −0.17)

2.0 × 10−5

amp Cz −0.20
(−0.33, −0.07)

3.9 × 10−3

Closed class amp Cz −0.27
(−0.41, −0.11)

1.6 × 10−4

Fast lat Cz −0.22
(−0.37, −0.06)

1.9 × 10−3

Slow lat Cz −0.24
(−0.36, −0.11)

7.8 × 10−4

Pz −0.38
(−0.50, −0.26)

3.4 × 10−8

Beginning-end amp Pz −0.21
(−0.36, −0.05)

2.5 × 10−3

General noun lat Cz −0.24
(−0.37, −0.09)

5.8 × 10−4

Pz −0.33
(−0.46, −0.21)

1.0 × 10−6

Proper noun lat Cz −0.22
(−0.36, −0.06)

2.1 × 10−3

Verb lat Pz −0.21
(−0.33, −0.08)

2.9 × 10−3

Adjective lat Cz −0.21
(−0.34, −0.07)

2.7 × 10−3

Adverb lat Fz −0.23
(−0.34, −0.09)

1.3 × 10−3

BE-verb amp Cz −0.21
(−0.36, −0.06)

3.1 × 10−3

lat, latency; amp, amplitude; and 95% CIs, 95% confidence intervals (lower bound
and upper bound).

task-relevant contents showed better task performance, although
most participants did not read selectively (Prichard and Atkins,
2018, 2019). In addition, adult bilinguals with high L2 proficiency
have shown greater cognitive control as compared with those
with low L2 proficiency (Xie, 2018; Xie and Pisano, 2019; Dash
and Kar, 2020). These results indicate that more attention to
vital points in L2 input leads better comprehension. One of the
vital points for speech perception is word onset. It has been
proposed that the N1 reflects natural speech segmentation by
allocating greater attention to word onsets (Sanders et al., 2002;
Sanders and Neville, 2003a; Abla et al., 2008). Sanders and Neville
(2003a) reported that the initial syllables of words produce larger

N1s than medial syllables when listening to natural speech. The
word onset effect was also observed for nonsense words presented
as continuous speech after participants had successfully learned
these words (Sanders et al., 2002). Given that the N1 could be an
index of natural speech segmentation, the shorter N1 latencies
in individuals with high proficiency might reflect their faster
speech segmentation of natural speech compared with those with
low proficiency.

The P2 amplitudes of the open class words and the P2 latencies
of both word classes were negatively correlated with the listening
scores. Similarly to the N1, the auditory P2 has been found
to be modulated by attention: P2 amplitudes decrease as levels
of attentiveness increase (Crowley and Colrain, 2004), which is
in contrast with the N1 amplitude, and moreover, it increases
during the process of falling asleep (Nielsen-Bohlman et al., 1991;
Ogilvie et al., 1991; Winter et al., 1995). Therefore, a possible
explanation for the smaller P2 amplitude in individuals with
higher proficiency is that they allocate greater attention to each
word when listening to speech compared with those with lower
proficiency. Furthermore, the maintenance of attention would
lead to top-down processing by using contextual information. In
previous ERP studies on audiovisual speech perception, visual
information that predicted an upcoming speech sound had
shorter P2 and N1 latencies and lower P2 amplitudes compared
with the perception of audio speech alone (van Wassenhove et al.,
2005; Ganesh et al., 2014; Sorati and Behne, 2019). Furthermore,
temporal facilitation (i.e., shortening of latencies) of the N1 and
P2 increased as visual information became more predictive of
upcoming auditory targets (van Wassenhove et al., 2005; Ganesh
et al., 2014). These results suggest that P2 and N1 latencies and
P2 amplitudes will decrease if the information preceding the
upcoming word is useful for predicting the word. On the basis
of these findings, our results indicate that individuals with higher
proficiency construct more contexts while listening to speech
to help predict upcoming words, which leads to the accelerated
processing of each word.

Similarly to the N1 and P2 latencies, the peak latencies of
the late component of the open class words, which corresponds
to the N400, showed a negative correlation with the listening
scores. The negative correlation was found regardless of speech
rate or parts of speech. On the basis of numerous EEG studies that
have reported evidence that the N400 reflects semantic processing
(Kutas and Federmeier, 2011), our result indicates that semantic
processing is faster if English proficiency is higher. Individuals
with higher proficiency showed not only shorter N400 latencies
but also shorter N1 and P2 latencies. Therefore, we suggest
that in those with high proficiency, faster low-order processing,
such as phonetic perception and speech segmentation, leads
to an acceleration of high-order processing, such as semantic
processing. Our result of varied N400 peak latencies dependent
on language proficiency is consistent with our previous study
(Ojima et al., 2005), where we compared the N400 effect
for semantic violations in written English sentences between
English native speakers, Japanese native speakers who were highly
proficient in English, and Japanese native speakers who had low
English proficiency. The N400 latency was longest in the Japanese
native speakers with low English proficiency and shortest in the
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FIGURE 4 | Relationship between the N400 and English proficiency, estimated separately for speech rate, parts of speech, and word position. (A) Grand-averaged
TRFs (Cz) for words spoken at a fast (up) and slow (bottom) speech rate across 49 participants with higher listening scores (blue) and across 51 participants with
lower scores (red). The N400 peak latencies differed between the two groups for both speech rates. (B) Negative correlation between N400 peak latencies for slow
speech (Pz) and the listening scores. (C) Grand-averaged TRFs (Pz) for general nouns in participants with higher (blue) and lower (red) listening scores showing clear
between-group differences in N400 peak latencies. (D) The N400 peak latencies of general nouns (Pz) were negatively correlated with the listening scores.
(E) Grand-averaged TRFs (Pz) for words at the beginning (solid line) and end (dashed line) of the speech stimuli in participants with higher (blue) and lower (red)
listening scores. The difference in N400 amplitudes between the beginning and end positions of speech stimuli (i.e., the word position effect) was larger in the group
with higher listening scores than in the group with lower listening scores. (F) The word position effect was negatively correlated with the listening scores. This
indicated that the N400 amplitude was lower in the end position than in the beginning position, which was to a larger extent in the participants with higher proficiency.

Frontiers in Human Neuroscience | www.frontiersin.org 10 July 2021 | Volume 15 | Article 665809

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-665809 July 12, 2021 Time: 17:25 # 11

Ihara et al. L2 Proficiency Prediction by EEG

FIGURE 5 | Results of the predictive model for English proficiency based on EEG features. (A) The regression model predicted true listening scores, with a mean
absolute difference between the true and predicted listening scores of 40.6 ± 36.1. The Pearson correlation coefficient was 0.51 (p = 2.9 × 10−14).
(B) Contributions of the EEG features shown in the range of 0 to 1.

English native speakers, which suggested that the N400 latency
could be an index of language proficiency. The present findings
further demonstrated that the N400 latency for L2 speech without
any violations has a linear correlation with L2 proficiency.

The N400 amplitude of the open class words also showed a
negative correlation with the listening scores; that is, the N400
was larger in individuals with higher listening scores. This finding
is inconsistent with a previous study. Newman et al. (2012)
demonstrated that, in native Spanish speakers who learned
English as an L2, N400 amplitudes of semantically congruous
words were higher in participants with lower proficiency
than in those with higher proficiency, whereas the amplitudes
of semantically incongruous words were not influenced by
proficiency. This was attributed to the increased cost of semantic
integration in the participants with lower proficiency due to less
efficient lexical access and/or poorer ability to predict words in
well-formed sentences. Our contrasting result might be because
of differences in stimulus modality and presentation method. In
the previous study, sentences were visually presented one word
at a time with a 200-ms interval between words. In contrast,
we presented words as part of continuous natural speech,
which may introduce greater difficulty in recognizing each word
individually, depending on listening proficiency. Our result could
be explained from previous studies on speech segmentation. Like
the N1, the N400 has also been proposed as an index of online
speech segmentation processing (Sanders et al., 2002; Sanders and
Neville, 2003b; Abla et al., 2008). Sanders and Neville (2003b)
reported that late Japanese learners of English showed a larger
N400 to words that were presented as continuous English speech
but did not show N1 word onset effects. In another study, low-
proficiency learners showed a larger N400 to non-words involved
in continuous speech after learning the non-words but showed
no N1 word onset effects (Sanders et al., 2002). They proposed

that the N1 amplitude may be indexing fast, online speech
segmentation in high-proficiency learners and native speakers,
whereas the later N400 effect may reflect a slower or more variable
segmentation process. Furthermore, numerous studies have
shown that the N400 is elicited by meaningful stimuli in various
modalities, including written and spoken language and nonverbal
stimuli (Kutas and Federmeier, 2011) and that amplitudes vary
on the basis of the ease of accessing information from long-
term memory and integrating semantic representations into the
preceding context (Kutas and Federmeier, 2000). Taken together,
our result suggests that individuals with higher proficiency are
better able to segment natural speech as a result of extracting
more meaningful information from each word.

Previous studies have shown that N400 amplitude can be an
index for L2 proficiency, especially in the early learning stage. For
example, McLaughlin et al. (2004) showed that, after only 14 h of
classroom L2 instruction, N400 amplitude differed for L2 words
and pseudo-words. Pu et al. (2016) conducted an experiment with
a translation priming paradigm in which L2 words were followed
by mother-tongue words (translations of the prime words or
not), and showed that the N400 priming effect was presented
after less than 4 h of laboratory L2 vocabulary training. In
these studies, words were presented one-by-one, and participants
were required to perform a judgment task on the words. In
the present study, we presented natural speech (conversations
and monologs) to the participants and analyzed the EEG signal
during their listening. Our finding that the N400 amplitude and
latency for words in natural speech had a correlation with the L2
score provides a possibility of assessing L2 proficiency from EEG
signals for language input we experience in daily life.

The difference in N400 amplitudes between word positions
(i.e., beginning position minus end position) was also negatively
correlated with the listening scores. It has been shown that
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N400 amplitudes of open class words are modulated by the
position of the eliciting word within a congruent sentence,
where words in later positions produce smaller N400s than
those in earlier positions (Kutas et al., 1988; Van Petten and
Kutas, 1990). Decreased N400 amplitudes in later positions
are caused by the incremental buildup of semantic constraints
(Kutas and Federmeier, 2011). Therefore, our result indicates that
highly proficient individuals build up and use more contextual
information from the beginning of the speech to the end, which
enables better comprehension.

The amplitudes for the closed class words, as well as the open
class words, were negatively correlated with the listening scores.
The analyses for parts of speech revealed a negative correlation
between the amplitudes of the BE verbs and the listening scores.
Several different usages of BE verbs were grouped into one
category in our study; however, previous behavioral research on
the acquisition of English as an L2 has shown that different usages
of BE verbs are learned at different stages of L2 development.
According to the natural order hypothesis (Krashen, 1982), the
copula BE (as in “He is great”) is acquired earlier than the
auxiliary BE (as in “He is running”). The correlation between
the amplitudes of the BE verbs and the listening scores that we
observed may be linked to L2 developmental stages.

Our study has several limitations. For example, we targeted
EEG responses to words, based on the above-mentioned previous
studies regarding ERPs and L2 proficiency, that is, only EEG
responses for words were used in the predictive model for
English listening proficiency. One of the major difficulties found
in L2 listening comprehension is the difficulty of phonetic
perception before word processing, because, in most cases,
the L1 and L2 have different phonemes and syllable systems.
In addition, difficulties in L2 comprehension at word level
inevitably lead to difficulties in comprehension at sentence and
discourse levels. Therefore, including EEG features for lower-
level (i.e., phonetic perception) and higher-level processing
(i.e., sentence and discourse) could create a more accurate
prediction model. Further research is needed to clarify this
point. The second limitation of our study is that the results
did not show how the characteristics of TRFs obtained from
the native Japanese speakers differed from those from native
speakers of English. This point should be clarified by future work.
Third, predicting proficiency directly from the preprocessed
EEG data using deep learning methods could make it possible
to decrease the efforts for the EEG analysis and also increase
the prediction accuracy. In order to conduct this approach,
more data samples are needed. Fourth, we did not collect
the participants’ educational backgrounds, but they may affect
our results. Finally, although the use of EEG signals has
advantages to assess language processing, EEG measurement
is more expensive and more difficult to conduct than the
conventional paper-based tests. For the application of our
research, low-cost and easy-to-use EEG devices, which can
be used by anyone without the need for special training, are
required. Recently, the development of easy-to-use EEG devices

has progressed, and, in the future, when low-cost, high-quality,
easy-to-use devices are available, our method will be useful in the
field of L2 learning.

In conclusion, in this study, we generated a predictive model
for Japanese speakers’ English listening proficiency on the basis
of EEG signals measured while they were listening to natural
English speech. This study provides important information that
L2 or foreign language ability can be assessed using neural
signatures, without the need for conventional paper tests.
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