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Abstract

Several neurodegenerative diseases cause loss of cortical neurons, leading to sensory,

motor, and cognitive impairments. Studies in different animal models have raised the

possibility that transplantation of human cortical neuronal progenitors, generated

from pluripotent stem cells, might be developed into a novel therapeutic strategy for

disorders affecting cerebral cortex. For example, we have shown that human long-

term neuroepithelial-like stem (lt-NES) cell-derived cortical neurons, produced from

induced pluripotent stem cells and transplanted into stroke-injured adult rat cortex,

improve neurological deficits and establish both afferent and efferent morphological

and functional connections with host cortical neurons. So far, all studies with human

pluripotent stem cell-derived neurons have been carried out using xenotransplanta-

tion in animal models. Whether these neurons can integrate also into adult human

brain circuitry is unknown. Here, we show that cortically fated lt-NES cells, which are

able to form functional synaptic networks in cell culture, differentiate to mature,

layer-specific cortical neurons when transplanted ex vivo onto organotypic cultures

of adult human cortex. The grafted neurons are functional and establish both afferent

and efferent synapses with adult human cortical neurons in the slices as evidenced

by immuno-electron microscopy, rabies virus retrograde monosynaptic tracing, and

whole-cell patch-clamp recordings. Our findings provide the first evidence that plu-

ripotent stem cell-derived neurons can integrate into adult host neural networks also

in a human-to-human grafting situation, thereby supporting their potential future

clinical use to promote recovery by neuronal replacement in the patient's diseased

brain.
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1 | INTRODUCTION

Brain injury, stroke, epilepsy, and chronic neurodegenerative disorders

such as Alzheimer's disease and amyotrophic lateral sclerosis are asso-

ciated with loss or dysfunction of cortical neurons, leading to motor,

sensory, and cognitive deficits.1-4 Effective treatments to restore

function are lacking. Novel strategies to replace the lost neurons and

reestablish their afferent and efferent connections in order to recon-

struct damaged neural circuitries are highly warranted. Recent studies

in animal models provide evidence that this might be possible using

cell transplantation. Mouse embryonic cortical neurons implanted into

photolytically injured visual cortex of adult mice were shown to

receive specific inputs from host neurons.5 Grafted neurons extended

axons, reaching proper targets, and exhibited functional properties

indistinguishable from those of the original cells in the visual cortex.

Similarly, visual cortical neurons, generated from mouse embryonic

stem (ES) cells and transplanted into the ibotenic acid-injured adult

mouse visual cortex, reestablished reciprocal synaptic connections

with targets of damaged cortex.6 Some of the grafted neurons

responded to visual stimuli. Also human ES cell-derived visual cortical

neurons implanted in the same model sent axonal projections resem-

bling the normal ones and could receive functional synaptic input from

the host brain.7

We have previously demonstrated that cortically fated human-

induced pluripotent stem (iPS) cell-derived long-term neuroepithelial-

like stem (lt-NES) cells, transplanted into rats in the vicinity of a corti-

cal stroke with massive loss of excitatory projection neurons, differen-

tiate to mature functional cortical neurons.8-10 These neurons receive

afferents from a normal pattern of different brain areas including syn-

aptic inputs from thalamus, which are activated by physiological sen-

sory stimuli.8,9 Grafted neurons send axonal projections to both

hemispheres. These projections become myelinated and form excit-

atory, glutamatergic synapses on host cortical neurons.10 Intracortical

transplantation of human lt-NES-derived cortical neurons is associ-

ated with improvement of stroke-induced sensorimotor deficits,8-10 at

least partly due to nonneuronal mechanisms. Optogenetic inhibition

of the grafted, integrated neurons indicates that their activity is

involved in the regulation of the stroke-affected animals' motor

behavior.10

Taken together, available results from several studies in different

animal models raise the possibility that transplantation of human cor-

tical neuronal progenitors generated from iPS or ES cells might be

developed into a novel therapeutic strategy for disorders affecting

cerebral cortex. However, when considering a potential future clinical

application, it should be noted that all available studies with human

pluripotent stem cell-derived neurons have been carried out using

xenotransplantation in animal models. Thus, whether such neurons

can survive long-term, differentiate to the appropriate subtype, estab-

lish connections, and influence host brain function after transplanta-

tion also into the human CNS is unknown. In fact, the only solid

in vivo evidence for anatomical and functional integration of human-

derived neurons grafted into human brain has been obtained using

intrastriatal implantation of human embryonic mesencephalic tissue,

rich in dopaminergic neuroblasts, in patients with Parkinson's

disease.11

Here, we have explored, using organotypic slice cultures of adult

human cortex, the behavior of human cortically fated lt-NES cells, pre-

viously tested in experimental cortical stroke,8-10 after ex vivo trans-

plantation into the adult human brain tissue environment. We

demonstrate, for the first time, that grafted human pluripotent stem

cell-derived cortical progenitors survive, develop into different pheno-

types of mature cortical neurons, exhibit electrophysiological proper-

ties of functional neurons, and establish afferent and efferent synaptic

connections with the adult human cortical neurons. Our findings pro-

vide supportive evidence for the potential clinical translation of

human pluripotent stem cell-derived cortical progenitors as a new tool

to reconstruct neural circuitry in human disorders affecting cerebral

cortex.

2 | MATERIALS AND METHODS

2.1 | Derivation of iPS cells and lt-NES cell lines

Human iPS cell-derived lt-NES cells were produced as previously

described.12-14 Briefly, human dermal fibroblasts were subjected to

sendai virus transduction with the reprogramming factors Oct4, Sox2,

KLF4, and c-MYC (CytoTune iPS 2.0 Sendai Reprogramming kit, Invi-

trogen) and split into plates with mouse embryonic fibroblasts. Colo-

nies were picked and expanded to establish iPS cell lines in feeder-

free conditions using mTeSR medium (Invitrogen). On day 0 of neural

induction, iPS cells were split using dispase (0.5 mg/mL) in order to

collect the whole colonies. Colonies were resuspended in embryoid

body (EB) medium (Dulbecco's modified Eagle medium/F12 [DMEM/

F12], 10% KSR, 2-Mercaptoethanol [1:1000], nonessential amino

acids [NMEAA] [1:100], Glutamine [1:100]) and plated into ultra-low-
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attachment culture dishes to generate EBs. The EB medium with

freshly dissolved Rock inhibitor, 3 μM Dorsomorphin (Sigma-Aldrich)

and 10 μM SB431542 (Sigma-Aldrich) was changed daily. On day 5,

EBs were collected and plated on 0.1 mg/mL poly-L-ornithine and

10 mg/mL laminin (both from Sigma) coated six well plates in EB

medium with 3 μM Dorsomorphin and 10 μM SB431542. On day 6,

medium was changed to N2 medium (DMEM-F12 [without Hepes,

+Glutamine], N2 [1:100], glucose [1.6 g/L]) supplemented with 1 μM

Dorsomorphin and 10 ng/mL bFGF. Six days later, neural rosettes

were carefully picked and grown in suspension in N2 medium with

20 ng/mL bFGF. On day 14, neural rosette spheroids were collected

and dissociated with trypsin. The small clumps obtained were grown

in adhesion on poly-L-ornithine/laminin-coated dishes in the presence

of 10 ng/mL bFGF, 10 ng/mL EGF (both from Peprotech) and B27

(1:1000, Invitrogen). The iPS cell-derived lt-NES cell line was routinely

cultured and expanded on poly-L-ornithine/laminin-coated plates into

the same media and passaged at a ratio of 1:2 to 1:3 every second to

third day. lt-NES cells used for transplantation into rat or ex vivo

human tissue were transduced with a lentiviral vector carrying green

fluorescent protein (GFP) under constitutive promoter (GFP+ lt-NES

cells).

2.2 | Generation of cortical neurons

Differentiation of lt-NES cells to neurons with a cortical phenotype

was performed as previously described.8 Briefly, growth factors

(bFGF, EGF) and B27 were omitted and lt-NES cells were cultured at

low density in differentiation-defined medium (DDM) containing

DMEM/F12 with glutamine (Sigma) and supplemented with N2 (1x),

NMEAA (0.1 mM), sodium pyruvate (1 mM), bovine serum albumin

(500 mg/mL), and 2-mercaptoethanol (0.1 mM) in the presence of

bone morphogenetic protein 4 (BMP4) (10 ng/mL, R&D Systems),

wingless-type MMTV integration site family, member 3A (Wnt3A)

(10 ng/mL, R&D Systems), and cyclopamine (1 mM, Calbiochem) for

8 days. Neural progenitors were then dissociated and plated on glass

coverslips in BrainPhys/DDM (1:1) medium supplemented with B27

(1:50 without retinoid acid, Invitrogen).

Derivation of human embryonic neurons was obtained from cere-

bral cortex of aborted human embryos according to guidelines

approved by the Lund-Malmö Ethical Committee, as described in Ref-

erence 15.

2.3 | Animals and surgical procedures

Adult (225-250 g) male Sprague-Dawley (SD) rats (Charles River) were

used. All procedures were conducted in accordance with the Euro-

pean Union Directive (2010/63/EU) and were approved by the ethical

committee for the use of laboratory animals at Lund University and

the Swedish Board of Agriculture (Dnr. M68-16). Focal ischemic injury

in cerebral cortex was induced by distal middle cerebral artery occlu-

sion,16-18 and intracortical implantation of cortically fated lt-NES cells

was performed stereotaxically 48 hours later as described previ-

ously.8,9 A total of 300 000 cells were implanted into somatosensory

cortex in close proximity to the ischemic area.

2.4 | Organotypic cultures of adult human cortex

Healthy neocortical tissue was obtained with informed consent by

resection of a small piece of the middle temporal gyrus from patients

undergoing elective surgery for temporal lobe epilepsy (n = 7, both

genders, median age 35 years) according to guidelines approved by

the Regional Ethical Committee, Lund (Dnr. H15 642/2008). The tis-

sue slices were derived and handled as previously described.15 Briefly,

the surgically resected tissue was immediately kept in ice-cold modi-

fied human artificial cerebrospinal fluid and sliced on a Vibratome

(Leica VT1200S). Slices of 300-μm thickness were transferred to

inserts containing Alvetex scaffold membranes (Reinnervate) in six

well plates filled with slice culture medium (BrainPhys medium,

Stemcell) supplemented with B27, Glutamax (1:200), Gentamycin

(50 μg/mL) (Life Technologies), and incubated in 5% CO2 at 37�C.

The organotypic slices were kept in culture for at least 1 week before

ex vivo transplantation of GFP+ lt-NES cells.

2.5 | Coculture of lt-NES cells with human
organotypic cortical slices

GFP+ lt-NES cells were detached at day 8 of differentiation and

resuspended into 50 μL of pure cold Matrigel Matrix (Corning). After

partially removing the medium, 10 μL of the suspension mix

(1 000 000 cells) were collected into a cold glass capillary and injected

as small drops stabbing the semi-dry slices at various sites. Three

slices were transplanted with 10 μL of suspension leading to approxi-

mately 300 000 cells per slice. Additional medium was added

30 minutes later to fully immerse the organotypic culture. The

medium was changed once a week and coculture was maintained for

4 to 8 weeks before electrophysiology recordings or fixation.

2.6 | Electrophysiology

Cortically fated lt-NES cells were grown on coverslips and transferred

to the recording chamber for in vitro recordings. Acute slices of adult

rat brain or human cortex were prepared following published proto-

cols.19,20 Whole-cell patch-clamp recordings were performed as

described15 with a double patch-clamp EPC10 amplifier (HEKA) using

PatchMaster for data acquisition. Data were analyzed offline with

FitMaster, IgorPro, and NeuroMatic. Action potential (AP) threshold

was detected as the onset of the AP, AP amplitude was measured

from the AP threshold to the AP peak, AP rise time was determined

as the time from the AP threshold to the AP peak, the half AP ampli-

tude width was determined as the time between the rising and

decaying phase of the AP measured at half the amplitude of the AP,
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and the afterhyperpolarization (AHP) was determined as the differ-

ence between the AHP peak and the AP threshold.

2.7 | Calcium imaging

Recordings of spontaneous activity in cell culture were analyzed

with NETCAL.21 Active neurons were identified as bright circular

objects over the images and their fluorescence brightness along time

extracted. These individual fluorescence traces were then normal-

ized as DF/F0 (%) = 100 � (F − F0)/F0, where F0 is the fluorescence

value at rest. The timing of neuronal activations (spikes) was inferred

with the Schmitt trigger method, which scanned the fluorescence

traces for events that first passed a high threshold (set as +2 stan-

dard deviations [SDs] above the mean of the trace) and then

remained elevated above a second lower threshold (+1 SDs) for at

least 2 seconds.

Functional connectivity among neurons was computed on the

inferred spike trains using generalized transfer entropy (GTE),22,23 and

by setting a significance threshold of the mean +2 SDs of the joint

GTE distribution. The analysis provided the connectivity adjacency

matrix, which was visualized as a spatial map with Gephi. Community

analysis was carried out using the Brain Connectivity Toolbox24 in

combination with the Louvain's algorithm.25 The number and size of

network communities were portrayed along the diagonal of the adja-

cency matrix.

2.8 | ΔG-rabies vector production and tracing
analysis

The construct for the tracing vector was purchased from AddGene

(ID: 30195). High-titre preparations of lentiviral particles were pro-

duced according to protocol from Dull and coworkers (Dull et al,

1998) in a biosafety level 2 environment. Pseudo-typed rabies vector

was produced following the protocol described previously26 per-

forming minor adjustments. In the studies of afferent and efferent

projections, the lt-NES cells and the adult human cortical tissue,

respectively, were first transfected with tracing vector followed by

transfection with modified rabies virus. The TVA receptor and rabies

GP in the lentiviral tracing vector are expressed under Syn-I promoter

and, therefore, after transfection of adult human cortical tissue with

this vector, only neurons will express the transgene. Viral infection to

study afferent synaptic inputs was carried out by addition of 5 μL of

lentiviral tracing vector on lt-NES cell culture. Cells were transplanted

afterward and 5 μL of 5% 4G-rabies vector was added on top of the

organotypic slices 8 weeks after grafting. To analyze efferent synaptic

outputs, 5 μL of tracing vector were added on the organotypic slices

before lt-NES cell ex vivo transplantation. At 8 weeks after grafting,

5 μL of 5% 4G-rabies vector were added on top of the human

coculture. Organotypic cultures were fixed 1 week after 4G-rabies

vector addition, and staining was performed to visualize starter and

traced neurons.

2.9 | Immunohistochemistry

Cortically fated lt-NES cells plated on glass coverslips were fixed in

4% paraformaldehyde (PFA) for 20 minutes at room temperature. Rats

were sacrificed 2 months after transplantation and brains were fixed

overnight at 4�C in 4% PFA before slicing. The organotypic slices were

fixed overnight with 4% PFA at 4�C.

To perform staining of in vitro cell culture and rat brain slices,

after blocking with 5% of normal donkey serum, primary antibodies

were applied overnight in blocking solution at 4�C (Supplementary

Table S2) followed by 2 hours incubation of fluorophore-conjugated

secondary antibodies (1:200, Molecular Probes or Jackson Laborato-

ries) at room temperature. Nuclei were stained with Hoechst (Ther-

moFisher Scientific) for 10 minutes and sections were mounted with

Dabco mounting medium.

For staining of organotypic cultures, slices were incubated for

12 hours at 4�C in permeabilization solution (0.02% BSA + 1% Triton

X-100 in phosphate-buffered saline [PBS]) and overnight at 4�C in

blocking solution (5% normal serum +1% BSA + 0.2% Triton X-100

in PBS). Primary antibodies (Supplementary Table S2) were diluted in

blocking solution and incubated for 48 hours at 4�C. Secondary anti-

bodies were applied in blocking solution for 48 hours at 4�C. Finally,

nuclei were stained with Hoechst for 2 hours before sections were

mounted.

Antigen retrieval was performed in all stainings when antibodies

recognizing nuclear cortical markers (Tbr1, Satb2, CDP/Cux1,

Ctip2, and Brn2) were used. Cells or organotypic cultures were kept in

sodium citrate (pH 6.0) with Tween 0.05% for 30 minutes at 65�C.

Images were obtained using bright field (IX51, Olympus, Ger-

many), epifluorescence (BX61, Olympus, Germany), and laser scanning

confocal (LSM 780, Zeiss, Germany) microscopes and a Virtual Slide

Scanning System (VS-120-S6-W, Olympus).

2.10 | Immuno-electron microscopy (iEM)

Organotypic cultures were fixed with 2% PFA and 0.2% glutaralde-

hyde in 0.1 M phosphate buffer, pH 7.4. Immunostaining and

processing of the sample were performed as described.9 GFP/DAB-

positive lt-NES cells were identified based on intense black DAB reac-

tion product within the cytoplasm, whereas nucleus and mitochondria

were DAB negative. Sections were mounted on grids, examined, and

photographed using a transmission electron microscope JEM-100CX

(JEOL, Japan).

2.11 | Statistical analysis

Statistical analysis was performed using Prism 7 software (GraphPad).

Unpaired t test was used when data were normally distributed,

whereas Mann-Whitney test was used when data did not pass

the normality test. Significance was set at P < .05. Data are

mean ± SEM.
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3 | RESULTS

3.1 | Human lt-NES cell-derived cortical neurons
form functional synaptic networks in cell culture

Our previous studies demonstrated the capacity of intracortically

grafted lt-NES cell-derived progenitors, fated to a cortical phenotype,

to differentiate to cortical excitatory neurons and establish afferent

and efferent functional projections to cortical and subcortical areas in

the stroke-injured rat.8-10 In this study, we used a new lt-NES cell line

which was generated from dermal fibroblasts by optimizing the proto-

col developed by Koch et al27 and combining it with dual SMAD inhi-

bition to ensure more efficient neural conversion12,14 (Supplementary

Figure S1A). We first demonstrated that the new cell line

F IGURE 1 Human cortically fated
long-term neuroepithelial-like stem (lt-
NES) cells generate functional, mature
neuronal networks in vitro. A, Confocal
immunohistochemical images showing
presence of PSD95 and synapsin I in a
Map2 positive lt-NES cell (arrow) after
8 weeks of differentiation. Ho, Hoechst.
Scale bars = 20 μm for the merged and
10 μm for the isolated images. B-G,
Calcium imaging studies performed on
days 55 to 60. B, Representative
spontaneous activity traces. Blue
arrowheads depict activity events
(spikes). C, Representative frame of the
recording with the regions of interest
(ROIs) detected for analysis (yellow
squares). Scale bar = 100 μm. D, Raster
plot of network activity with 16.8 ± 0.4
firings/neuron per hour. E, Adjacency
matrix of neuron-to-neuron effective
connections. Functional communities
are highlighted in the diagonal and
reflect neurons that tend to coactivate

together. F, Effective network. Nodes
correspond to neurons and links to
effective connections. Color of the
nodes depicts connectivity degree k
(number of incoming and outgoing
connections), as stated in the scale
below. G, Raster plot of network activity
in response to glutamate (arrow),
reflecting specific synchronous
response. H, Current traces illustrate
presence of spontaneous excitatory
postsynaptic currents (sEPSCs) in lt-NES
cells cocultured with mouse astrocytes
and in human embryonic cortical
neurons (hCtx). sEPSCs were isolated in
the presence of 1 μM TTX and 100 μM
PTX, and abolished upon addition of
50 μM D-APV and 5 μM NBQX. I,
sEPSC frequency, amplitude, coefficient
of variation (CV), and decay time, tau,
are illustrated as bar diagrams. *P < .05.
Recordings and analysis are
representative of four replicates with
similar results
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(Supplementary Figure S1B,C) expressed neural markers similar to

those described for the lt-NES cell line used in our previous studies.13

We then committed the lt-NES cells to a cortical neuronal phenotype

in vitro following the protocol by Tornero and coworkers.8 In accor-

dance to previous findings,8 the generated cells expressed markers of

different subtypes of cortical neurons (Supplementary Figure S2A-C)

and were functional as evidenced by patch-clamp recordings (Supple-

mentary Figure S3A-G). The cortically fated lt-NES cells differentiated

to functional neurons also in vivo after transplantation into stroke-

injured rat cortex (Supplementary Figure S4A-E).

We explored the ability of the lt-NES cell-derived cortical neurons

to form synaptic connections and establish neuronal networks after

F IGURE 2 Human cortically fated long-term neuroepithelial-like stem (lt-NES) cells survive long-term and express markers of cortical neurons
after ex vivo transplantation onto organotypic cultures of adult human cortex. A, Overview of an organotypic culture at 4 weeks after ex vivo
transplantation of GFP+ lt-NES cells. B,C, Confocal images of the distribution of GFP+ lt-NES cells at (B) 4 and (C) 8 weeks after ex vivo
transplantation. Note: images in A, B, and C are obtained from different slice cultures. Scale bar = 200 μm. D-F, Confocal images of grafted GFP+
lt-NES cells at 4 weeks after ex vivo transplantation showing presence of (D) the mature neuronal marker NeuN, (E) the deep-layer cortical
markers Tbr1 and Ctip2, and (F) the upper-layer cortical markers Brn2, CDP, and Satb2. Nuclear staining (Ho: Hoechst, blue) is included in merged
panel. Scale bar in D-F = 20 μm
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8 weeks of differentiation. The pre- and postsynaptic markers Synapsin

I and PSD95, respectively, were localized in close proximity in our lt-

NES cell cultures (Figure 1A), providing evidence for the occurrence of

synapses. We used fluorescence calcium imaging to monitor spontane-

ous activity in the network formed by the lt-NES cell-derived neurons

and to quantify its functional traits. Neurons exhibited variations in cal-

cium levels characteristic of mature neurons (Figure 1B). About 76% of

all identified regions of interest (example in Figure 1C) were active.

Analysis of fluorescence data provided onset times of neuronal activa-

tions (blue arrowheads) and basic statistics of network activity. Neuro-

nal activity was rich and sustained along the recording (Figure 1D). As

shown in the adjacency matrix of functional connections (Figure 1E),

neurons tended to interact functionally in small communities of typi-

cally 25 neurons each (blue boxes along the diagonal of the matrix) that

were not isolated from the rest of the network as evidenced by func-

tional connections outside the diagonal. Functional analysis revealed

that a neuron typically connected to 35 other neurons, both within the

community and between communities. Network map indicated that

functional connections could cross the entire network, illustrating the

high integration of the system (Figure 1F). We note that communities

are not shown in the map for clarity, since neurons belonging to the

same community are physically distant, a trait that illustrates the com-

plexity of network formation. Neurons with a high number of incoming

or outgoing connections (darker colors) were uniformly spread, reveal-

ing a similar formation of connections across the culture (Figure 1F).

Evoked responses to the addition of glutamate indicated the presence

of receptors for this neurotransmitter in most neurons (Figure 1G).

Whole-cell patch-clamp recordings showed the presence of fast-

decaying glutamatergic (Figure 1H, top trace) spontaneous excitatory

postsynaptic currents (sEPSCs), which were inhibited by the presence

of the NMDA and AMPA receptor antagonists, D-APV and NBQX

(Figure 1H, bottom traces), in cortically fated lt-NES cells cocultured

with mouse astrocytes. This finding demonstrates the functionality of

glutamatergic synapses on the lt-NES cell-derived cortical neurons.

The frequency of sEPSCs in the lt-NES cell-derived cortical neurons

(0.022 ± 0.005 Hz, n = 7) was significantly lower as compared with

that in cultured embryonic human cortical neurons (0.422 ± 0.276 Hz,

n = 13) in the absence of inhibitors (Figure 1H top traces and Fig-

ure 1I). In contrast, the sEPSC amplitude, coefficient of variance, and

decay time were similar (Figure 1I). Thus, the sEPSCs recorded from

lt-NES cell-derived cortical neurons exhibit similar size and shape as

sEPSCs observed in cultured embryonic human cortical neurons.

Taken together, our findings indicate that the lt-NES cell-derived cor-

tical neurons probably form fewer glutamatergic synapses, as indi-

cated by reduced sEPSC frequency, but exhibit characteristics similar

to those of embryonic human cortical neurons.

3.2 | Grafted human lt-NES cell-derived cortical
neurons establish afferent and efferent synaptic
connections with adult human cortical neurons

We wanted to determine if grafted lt-NES cell-derived cortical neu-

rons could integrate in adult human cortical circuitry. Cortically fated

F IGURE 3 Grafted human long-term neuroepithelial-like stem (lt-NES) cell-derived cortical neurons establish afferent and efferent synapses
with adult human cortical neurons in organotypic cultures. A-C, Representative immuno-electron microscopy (iEM) images showing asymmetric
synapses with continuous postsynaptic densities (red arrowheads) in grafted GFP+ (green) lt-NES cell dendrites (d) or dendritic spines (ds),
connected with host presynaptic axon terminals (at, brown) at 4 weeks (A,B) and 8 weeks (C) after ex vivo transplantation. D, GFP+ axon terminal
(green) forming efferent synaptic contacts with host GFP− dendritic spines (brown). m, mitochondria. Note: For better visualization in the
electron microscopical images, GFP/DAB-positive grafted cells and axon terminals were colored in green and adult cortical neurons and axon
terminals in brown. Scale bar = 0.2 μm
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GFP+ lt-NES cells were transplanted ex vivo onto organotypic slice

cultures of adult human cortex, obtained from epileptic patients

undergoing resective surgery, and kept in culture up to 8 weeks. We

found that neurons and astrocytes in the organotypic slices were

preserved after both 4 and 8 weeks of culture, as shown by the pres-

ence of the neuronal marker NeuN and the astrocyte markers GFAP

and Vimentin, respectively (Supplementary Figure S5A,B). The

grafted lt-NES cells exhibited extensive arborizations and extended

neurites throughout the whole organotypic culture, also toward

areas devoid of lt-NES cells at 4 and 8 weeks after ex vivo transplan-

tation (Figure 2A-C). The lt-NES cell-derived neurons expressed the

mature neuronal marker NeuN (Figure 2D) as well as markers of dif-

ferent cortical layers: the deep cortical layer markers Tbr1 and Ctip2

(layers V-VI) (Figure 2E), and the upper cortical layer markers Brn2,

CDP/Cux1 (layers II-III), and Satb2 (layers II-V) (Figure 2F). Astro-

cytes derived from the lt-NES cells were also observed (data not

shown). Our findings show that cortically fated lt-NES cells are able

to generate mature neurons with characteristics of both upper and

deep cortical layers not only in vitro or after grafting into stroke-

damaged rat brain but also after ex vivo transplantation into the

adult human cortical environment. Teratoma or secondary tumor for-

mation was not observed.

F IGURE 4 Grafted human long-term neuroepithelial-like stem (lt-NES) cell-derived cortical neurons form afferent and efferent connections
with adult human cortical neurons in organotypic cultures. A,B, Grafted lt-NES cell-derived neuron infected with TVA and the retrograde tracing
AG-Rabies vector (A, RFP [red] cytoplasm/GFP [green] cytoplasm/green nuclei) connects monosynaptically with adult human cortical neuron
(hACtx) in the organotypic culture (B, red cytoplasm). C,D, Adult human cortical neuron infected with TVA/AG-Rabies vector (C, red cytoplasm/
green nuclei) establishes monosynaptic contact with grafted lt-NES cell-derived neuron (D, red cytoplasm/green cytoplasm). Nuclear staining (Ho,
Hoechst, blue) is included in merged panel. Arrows indicate colocalization. Scale bar = 20 μm
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iEM showed that the majority of the GFP+ lt-NES cell-derived

cells in the organotypic cultures exhibited the ultrastructural features

of mature neurons28 at 4 weeks after ex vivo transplantation. The

grafted neurons received axodendritic (Figure 3A) or axospinous (Fig-

ure 3B) inputs from GFP− axon terminals originating in the adult

human cortical neurons. These contacts displayed the typical features

of synapses, including clustering of synaptic vesicles close to the

presynaptic membrane (more than four presynaptic vesicles within

100 nm of the presynaptic membrane), a clearly defined synaptic cleft,

and postsynaptic membrane with evident postsynaptic densities

(PSDs) (Figure 3A,B).

At 4 weeks after ex vivo transplantation, the vast majority

(85.1%) of the spines of GFP+, lt-NES cell-derived neurons made con-

tacts with several GFP− axon terminals (Figure 3B). Four weeks later,

F IGURE 5 Human cortically fated long-
term neuroepithelial-like stem (lt-NES) cells
become functional after ex vivo
transplantation into organotypic cultures of
adult human cortex. A, Post hoc
identification of patched lt-NES cells at 4
(n = 13, left, black) and 8 (n = 13, right, blue)
weeks after grafting (indicated by
arrowhead). Individual and merged channels
are shown. Scale bar = 50 μm. B,
Representative voltage trace illustrating the
ability of the lt-NES cell-derived neurons to
generate action potentials (APs) during a
current step of 150 pA at 4 and 8 weeks
after ex vivo transplantation. C, Bar diagram
illustrating maximum number of APs
generated during current steps (10-200 pA
in 10 pA steps) (*P < .05). Plot illustrating the
number of APs against the current steps. D,
APs induced by a current ramp (0-300 pA)
from a holding potential of −70 mV at 4 and
8 weeks after ex vivo transplantation. First

AP generated (*, expanded in the box) was
used for determining AP characteristics. E,
AP characteristics of lt-NES cell-derived
neurons at 4 and 8 weeks after ex vivo
transplantation. F, Expanded current traces
illustrating the inward sodium current
(denoted by *) activated during voltage steps
ranging from −70 to +40 mV in 10 mV steps.
The sodium current was blocked by the
presence of 1 μM TTX. The plot illustrates
the sodium current peak, unaltered between
4 and 8 weeks after ex vivo transplantation.
G, Current traces illustrating the outward
potassium current (*) activated during
voltage steps ranging from −70 to +40 mV
in 10 mV steps. The potassium current was
blocked by the presence of 10 mM TEA
showing no alteration between 4 and
8 weeks after ex vivo transplantation. H,
Current traces illustrate the presence of
spontaneous postsynaptic currents in lt-NES
cell-derived neurons at 4 and 8 weeks after
ex vivo transplantation. Nuclear staining (Ho,
Hoechst, blue) is included in merged panel
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GFP+ spines formed synapses only with single GFP− axon terminals

devoid of other synaptic partners (Figure 3C). At this time point, we

observed a variety of mature synaptic inputs including axodendritic

(96.2%) and axosomatic (3.8%) synapses. The iEM analysis showed

that among axodendritic synaptic contacts, 87.2% of the axon termi-

nals were in contact with dendritic spines (identified on basis of

shape, size, and presence of a spiny apparatus) (Figure 3C). The other

GFP− axons terminated on GFP+ dendritic shafts or on structures

that could not be identified as small shafts or dendritic spines (12.8%).

The axodendritic contacts exhibited the ultrastructural characteristics

of asymmetric excitatory/glutamatergic synapses, such as a prominent

PSD, wide synaptic cleft, and spherical synaptic vesicles (Figure 3C).

At both time points (4 and 8 weeks after ex vivo transplantation),

we observed GFP+ terminals forming efferent synaptic contacts on

GFP− adult human cortical neurons, but these contacts were much

fewer (18.3%) as compared with the afferent inputs (81.7%) (Fig-

ure 3D). The efferent contacts, similar to the afferent ones, exhibited

ultrastructural characteristics of asymmetric excitatory/glutamatergic

synapses. The GFP+ axon terminals displayed spherical synaptic vesi-

cles, and particularly docked vesicles at the presynaptic membrane,

indicating the presence of a readily releasable pool of synaptic vesicles

and functional activity of synapses (Figure 3D).28

To confirm that the grafted lt-NES cell-derived cortical neurons

were able to establish afferent and efferent monosynaptic connec-

tions with the adult human cortical neurons, we used rabies virus

retrograde tracing. The cortically fated lt-NES cells (to identify the

afferent synaptic inputs on these cells) or the organotypic slice cul-

tures (to disclose the efferent synaptic outputs) were transduced to

stably express the TVA receptor under control of the human syn-

apsin I promoter (tracing vector, Figure 4), making them susceptible

to rabies virus infection. We found that the grafted lt-NES cell-

derived neurons infected with TVA/4G-rabies vector (Figure 4A)

established monosynaptic afferent inputs from adult human cortical

neurons in the organotypic cultures (Figure 4B). Conversely, the

adult human cortical neurons infected with TVA/AG-rabies vector

(Figure 4C) received monosynaptic inputs from the grafted lt-NES

cell-derived cortical neurons (Figure 4D). These results show that lt-

NES cell-derived neurons are able to establish both afferent and

efferent connections with adult human cortical neurons in

organotypic cultures.

3.3 | Grafted human lt-NES cell-derived cortical
neurons become functionally integrated with adult
human cortical neurons

We then determined if the grafted lt-NES cell-derived cortical neu-

rons were functional and responded to afferent synaptic inputs.

Using whole-cell patch-clamp technique, we found that all 13

recorded lt-NES cell-derived cells exhibited similar basic electro-

physiological characteristics (Figure 5A) at 4 and 8 weeks after

ex vivo transplantation (Table 1). Already at 4 weeks, the cells were

able to fire multiple APs (Figure 5B,C; Table 1). The AP

characteristics, that is, threshold, amplitude, rise time, half ampli-

tude width and AHP, as well as the size of Na and K currents were

similar at both time-points (Figure 5D-G; Table 1). Fast-decaying,

most likely glutamatergic, postsynaptic currents with a frequency

of 0.08 ± 0.04 Hz (n = 3) and 0.12 ± 0.09 Hz (n = 2) were detected

at 4 and 8 weeks after grafting, respectively (Figure 5H). Taken

together, our findings show that the human cortically fated lt-NES

cells are able to differentiate to mature functional neurons and pro-

vide further evidence that they receive functional synaptic inputs

after ex vivo transplantation onto adult human neocortical

organotypic cultures.

Finally, we compared the electrophysiological characteristics of

the lt-NES cell-derived cortical neurons with those of cortical neu-

rons in acute slices of adult human brain tissue (Supplementary Fig-

ure S6A). We found that the adult human cortical neurons fired

multiple APs (8.6 ± 0.9 APs during a 500 ms current step) (Supple-

mentary Figure S6B). The basic AP characteristics were significantly

different from those of the lt-NES cell-derived cortical neurons in

the organotypic slices, except the AHP (Supplementary Figure S6C;

Supplementary Table S1). Moreover, the adult human cortical neu-

rons expressed 10 times larger Na current peak and 3 times larger

K current peak as compared with the human lt-NES cell-derived

neurons (Figure 5F,G; Supplementary Figure S6D,E). All adult

human cortical neurons exhibited spontaneous fast-decaying, most

likely glutamatergic, PSCs with a frequency of 0.50 ± 0.2 Hz (n = 7).

In contrast, only a subset (3/13) of the lt-NES cell-derived cortical

neurons exhibited sPSCs with a frequency approximately 1/5 of

that of adult human cortical neurons (Figure 5H; Supplementary

Figure S6F). Thus, after 4 weeks in organotypic cultures, the elec-

trophysiological properties of the lt-NES cell-derived neurons dif-

fered significantly from those of cortical neurons in acute slices of

adult human brain.

TABLE 1 Basic electrophysiological characteristics of cortically
fated lt-NES cell-derived neurons at 4 and 8 weeks after
transplantation onto organotypic cultures of adult human cortex

ctx-NSPCs in situ

4 weeks (n = 13) 8 weeks (n = 12-13)

Vrest −42.3 ± 8.3 mV −44.1 ± 3.9 mV

Rinput 1502 ± 232 MΩ 1003 ± 147 MΩ

C 2.0 ± 0.4 pF 6.7 ± 3.0 pF

Max # APs 5 ± 1 2 ± 1*

AP threshold (mV) −23.2 ± 1.5 −23.7 ± 1.6

AP amplitude (mV) 40.9 ± 3.0 39.3 ± 3.7

AP rise time (ms) 2.7 ± 0.3 3.0 ± 0.3

½ AP amp. width (ms) 3.3 ± 0.4 3.2 ± 0.3

AHP (mV) 13.2 ± 1.2 12.8 ± 1.4

Note: Unpaired t test or Mann-Whitney test. * indicates significant differ-

ence between 4 and 8 weeks (Mann-Whitney P = .0194).

Abbreviations: AHP, afterhyperpolarization; AP, action potential; lt-NES,

long-term neuroepithelial-like stem.
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4 | DISCUSSION

Here, we present experimental evidence demonstrating, for the first

time, that grafted human pluripotent stem cell-derived cortical neu-

rons can integrate into adult human cortical neural circuitry. We have

previously shown that cortically fated human lt-NES cell-derived neu-

rons integrate morphologically and functionally into the stroke-injured

rat brain after intracortical transplantation.8-10 In this study, we found

that these cells, which formed functional synaptic neuronal networks

in cell culture, differentiated to mature, layer-specific cortical neurons

when transplanted ex vivo onto organotypic cultures of adult human

cortex. The grafted neurons were functional and established both

afferent and efferent synapses with the adult human cortical neurons

in the slices, as evidenced by iEM, rabies virus retrograde tracing, and

by the occurrence of sEPSCs during whole-cell patch-clamp

recordings.

The development of new therapies for human neurodegenera-

tive disease, such as stem cell-based approaches, is to a large extent

dependent on the use of animal models. In many cases it is unclear,

though, whether the results obtained in such models can be trans-

lated to the adult human brain. Organotypic slice cultures of human

brain tissue have become useful tools to explore the functional and

morphological integration of transplanted neurons into adult human

neuronal networks. This model system preserves cellular elements,

morphological and electrophysiological parameters of pyramidal

neurons, complexity of the neuronal three-dimensional architecture

as well as synaptic connectivity and microenvironment.29-31 How-

ever, mechanisms of integration can only partly be explored in

organotypic slice cultures due to absence of components of the vas-

cular and immune systems and somewhat decreased viability and

survival of the neurons with long-term culturing. Moreover, the

resected human tissue is subjected to severe injury response,

involving proliferation of reactive cells and progressive neu-

rodegeneration.32,33 Nonetheless, recent studies show that it is pos-

sible to ameliorate such a response by optimizing the slice culture

medium, which makes it possible to partially preserve long-term

neuronal viability and robust electrophysiological single cell and net-

work function.34,35

The long-term functionality and the afferent and efferent connec-

tivity of the grafted human pluripotent stem cell-derived cortical neu-

rons shown here in organotypic slices provide important evidence

demonstrating their ability to survive, differentiate, and integrate into

local neural networks in the adult human cortical tissue environment.

In this regard, they resemble human embryonic dopaminergic neurons,

transplanted into striatum of patients with Parkinson's disease. These

grafted neurons can survive for many years and reinnervate the puta-

men with high specificity,36 form synaptic contacts with host neu-

rons,37 and become integrated into neural circuitries in the patient's

brain.38 However, in Parkinson's disease, the human embryonic dopa-

minergic neuroblasts are implanted in the target area due to their

inability to significantly reconstruct the nigrostriatal pathway after

implantation in the substantia nigra.39 In contrast, repairing the

stroke-injured brain will necessitate the reformation also of long-

distance pathways. For example, the monosynaptic, transcallosal pro-

jections of the grafted cortically fated lt-NES cells to the contralateral

cortex are probably involved in their effects on motor function in the

stroke-injured rat brain.10 Such axonal projections are manyfold lon-

ger in the human as compared with the rodent brain. Currently, it is

unknown whether the grafted human cortical neurons will have the

capacity to form long-distance connections with other areas in the

diseased human brain and if lack of guidance cues and presence of

inhibitory molecules will produce an environment that is restrictive to

axonal growth.

5 | CONCLUSION

The present findings are particularly interesting when considering

moving stem cells toward the clinic in stroke and other disorders

affecting the cerebral cortex. We provide the first evidence that

human pluripotent stem cell-derived neurons integrate in adult host

neural networks not only after xenotransplantation in rodents but

also in a human-to-human grafting situation. Our study represents

an early but important step in clinical translation of neuronal

replacement strategies to promote functional recovery in the

injured brain.

ACKNOWLEDGMENTS

We thank Malin Parmar for virus contribution. This work was

supported by grants from Swedish Research Council, Swedish Brain

Foundation, Torsten Söderberg Foundation, Region Skåne,

Sparbanksstiftelsen Färs & Frosta, Swedish Government Initiative for

Strategic Research Areas (StemTherapy), Generalitat de Catalunya

(Grant No. 2017-SGR-1061), and MESO-BRAIN Project (European

Union's Horizon 2020 Research and Innovation, No. 713140).

CONFLICT OF INTEREST

The authors declare no conflict of interests.

AUTHOR CONTRIBUTIONS

M.G.H., C.L., P.-T.: conception and design, collection and/or assembly

of data, data analysis and interpretation, manuscript writing, final

approval of manuscript; G.K.: collection and/or assembly of data, man-

uscript writing, final approval of manuscript; E.M.: collection and/ or

assembly of data, final approval of manuscript; O.T., D.T., J.S., G.S.:

collection and/or assembly of data, data analysis and interpretation,

final approval of manuscript; N.U.: collection and/or assembly of data,

final approval of manuscript; J.B., G.M.: provision of study material or

patients, final approval of manuscript; O.L.: conception and design,

manuscript writing, final approval of manuscript; Z.K.: conception and

design, manuscript writing, final approval of manuscript, financial

support.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available on

request from the corresponding author.

HUMAN iPS CELL-DERIVED CORTICAL NEURONS 1375



ORCID

Cecilia Laterza https://orcid.org/0000-0002-3964-3375

Sara Palma-Tortosa https://orcid.org/0000-0002-0648-8380

Emanuela Monni https://orcid.org/0000-0003-0083-1050

Oleg Tsupykov https://orcid.org/0000-0002-2107-651X

Daniel Tornero https://orcid.org/0000-0002-4812-4091

Galyna Skibo https://orcid.org/0000-0003-2187-6178

Zaal Kokaia https://orcid.org/0000-0003-2296-2449

REFERENCES

1. Etherton MR, Rost NS, Wu O. Infarct topography and functional out-

comes. J Cereb Blood Flow Metab. 2018;38(9):1517-1532.

2. Ramos Bernardes da Silva Filho S, Oliveira Barbosa JH, Rondinoni C,

et al. Neuro-degeneration profile of Alzheimer's patients: a brain mor-

phometry study. Neuroimage Clin. 2017;15:15-24.

3. Srivastava O, Hanstock C, Chenji S, et al. Cerebral degeneration in

amyotrophic lateral sclerosis: a prospective multicenter magnetic

resonance spectroscopy study. Neurol Clin Pract. 2019;9(5):

400-407.

4. Dingledine R, Varvel NH, Dudek FE. When and how do seizures kill

neurons, and is cell death relevant to epileptogenesis? Adv Exp Med

Biol. 2014;813:109-122.

5. Falkner S, Grade S, Dimou L, et al. Transplanted embryonic neurons

integrate into adult neocortical circuits. Nature. 2016;539(7628):

248-253.

6. Michelsen KA, Acosta-Verdugo S, Benoit-Marand M, et al. Area-spe-

cific reestablishment of damaged circuits in the adult cerebral cortex

by cortical neurons derived from mouse embryonic stem cells. Neuron.

2015;85(5):982-997.

7. Espuny-Camacho I, Michelsen KA, Linaro D, et al. Human pluripotent

stem-cell-derived cortical neurons integrate functionally into the

lesioned adult murine visual cortex in an area-specific way. Cell Rep.

2018;23(9):2732-2743.

8. Tornero D, Wattananit S, Gronning Madsen M et al. Human induced

pluripotent stem cell-derived cortical neurons integrate in stroke-

injured cortex and improve functional recovery. Brain 2013;136(Pt Pt

12):3561–3577.
9. Tornero D, Tsupykov O, Granmo M, et al. Synaptic inputs from

stroke-injured brain to grafted human stem cell-derived neurons acti-

vated by sensory stimuli. Brain. 2017;140(3):692-706.

10. Palma-Tortosa S, Tornero D, Gronning Hansen M, et al. Activity in

grafted human iPS cell-derived cortical neurons integrated in stroke-

injured rat brain regulates motor behavior. Proc Natl Acad Sci USA.

2020;117(16):9094-9100.

11. Lindvall O. Treatment of Parkinson's disease using cell transplan-

tation. Philos Trans R Soc Lond B Biol Sci. 2015;370(1680):

20140370.

12. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M,

Studer L. Highly efficient neural conversion of human ES and iPS cells

by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27(3):

275-280.

13. Falk A, Koch P, Kesavan J, et al. Capture of neuroepithelial-like

stem cells from pluripotent stem cells provides a versatile system

for in vitro production of human neurons. PLoS One. 2012;7(1):

e29597.

14. Shahsavani M, Pronk RJ, Falk R, et al. An in vitro model of

lissencephaly: expanding the role of DCX during neurogenesis. Mol

Psychiatry. 2018;23(7):1674-1684.

15. Miskinyte G, Devaraju K, Gronning Hansen M, et al. Direct conver-

sion of human fibroblasts to functional excitatory cortical neurons

integrating into human neural networks. Stem Cell Res Ther. 2017;8

(1):207.

16. Chen ST, Hsu CY, Hogan EL, Maricq H, Balentine JD. A model of focal

ischemic stroke in the rat: reproducible extensive cortical infarction.

Stroke. 1986;17(4):738-743.

17. Oki K, Tatarishvili J, Wood J, et al. Human-induced pluripotent stem

cells form functional neurons and improve recovery after grafting in

stroke-damaged brain. STEM CELLS. 2012;30(6):1120-1133.

18. Kokaia Z, Zhao Q, Kokaia M, et al. Regulation of brain-derived neuro-

trophic factor gene expression after transient middle cerebral artery

occlusion with and without brain damage. Exp Neurol. 1995;136(1):

73-88.

19. Ledri M, Sorensen AT, Madsen MG, et al. Differential effect of neuro-

peptides on excitatory synaptic transmission in human epileptic hip-

pocampus. J Neurosci. 2015;35(26):9622-9631.

20. Mine Y, Tatarishvili J, Oki K, Monni E, Kokaia Z, Lindvall O. Grafted

human neural stem cells enhance several steps of endogenous neuro-

genesis and improve behavioral recovery after middle cerebral artery

occlusion in rats. Neurobiol Dis. 2013;52:191-203.

21. Orlandi J, Comella-Bolla A, Masana M, et al. NETCAL: an interactive

platform for large-scale, NETwork and population dynamics analysis

of CALcium imaging recordings. Zenodo. 2017. http://doi.org/10.

5281/zenodo.1119026.

22. Stetter O, Battaglia D, Soriano J, Geisel T. Model-free reconstruction

of excitatory neuronal connectivity from calcium imaging signals. PLoS

Comput Biol. 2012;8(8):e1002653.

23. Orlandi JG, Stetter O, Soriano J, Geisel T, Battaglia D. Transfer

entropy reconstruction and labeling of neuronal connections from

simulated calcium imaging. Plos One. 2014;9(6):e98842.

24. Rubinov M, Sporns O. Complex network measures of brain connec-

tivity: uses and interpretations. Neuroimage. 2010;52(3):1059-1069.

25. Sun Y, Danila B, Josic K, et al. Improved community structure detec-

tion using a modified fine-tuning strategy. Epl-Europhys Lett. 2009;86

(2):28004.

26. Osakada F, Callaway EM. Design and generation of recombinant

rabies virus vectors. Nat Protoc. 2013;8(8):1583-1601.

27. Koch P, Opitz T, Steinbeck JA, Ladewig J, Brustle O. A rosette-type,

self-renewing human ES cell-derived neural stem cell with potential

for in vitro instruction and synaptic integration. Proc Natl Acad Sci

USA. 2009;106(9):3225-3230.

28. Schneggenburger R, Sakaba T, Neher E. Vesicle pools and short-term

synaptic depression: lessons from a large synapse. Trends Neurosci.

2002;25(4):206-212.

29. Schwarz N, Uysal B, Welzer M, et al. Long-term adult human brain

slice cultures as a model system to study human CNS circuitry and

disease. Elife. 2019;8 e48417.

30. Qi XR, Verwer RWH, Bao AM, et al. Human brain slice culture: a use-

ful tool to study brain disorders and potential therapeutic com-

pounds. Neurosci Bull. 2019;35(2):244-252.

31. Jones RS, da Silva AB, Whittaker RG, et al. Human brain slices for epi-

lepsy research: pitfalls, solutions and future challenges. J Neurosci

Methods. 2016;260:221-232.

32. Verwer RW, Sluiter AA, Balesar RA, et al. Injury response of resected

human brain tissue in vitro. Brain Pathol. 2015;25(4):454-468.

33. Verwer RW, Sluiter AA, Balesar RA, et al. Altered loyalties of neuronal

markers in cultured slices of resected human brain tissue. Brain Pat-

hol. 2016;26(4):523-532.

34. Eugene E, Cluzeaud F, Cifuentes-Diaz C, et al. An organotypic brain

slice preparation from adult patients with temporal lobe epilepsy. J

Neurosci Methods. 2014;235:234-244.

35. Schwarz N, Hedrich UBS, Schwarz H, et al. Human cerebrospinal

fluid promotes long-term neuronal viability and network function in

human neocortical organotypic brain slice cultures. Sci Rep. 2017;7

(1):12249.

36. Li W, Englund E, Widner H, et al. Extensive graft-derived dopaminer-

gic innervation is maintained 24 years after transplantation in the

1376 GRØNNING HANSEN ET AL.

https://orcid.org/0000-0002-3964-3375
https://orcid.org/0000-0002-3964-3375
https://orcid.org/0000-0002-0648-8380
https://orcid.org/0000-0002-0648-8380
https://orcid.org/0000-0003-0083-1050
https://orcid.org/0000-0003-0083-1050
https://orcid.org/0000-0002-2107-651X
https://orcid.org/0000-0002-2107-651X
https://orcid.org/0000-0002-4812-4091
https://orcid.org/0000-0002-4812-4091
https://orcid.org/0000-0003-2187-6178
https://orcid.org/0000-0003-2187-6178
https://orcid.org/0000-0003-2296-2449
https://orcid.org/0000-0003-2296-2449
http://doi.org/10.5281/zenodo.1119026
http://doi.org/10.5281/zenodo.1119026


degenerating parkinsonian brain. Proc Natl Acad Sci USA. 2016;113

(23):6544-6549.

37. Kordower JH, Freeman TB, Snow BJ, et al. Neuropathological evi-

dence of graft survival and striatal reinnervation after the transplanta-

tion of fetal mesencephalic tissue in a patient with Parkinson's

disease. N Engl J Med. 1995;332(17):1118-1124.

38. Piccini P, Lindvall O, Bjorklund A, et al. Delayed recovery of

movement-related cortical function in Parkinson's disease

after striatal dopaminergic grafts. Ann Neurol. 2000;48(5):

689-695.

39. Thompson LH, Grealish S, Kirik D, Björklund A. Reconstruction of the

nigrostriatal dopamine pathway in the adult mouse brain. Eur J Neu-

rosci. 2009;30(4):625-638.

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of this article.

How to cite this article: Grønning Hansen M, Laterza C,

Palma-Tortosa S, et al. Grafted human pluripotent stem cell-

derived cortical neurons integrate into adult human cortical

neural circuitry. STEM CELLS Transl Med. 2020;9:1365–1377.

https://doi.org/10.1002/sctm.20-0134

HUMAN iPS CELL-DERIVED CORTICAL NEURONS 1377

https://doi.org/10.1002/sctm.20-0134

	Grafted human pluripotent stem cell-derived cortical neurons integrate into adult human cortical neural circuitry
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Derivation of iPS cells and lt-NES cell lines
	2.2  Generation of cortical neurons
	2.3  Animals and surgical procedures
	2.4  Organotypic cultures of adult human cortex
	2.5  Coculture of lt-NES cells with human organotypic cortical slices
	2.6  Electrophysiology
	2.7  Calcium imaging
	2.8  DeltaG-rabies vector production and tracing analysis
	2.9  Immunohistochemistry
	2.10  Immuno-electron microscopy (iEM)
	2.11  Statistical analysis

	3  RESULTS
	3.1  Human lt-NES cell-derived cortical neurons form functional synaptic networks in cell culture
	3.2  Grafted human lt-NES cell-derived cortical neurons establish afferent and efferent synaptic connections with adult hum...
	3.3  Grafted human lt-NES cell-derived cortical neurons become functionally integrated with adult human cortical neurons

	4  DISCUSSION
	5  CONCLUSION
	ACKNOWLEDGMENTS
	  CONFLICT OF INTEREST
	  AUTHOR CONTRIBUTIONS
	  DATA AVAILABILITY STATEMENT

	REFERENCES


