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Introduction
Lung cancer is one of the most common malig-
nancies and the leading cause of cancer-related 
death.1–3 Non-small-cell lung cancer (NSCLC) 
accounts for 85% of all lung malignancies and 
approximately 50% of NSCLC patients are diag-
nosed at the metastatic stage.4–6

NSCLC is a heterogeneous disease that is frequently 
associated with multiple known oncogenic driver 
genes.7–10 The earliest characterized of these are 
mutations involving the epidermal growth factor recep-
tor (EGFR) and fusions involving anaplastic lym-
phoma kinase (ALK). Treatment with EGFR and 
ALK inhibitors is well established, with initial 
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approvals in biomarker-unselected and -selected 
populations in 2003 and 2011, respectively.7,11–14

Advances in cancer biology, molecular diagnos-
tics, and drug development have improved our 
ability to identify and therapeutically target onco-
genic alterations.9,10,15,16 It is now estimated that 
the majority of NSCLC patients have alterations 
that are clinically actionable with a therapeutic 

agent that acts on the altered target (alteration-
drug-matched).9,17–26 Here we will update our 
initial review of novel (non-EGFR/ALK) tar-
geted therapies8 by identifying, summarizing, 
analyzing, and discussing recent data on agents 
targeting lesser-known alterations (Table 1) in 
oncogene-driven, advanced NSCLC to gain 
insights into clinical research and development 
principles.

Table 1. Select actionable molecular alterations in oncogene-driven NSCLC.

Oncogene and molecular 
alteration

Biological function in regular and altered states Common 
alterations

Incidence, % Detection 
method

ROS1 
rearrangement7,9,27–29

•  ROS1 is a tyrosine kinase receptor with significant structural 
homology to ALK

•  Rearrangements/translocations give rise to fusions of 
functional ROS1 tyrosine kinase domain with other genes

•  Resulting constitutive activation drives transformation and 
activates SHP-1/SHP-2, JAK/STAT, PI3K/AKT/mTOR, and 
MAPK/ERK signaling leading to enhanced tumor cell survival 
and proliferation

Up to 24 fusion 
partners 
identified

1–3 FISH, RT-PCR, 
RNA NGS

BRAF-V600 mutation7,9,30 •  BRAF is an intracellular serine/threonine kinase activated 
by RAS and subsequently activates MEK and ERK (MAPK 
pathway)

•  Mutation leads to constitutive activation, cell growth, and 
proliferation

•  Dual inhibition of BRAF and MEK may prevent reactivation of 
MAPK signaling

V600E 1–2 DNA NGS

NTRK 
rearrangement7,9,31–34

•  Neurotrophin kinase genes (NTRK1, NTRK2, and NTRK3) code 
for tropomyosin receptor tyrosine kinases (TRKA, TRKB, and 
TRKC)

•  Ligand binding activates PI3K/AKT/mTOR, RAS/RAF/MAPK, 
and PLC-γ pathways, leading to the proliferation, growth, 
and survival of neurons in the peripheral and central nervous 
system

•   Gene rearrangements result in the formation of fusion 
proteins that drive tumor growth and survival through 
constitutively active forms containing the TRK kinase domain

NTRK1 0.1–1(3) FISH, RT-PCR, 
DNA/RNA NGS

NTRK2

NTRK3

MET alteration7,9,35 
 
 
 
 
 
 
 
 
 
 

•  MET regulates cell growth, differentiation, motility, and 
epithelial–mesenchymal transition in tumor cells through 
activation of RAS/RAF/MAPK, PI3K/AKT/mTOR, WNT/β-
catenin, and STAT pathways

•  MET gene amplification may result in constitutive activation of 
MET receptor

•  MET amplification is also a driver of acquired resistance to 
EGFR TKIs

•  MET exon 14 skipping mutations lead to decreased MET 
degradation, leading to high expression and increased 
activation

MET 
amplification
(MET/CEP7 
ratio >2 or 
GCN >5)

0.34 FISH

MET exon  
14 skipping 
mutation

2–3 DNA NGS

RET rearrangement7,9,36,37 •  RET is a tyrosine kinase receptor with giant cell-derived 
neurotrophic factor as its ligand

•  Activation leads to RAS/RAF/MAPK, PI3K/AKT/mTOR, 
and PLC-signaling > cell proliferation, migration, and 
differentiation

•  Chromosomal rearrangements involve fusion partners such 
as KIF5B, CCDC6, NCOA4, and TRIM33

•  Chimeric proteins constitutively dimerize, activating the 
kinase domain and leading to uncontrolled activation of MAPK 
and PI3K pathways

13 RET/PTC 
fusion proteins 
identified (RET/
PTC1-PTC9)

1–2 FISH, DNA/RNA 
NGS RT-PCR

(Continued)
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Oncogene and molecular 
alteration

Biological function in regular and altered states Common 
alterations

Incidence, % Detection 
method

HER2 alteration7,9,38–40 •  Altered ErbB, or HER, signaling has been implicated in many 
forms of cancer. HER2 is an emerging target for NSCLC

•  HER2 is an ErbB receptor tyrosine kinase. The binding 
of ligands to ErbB members induces homo- and 
heterodimerization and activation of downstream PI3K/
AKT signaling → cellular proliferation, migration, and 
differentiation

•  Changes leading to altered HER signaling include HER2 
amplification and mutations

HER2 
amplification

2–22 FISH

HER2 
overexpression

8–23 IHC

HER2 exon 20 
duplication or 
YVMA 776–779 
insertion 
(80%–90%)

1–7 DNA NGS

HER2 
rare point 
mutations: 
G660D, R678Q, 
E693K, and 
Q709L

KRAS mutation7,9,41–44 •  KRAS activated by GDP > GTP binding
•  KRAS-GTP > MAPK/ERK and KRAS mutations prevent 

hydrolysis (KRAS-GTP > inactive KRAS-GDP) persistent 
activation of MAPK/ERK and PI3K

•  KRAS is a downstream effector of EGFR which can promote 
tumor cell proliferation

Point mutation 
at codons 12 
(most common, 
>80%), 13, 14, 
and 60/61

Up to 30
KRASG12C: 
3–15

DNA NGS

Source: Adapted from Melosky et al.8

AKT, protein kinase B; ALK, anaplastic lymphoma kinase; BRAF, v-raf murine sarcoma viral oncogene homolog B1; CCDC6, coiled-coil domain-containing 
protein 6; CEP, centromere of chromosome 7; DNA, deoxyribonucleic acid; EGFR, epidermal growth factor receptor; ErbB, avian erythroblastic leukemia 
viral oncogene homolog; ERK, extracellular-signal-regulated kinase; FISH, fluorescence in situ hybridization; GCN, gene copy number; GDP, guanosine 
diphosphate; GTP, guanosine triphosphate; HER2/3, human epidermal growth factor receptor 2/3; JAK, Janus kinase; KIF5B, kinesin family member 5B; 
KRAS, Kirsten rat sarcoma viral oncogene homolog; MAPK, mitogen-activated protein kinase; MEK, MAPK/ERK kinase; MET, hepatocyte growth factor 
receptor; mTOR, mammalian target of rapamycin; NCOA4, nuclear receptor coactivator 4; NGS, next-generation sequencing; NSCLC, non-small-cell 
lung cancer; NTRK1/2/3, neurotrophic tyrosine receptor kinase 1/2/3; PI3K, phosphatidylinositol 3-kinase; PLC, phospholipase C; PTC, papillary thyroid 
carcinomas; RAF, rapidly accelerated fibrosarcoma; RAS, rat sarcoma GTPase; RET, rearranged during transfection; RNA, ribonucleic acid; ROS1, c-ros 
oncogene 1; RT-PCR, reverse transcription polymerase chain reaction; SHP-1/2, Src homology 2 domain-containing protein tyrosine phosphatase 1/2; STAT, 
signal transducer and activator of transcription; TKI, tyrosine kinase inhibitor; TRIM33, tripartite motif containing 33; TRKA/B/C, tropomyosin receptor kinase 
A/B/C; WNT, wingless-related integration site.

Table 1. (Continued)

Methods
We have elected to support this narrative review 
with systematic search methods to ensure unbi-
ased and comprehensive identification, assess-
ment, and summary of relevant clinical studies in 
this field. A search of published and presented 
literature was conducted to identify prospective 
phase I–III trials and integrated analysis report-
ing efficacy outcomes for agents targeting novel 
driver gene alterations (i.e., excluding EGFR and 
ALK) in molecularly selected, advanced NSCLC 
populations. PubMed (all time to October 25, 
2023), the proceedings from the American 
Society of Clinical Oncology (ASCO), the 
European Society for Medical Oncology 
(ESMO), and the World Conference on Lung 
Cancer 2022 and 2023 annual meetings were 
searched using the key search terms “NSCLC” 
AND “advanced”/“metastatic” AND “novel tar-
gets” AND “phase I–III” OR respective aliases 
(Figure 1). A supplemental bibliographic search 

of review articles and pooled/meta-analyses was 
also conducted. In addition, directed searches 
were performed after the database search cutoff 
date to ensure that the most up-to-date reports of 
eligible studies were considered. English lan-
guage records were vetted at the abstract level 
and checked at the full text as needed by an ini-
tial reviewer (A.P.) and confirmed by a second 
independent reviewer (I.M.). All eligible studies 
were cited in the findings; however, only trials 
reporting outcomes since our initial review8 (i.e., 
in the last 3 years, approximately) for at least 20 
patients with alteration-drug-matched NSCLC 
were included in the tables. Additional search 
and vetting details are summarized in 
Supplemental Methods.

Findings
The literature search identified a total of 2938 
records, resulting in a total of 180 primary reports 
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Conferences
(ASCO, ESMO, WCLC)

348,1=n080,1=n

Bibliographic search of 
reviews (n=6)

n=15a

PUBMED

Key Search Terms: NSCLC AND novel targets AND 
advanced/metasta�c (OR respec�ve aliases)
Filters: Clinical Trials - Phase I-III filter (MEDLINE-indexed) or 
restricted by keywords in search of unprocessed records
English language records
Time: Incep�on to Oct 25, 2023

Total records iden�fied, n=2,938

Non-original clinical research articles (reviews, consensus, 
guidelines, editorials, etc.), preclinical studies, quality ini�a�ve 
studies, studies without original clinical outcome assessment 

(surveys, protocol assessments, economic models, modeling and 
simula�on studies, etc.), systema�c reviews and pooled and meta-

analysis
Exclude, n=311

Key Search Terms: NSCLC AND phase I-III trials (OR 
respec�ve aliases)
Time: Since 2021 to 2023

Studies in sites other than NSCLC
Exclude, n=176

Studies in early, periopera�ve se�ngs
 or strictly unresectable stage III 

Exclude, n=215

Case reports, retrospec�ve cohorts, retrospec�ve case series or 
database reviews; diagnos�c, prognos�c, pathology and biomarker 

studies; pharmacokine�c studies; studies of undefined phase; 
observa�onal, phase IIIb/IV studies

 Exclude, n=252

Studies in popula�ons that are not molecularly-selected (not 
defined by altera�on in a biological target), defined by altera�ons 

in therapeu�cally-established driver genes (EGFR and ALK)b, 
defined by absence of altera�ons (wild-type popula�ons) or 

defined by altera�ons in targets that were not considered driver 
genes or those without known altera�ons in NSCLC 

Exclude, n=1,510

Reports of phase I-III studies or integrated analysis of phase I-II trials of molecularly-targeted agents in target-matched 
popula�ons defined by altera�ons in emerging oncogenes with outcomes for NSCLC cohorts or subsets, n=180 

(174 studies)c

Studies of biological therapy in which the molecular selec�on factor 
does not match the therapeu�c agent’s target (ie. not altera�on-

matched)
 Exclude, n=50

Reports of subgroup, biomarker and other associated analyses that 
do not include the most up-to-date efficacy findings for the main 

NSCLC subsets of the study
 Exclude, n=152

HER2-altered, 
n=38

Data Synthesis and Tabula�on

All eligible studies cited in findings and discussion
-matched pa�ents and those otherwise considered 

key landmark reports in the respec�ve molecularly-defined subsets were summarized in table, n=73

BRAFV600-
mutated, n=9

ROS1-rearranged, 
n=23

FGFR-altered, 
n=10

MET-altered, 
n=35

NTRK fusion-
posi�ve, n=4

RET fusion-
posi�ve, n=15

KRAS-mutated, 
n=32

HER3/NRG1-
altered, n=10

Reports of trials in progress or otherwise without NSCLC-specific 
efficacy outcomes

Exclude, n=92

PI3K-altered, n=2
PTK7-mutated, 

n=1

Figure 1. PRISMA diagram.
aPrimary or associated reports of eligible studies that were not identified through database search.
bAll types of ALK and EGFR alterations were included.
cA single trial may have multiple reports for different biomarker-selected patient cohorts or subsets; likewise, a single 
report may provide data from single or multiple studies on different biomarker-selected patient cohorts or subsets.
ALK, anaplastic lymphoma kinase; ASCO, American Society of Clinical Oncology; BRAF, v-raf murine sarcoma viral 
oncogene homolog B1; EGFR, epidermal growth factor receptor; ESMO, European Society for Medical Oncology; FGFR, 
fibroblast growth factor receptor; HER2, human epidermal growth factor receptor 2; KRAS, Kirsten rat sarcoma viral 
oncogene homolog; MET, hepatocyte growth factor receptor; n, number; NRG1, neuregulin-1; NSCLC, non-small-cell lung 
cancer; NTRK, neurotrophic tyrosine receptor kinase; Pl3K, phosphoinositide 3-kinase; PRISMA; Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses; PTK7, tyrosine-protein kinase-like 7; RET, rearranged during transfection; 
ROS1, c-ros oncogene 1; WCLC, World Conference on Lung Cancer.

https://journals.sagepub.com/home/tam


B Melosky, RA Juergens et al.

journals.sagepub.com/home/tam 5

Ta
bl

e 
2.

 E
ff

ic
ac

y 
ou

tc
om

es
 o

f c
lin

ic
al

 tr
ia

ls
 a

ss
es

si
ng

 n
ov

el
 ta

rg
et

ed
 th

er
ap

y 
in

 m
ol

ec
ul

ar
ly

 s
el

ec
te

d,
 ta

rg
et

-m
at

ch
ed

 a
dv

an
ce

d 
N

SC
LC

.

Tr
ia

l n
am

e,
 N

CT
#

P
ha

se
M

ol
ec

ul
ar

 a
lt

er
at

io
n

Li
ne

 o
f t

he
ra

py
P

re
tr

ea
tm

en
t 

de
ta

ils

R
eg

im
en

(s
)

P
at

ie
nt

s,
 

n
O

ve
ra

ll
 r

es
po

ns
e 

ra
te

,a

%
 (9

5%
 C

I)

M
ed

ia
n 

du
ra

ti
on

 o
f 

re
sp

on
se

,a  m
on

th
s

(9
5%

 C
I)

M
ed

ia
n 

pr
og

re
ss

io
n-

fr
ee

 
su

rv
iv

al
,a  m

on
th

s
H

R
 (9

5%
 C

I)

M
ed

ia
n 

ov
er

al
l 

su
rv

iv
al

, 
m

on
th

s
H

R
 (9

5%
 C

I)

R
O

S1
-r

ea
rr

an
ge

d

 
R

O
S1

-T
K

I-
na

ïv
e

 
 

 EU
C

R
O

SS
, N

C
T0

21
83

87
0

 
 

P
ha

se
 II

45
–4

7
R

O
S1

 r
ea

rr
an

ge
m

en
t

Fi
rs

t/
Se

co
nd

 li
ne

+
R

O
S1

 T
K

I-
na

ïv
e

C
ri

zo
tin

ib
 2

50
 m

g 
B

ID
30

73
.3

 (5
4.

1–
87

.7
)

19
.0

 (8
.3

–N
YR

)
19

.4
b  (

10
.1

–3
2.

2)
54

.8
 (2

0.
3–

N
YR

)

 
 

 M
ET

R
O

S,
 N

C
T0

24
99

61
4

 
 

 P
ha

se
 II

 S
tu

dy
 +

 E
xp

an
si

on
 

C
oh

or
ts

48
,4

9

R
O

S1
 r

ea
rr

an
ge

m
en

t
Se

co
nd

 li
ne

+
R

O
S1

 T
K

I-
na

ïv
e

C
ri

zo
tin

ib
 2

50
 m

g 
B

ID
64

65
.4

b,
c  (

44
–8

2)
21

.4
b,

c  (
12

.7
–3

0.
1)

13
.8

b  (
7.

4–
20

.2
)

40
.5

 (2
7.

9–
53

.1
)

 
 

 O
O

 1
2-

01
, N

C
T0

19
45

02
1

 
 

P
ha

se
 II

50
,5

1
R

O
S1

 r
ea

rr
an

ge
m

en
t, 

AL
K

 r
ea

rr
an

ge
m

en
t 

ne
ga

tiv
e

Fi
rs

t l
in

e+
C

ri
zo

tin
ib

 2
50

 m
g 

B
ID

12
7

71
.7

 (6
3.

0–
79

.3
)

19
.7

 (1
4.

1–
N

YR
)

15
.9

 (1
2.

9–
24

.0
)

44
.2

 (3
2.

0–
N

YR
)

 
 

 ST
A

R
TR

K
-2

, S
TA

R
TR

K
-1

, a
nd

 
A

LK
A

-3
72

-0
01

 In
te

gr
at

ed
 

A
na

ly
si

s52

R
O

S1
 r

ea
rr

an
ge

m
en

t
Fi

rs
t/

se
co

nd
 li

ne
+

TK
I-

na
ïv

e
En

tr
ec

tin
ib

 6
00

 m
g 

da
ily

16
8

67
.9

 (6
0.

2–
74

.8
)

20
.5

 (1
4.

8–
34

.8
)

15
.7

 (1
2.

0–
21

.1
)

47
.8

 (4
4.

1–
N

E)

 
 

 TQ
-B

31
01

-1
-0

00
1/

TQ
-

B
31

01
-I

I-
01

, N
C

T0
30

19
27

6/
N

C
T0

39
72

18
9

 
 

P
ha

se
 I/

II53

R
O

S1
 r

ea
rr

an
ge

m
en

t
Fi

rs
t l

in
e+

U
ne

cr
iti

ni
b 

30
0 

m
g 

B
ID

11
1

80
.2

 (7
1.

5–
87

.1
)

20
.3

 (1
1.

0–
26

.1
)

16
.5

 (1
0.

2–
27

.0
)

N
R

 
 

 B
ar

os
sa

, J
ap

ic
C

TI
-1

94
85

1
 

 
P

ha
se

 II
 C

oh
or

t 1
54

R
O

S1
 r

ea
rr

an
ge

m
en

t
Fi

rs
t l

in
e

TK
I-

na
ïv

e
B

ri
ga

tin
ib

 1
80

 m
g 

da
ily

d
28

67
.9

 (9
0%

 C
I, 

50
.6

–8
2.

1)
N

R
12

.0
 (5

.8
–N

E)
N

YR

 
 

 B
TP

-4
27

23
, N

C
T0

36
08

00
7

 
 

P
ha

se
 II

55
R

O
S1

 r
ea

rr
an

ge
m

en
t

Fi
rs

t/
se

co
nd

 li
ne

TK
I-

na
ïv

e
En

sa
rt

in
ib

 2
25

 m
g 

da
ily

37
27

.0
b  (

13
.8

–4
4.

1)
4.

8b  (
1.

8–
10

.8
)

4.
6b  (

4.
0–

6.
4)

N
YR

 (1
4.

9–
N

E)

 
 

 TR
ID

EN
T-

1,
 N

C
T0

30
93

11
6

 
 

P
ha

se
 I/

II56
R

O
S1

 r
ea

rr
an

ge
m

en
t

Fi
rs

t l
in

e+
TK

I n
aï

ve
R

ep
ot

re
ct

in
ib

 4
0 

m
g 

da
ily

 
to

 1
60

 m
g 

B
ID

, i
nc

lu
di

ng
 

th
e 

R
2P

D
 o

f 1
60

 m
g 

Q
D

 ×
 1

4 
da

ys
 fo

llo
w

ed
 b

y 
16

0 
m

g 
B

ID

71
79

 (6
8–

88
)

34
.1

 (2
5.

6–
N

E)
35

.7
 (2

7.
4–

N
E)

N
E 

(4
4.

4–
N

E)

 
 

 TR
U

ST
, N

C
T0

43
95

67
7

 
 

P
ha

se
 II

57
R

O
S1

 r
ea

rr
an

ge
m

en
t

Fi
rs

t l
in

e+
TK

I-
na

ïv
e

Ta
le

tr
ec

tin
ib

 6
00

 m
g 

da
ily

67
92

.5
 (8

3.
4–

97
.5

)
N

YR
 (r

an
ge

: 1
.3

–2
7.

6)
N

YR
 (r

an
ge

: 
0.

0–
29

.0
)

N
R

 
 

 TR
U

ST
-I

I, 
N

C
T0

49
19

81
1

 
 

P
ha

se
 II

58
R

O
S1

 r
ea

rr
an

ge
m

en
t

Fi
rs

t l
in

e+
R

O
S1

-T
K

I-
na

ïv
e

Ta
le

tr
ec

tin
ib

 6
00

 m
g 

da
ily

25
92

.0
 (7

4.
0–

99
.0

)
N

R
N

R
N

R

 
TK

I-
pr

et
re

at
ed

 
 

 TR
ID

EN
T-

1,
 N

C
T0

30
93

11
6

 
 

P
ha

se
 I/

II56
R

O
S1

 r
ea

rr
an

ge
m

en
t

Se
co

nd
 li

ne
1 

P
ri

or
 T

K
I, 

no
 

pr
io

r 
C

T

R
ep

ot
re

ct
in

ib
 4

0 
m

g 
da

ily
 

to
 1

60
 m

g 
B

ID
, i

nc
lu

di
ng

 
th

e 
R

P
2D

 o
f 1

60
 m

g 
Q

D
 ×

 1
4 

da
ys

 fo
llo

w
ed

 b
y 

16
0 

m
g 

B
ID

56
38

 (2
5–

52
)

14
.8

 (7
.6

–N
E)

9.
0 

(6
.8

–1
9.

6)
25

.1
 (1

7.
8–

N
E)

 
 

 TR
U

ST
, N

C
T0

43
95

67
7

 
 

P
ha

se
 II

57
R

O
S1

 r
ea

rr
an

ge
m

en
t

Se
co

nd
 li

ne
+

C
ri

zo
tin

ib
-

pr
et

re
at

ed

Ta
le

tr
ec

tin
ib

 6
00

 m
g 

da
ily

38
52

.6
 (3

5.
8–

69
.0

)
N

YR
 (r

an
ge

: 1
.4

–2
2.

2)
9.

8 
(r

an
ge

: 0
.0

–2
3.

5)
N

R

(C
on

tin
ue

d)

https://journals.sagepub.com/home/tam


TherapeuTic advances in 
Medical Oncology Volume 17

6 journals.sagepub.com/home/tam

Tr
ia

l n
am

e,
 N

CT
#

P
ha

se
M

ol
ec

ul
ar

 a
lt

er
at

io
n

Li
ne

 o
f t

he
ra

py
P

re
tr

ea
tm

en
t 

de
ta

ils

R
eg

im
en

(s
)

P
at

ie
nt

s,
 

n
O

ve
ra

ll
 r

es
po

ns
e 

ra
te

,a

%
 (9

5%
 C

I)

M
ed

ia
n 

du
ra

ti
on

 o
f 

re
sp

on
se

,a  m
on

th
s

(9
5%

 C
I)

M
ed

ia
n 

pr
og

re
ss

io
n-

fr
ee

 
su

rv
iv

al
,a  m

on
th

s
H

R
 (9

5%
 C

I)

M
ed

ia
n 

ov
er

al
l 

su
rv

iv
al

, 
m

on
th

s
H

R
 (9

5%
 C

I)

 
 

 TR
U

ST
-I

I, 
N

C
T0

49
19

81
1

 
 

P
ha

se
 II

58
R

O
S1

 r
ea

rr
an

ge
m

en
t

Se
co

nd
 li

ne
⩾

1 
pr

io
r 

R
O

S1
-T

K
I

Ta
le

tr
ec

tin
ib

 6
00

 m
g 

da
ily

21
57

.1
 (3

4.
0–

78
.2

)
N

R
N

R
N

R

 
 

 A
R

R
O

S-
1,

 N
C

T0
51

18
78

9
 

 
P

ha
se

 I59
R

O
S1

 r
ea

rr
an

ge
m

en
t

Se
co

nd
 li

ne
⩾

1 
pr

io
r 

R
O

S1
-T

K
I

N
VL

-5
20

 2
5–

12
5 

m
g 

da
ily

21
48

N
R

N
R

M
ed

ia
n 

tim
e 

on
 

tr
ea

tm
en

t:
 3

.6

N
R

B
R

AF
 m

ut
an

t

 
B

R
F1

13
92

8,
 N

C
T0

13
36

63
4

 
P

ha
se

 II
60

–6
2

B
R

AF
 V

60
0E

-m
ut

at
io

n
Fi

rs
t l

in
e

D
ab

ra
fe

ni
b 

15
0 

m
g 

B
ID

 
pl

us
 tr

am
et

in
ib

 2
 m

g 
Q

D
36

63
.9

b  (
46

.2
–7

9.
2)

10
.2

b  (
8.

3–
15

.2
)

10
.8

b  (
7.

0–
14

.5
)

17
.3

 (1
2.

3–
40

.2
)

Se
co

nd
 li

ne
+

D
ab

ra
fe

ni
b 

15
0 

m
g 

B
ID

 
pl

us
 tr

am
et

in
ib

 2
 m

g 
Q

D
57

68
.4

b  (
54

.8
–8

0.
1)

9.
8b  (

6.
9–

18
.3

)
10

.2
b  (

6.
9–

16
.7

)
18

.2
 (1

4.
3–

28
.6

)

 
C

D
R

B
43

6E
C

N
01

, N
C

T0
44

52
87

7
 

P
ha

se
 II

63
B

R
AF

 V
60

0E
-m

ut
at

io
n

Fi
rs

t l
in

e+
D

ab
ra

fe
ni

b 
15

0 
m

g 
B

ID
 

pl
us

 tr
am

et
in

ib
 2

 m
g 

Q
D

20
75

 (5
0.

9–
91

.3
)

N
YR

N
YR

N
YR

 
P

H
A

R
O

S,
 N

C
T0

39
15

95
1

 
P

ha
se

 II
64

B
R

AF
 V

60
0E

-m
ut

at
io

n
Fi

rs
t l

in
e

En
co

ra
fe

ni
b 

45
0 

m
g 

Q
D

pl
us

 B
in

im
et

in
ib

 4
5 

m
g 

B
ID

59
75

 (6
2–

85
)

N
YR

 (2
3.

1–
N

E)
N

YR
 (1

5.
7–

N
E)

N
YR

Se
co

nd
 li

ne
+

39
46

 (3
0–

63
)

16
.7

 (7
.4

–N
E)

9.
3 

(6
.2

–N
E)

N
YR

 
H

L-
08

5-
10

2,
 N

C
T0

37
81

21
9

 
P

ha
se

 I65
B

R
AF

 V
60

0-
m

ut
at

io
n

Se
co

nd
 li

ne
+

Tu
nl

am
et

in
ib

 0
.5

 to
 1

5 
m

g 
B

ID
 p

lu
s 

ve
m

ur
af

en
ib

 
96

0 
m

g 
B

ID
 q

3w
 in

 d
os

e 
es

ca
la

tio
n 

ph
as

e
Tu

nl
am

et
in

ib
 9

/1
2 

m
g 

B
ID

 p
lu

s 
ve

m
ur

af
en

ib
 

72
0/

96
0 

m
g 

B
ID

 in
 d

os
e 

ex
pa

ns
io

n 
ph

as
e

33
60

.6
e  (

42
.1

–7
7.

1)
11

.3
e  (

3.
9–

N
E)

11
.7

e  (
5.

6–
N

E)
N

R

N
TR

K
-r

ea
rr

an
ge

d

 
 LO

XO
-T

R
K

-1
40

01
, N

A
VI

G
A

TE
 a

nd
 

SC
O

U
T 

In
te

gr
at

ed
 a

na
ly

si
s66

N
TR

K
 r

ea
rr

an
ge

m
en

t
Lu

ng
 s

ub
gr

ou
p

Fi
rs

t-
lin

e+
La

ro
tr

ec
tin

ib
 1

00
 m

g 
B

ID
20

73
b  (

45
–9

2)
33

.9
b  (

5.
6–

33
.9

)
35

.4
b  (

5.
3–

35
.4

)
40

.7
 (1

7.
2–

N
E)

 
 ST

A
R

TR
K

-2
, S

TA
R

TR
K

-1
 a

nd
 

A
LK

A
-3

72
-0

01
 In

te
gr

at
ed

 
an

al
ys

is
67

N
TR

K
 r

ea
rr

an
ge

m
en

t
Lu

ng
 s

ub
gr

ou
p

Fi
rs

t l
in

e+
En

tr
ec

tin
ib

 6
00

 m
g 

Q
D

51
62

.7
 (4

8.
1–

75
.9

)
27

.3
 (1

9.
9–

30
.9

)
28

.0
 (1

5.
7–

30
.4

)
41

.5
 (3

0.
9–

N
E)

 
 TR

ID
EN

T-
1,

 N
C

T0
30

93
11

6
 

P
ha

se
 II

68
N

TR
K

 r
ea

rr
an

ge
m

en
t

TK
I n

aï
ve

 (5
2%

)
R

ep
ot

re
ct

in
ib

 1
60

 m
g 

Q
D

 ×
 2

 w
ee

ks
 →

 1
60

 m
g 

B
ID

21
62

 (3
8–

82
)

12
 m

os
 D

oR
: 9

2%
 

(7
6–

10
0)

12
 m

os
 P

FS
: 6

4%
 

(4
3–

86
)

N
R

TK
I p

re
tr

ea
te

d 
(2

9%
)

R
ep

ot
re

ct
in

ib
 1

60
 m

g 
Q

D
 ×

 2
 w

ee
ks

 →
 1

60
 m

g 
B

ID

14
42

 (1
8–

71
)

12
 m

os
 D

oR
: 4

4%
 

(1
–8

8)
12

 m
os

 P
FS

: 2
3%

 
(0

–4
9)

N
R

Ta
bl

e 
2.

 (
C

on
tin

ue
d)

(C
on

tin
ue

d)

https://journals.sagepub.com/home/tam


B Melosky, RA Juergens et al.

journals.sagepub.com/home/tam 7

Tr
ia

l n
am

e,
 N

CT
#

P
ha

se
M

ol
ec

ul
ar

 a
lt

er
at

io
n

Li
ne

 o
f t

he
ra

py
P

re
tr

ea
tm

en
t 

de
ta

ils

R
eg

im
en

(s
)

P
at

ie
nt

s,
 

n
O

ve
ra

ll
 r

es
po

ns
e 

ra
te

,a

%
 (9

5%
 C

I)

M
ed

ia
n 

du
ra

ti
on

 o
f 

re
sp

on
se

,a  m
on

th
s

(9
5%

 C
I)

M
ed

ia
n 

pr
og

re
ss

io
n-

fr
ee

 
su

rv
iv

al
,a  m

on
th

s
H

R
 (9

5%
 C

I)

M
ed

ia
n 

ov
er

al
l 

su
rv

iv
al

, 
m

on
th

s
H

R
 (9

5%
 C

I)

M
ET

-a
lt

er
ed

 
M

ET
-a

m
pl

ifi
ed

, o
ve

re
xp

re
ss

ed
, a

nd
/o

r 
m

ut
at

ed

 
 

 P
R

O
FI

LE
 1

00
1,

 N
C

T0
05

85
19

5
 

 
P

ha
se

 I69
M

ET
 a

m
pl

ifi
ca

tio
n,

 
M

ET
/C

EP
7 

ra
tio

 ⩾
1.

8
Fi

rs
t-

lin
e+

C
ri

zo
tin

ib
 2

50
 m

g 
B

ID
38

28
.9

b  (
15

.4
–4

5.
9)

M
ET

/C
EP

7 
ra

tio
 ⩾

4.
0:

 3
8.

1 
(1

8.
1–

61
.6

)

5.
2b  (

ra
ng

e:
 3

.3
–2

5.
8)

M
ET

/C
EP

7 
ra

tio
 ⩾

4.
0:

 
5.

2 
(r

an
ge

: 3
.3

–2
5.

8)

5.
1b  (

1.
9–

7.
0)

M
ET

/C
EP

7 
ra

tio
 

⩾
4.

0:
 6

.7
 (3

.4
–9

.2
)

11
.0

 (7
.1

–1
5.

9)
M

ET
/C

EP
7 

ra
tio

 ⩾
4.

0:
 1

1.
4 

(7
.2

–1
9.

3)

 
 

 G
EO

M
ET

R
Y 

m
on

o-
1,

 
N

C
T0

24
14

13
9

 
 

P
ha

se
 II

70

M
ET

 a
m

pl
ifi

ca
tio

n,
 G

C
N

 
⩾

10
C

oh
or

t 1
a

Se
co

nd
 li

ne
+

C
ap

m
at

in
ib

 4
00

 m
g 

B
ID

69
29

 (1
9–

41
)

8.
3 

(4
.2

–1
5.

4)
4.

1 
(2

.9
–4

.8
)

N
R

M
ET

 a
m

pl
ifi

ca
tio

n,
 G

C
N

 
6 

to
 9

C
oh

or
t 1

b
Se

co
nd

 li
ne

+
C

ap
m

at
in

ib
 4

00
 m

g 
B

ID
42

12
 (4

–2
6)

24
.9

 (2
.7

–2
4.

9)
2.

7 
(1

.4
–3

.1
)

N
R

M
ET

 a
m

pl
ifi

ca
tio

n,
 G

C
N

 
4 

or
 5

C
oh

or
t 2

Se
co

nd
 li

ne
+

C
ap

m
at

in
ib

 4
00

 m
g 

B
ID

54
9 

(3
–2

0)
9.

7 
(4

.2
–N

E)
2.

7 
(1

.4
–4

.1
)

N
R

M
ET

 a
m

pl
ifi

ca
tio

n,
 

G
C

N
 <

4
C

oh
or

t 3
Se

co
nd

 li
ne

+
C

ap
m

at
in

ib
 4

00
 m

g 
B

ID
30

7 
(1

–2
2)

4.
2 

(4
.2

–4
.2

)
3.

6 
(2

.2
–4

.2
)

N
R

M
ET

 a
m

pl
ifi

ca
tio

n,
 G

C
N

 
⩾

10
C

oh
or

t 5
a

Fi
rs

t l
in

e
C

ap
m

at
in

ib
 4

00
 m

g 
B

ID
15

40
 (1

6–
68

)
7.

5 
(2

.6
–1

4.
3)

4.
2 

(1
.4

–6
.9

)
N

R

 
 

 VI
SI

O
N

, N
C

T0
28

64
99

2 
C

oh
or

t B
 

 
P

ha
se

 II
71

M
ET

 a
m

pl
ifi

ca
tio

n,
 G

C
N

 
⩾

2.
5

Fi
rs

t l
in

e+
Te

po
tin

ib
 5

00
 m

g 
Q

D
24

42
N

E 
(2

.8
–N

E)
N

R
N

R

 
 

 16
-0

19
, N

C
T0

27
50

21
5

 
 

P
ha

se
 II

72
M

ET
 s

ki
pp

in
g 

al
te

ra
tio

ns
 (7

5%
) o

r
am

pl
ifi

ca
tio

n 
(2

5%
)

C
ri

zo
tin

ib
 

pr
et

re
at

ed
C

ap
m

at
in

ib
 4

00
 m

g 
B

ID
20

10
e

N
R

5.
5e  (

1.
3–

11
.0

)
11

.3
 (5

.5
–N

YR
)

 
 

 26
5-

10
1,

 N
C

T0
06

97
63

2
 

 
P

ha
se

 I73
M

ET
/A

XL
m

ut
at

io
n 

or
 

am
pl

ifi
ca

tio
n

Fi
rs

t l
in

e+
G

le
sa

tin
ib

 s
pr

ay
-d

ri
ed

 
di

sp
er

si
on

 (7
50

 m
g 

B
ID

) a
nd

 fr
ee

-b
as

e 
su

sp
en

si
on

 (1
05

0 
m

g 
B

ID
) f

or
m

ul
at

io
ns

27
25

.9
e

N
R

4.
1e

9.
7

 
 

 B
D

-C
M

-I
02

, N
C

T0
29

29
29

0
 

 
P

ha
se

 Ib
74

c-
M

ET
 o

ve
re

xp
re

ss
io

n 
an

d/
or

 M
ET

ex
14

 
sk

ip
pi

ng
 m

ut
at

io
n

Fi
rs

t l
in

e+
B

P
I-

90
16

M
 3

00
–6

00
 m

g 
Q

D
 o

r 
40

0 
m

g 
B

ID
38

2.
6e  (

0.
1–

13
.8

)
N

R
1.

9e  (
1.

9–
3.

7)
10

.3
 (7

.3
–N

E)

 
 

 R
50

93
-O

N
C

-1
86

3,
 

N
C

T0
40

77
09

9
 

 
P

ha
se

 I75

M
ET

ex
14

 s
ki

pp
in

g,
 M

ET
 

am
pl

ifi
ca

tio
n 

(G
C

N
 ⩾

 6
 

or
 M

ET
/C

PC
7 
⩾

 4
, 

or
 M

ET
 g

en
e 

fo
ld

 
ch

an
ge

 ⩾
 2

), 
or

ov
er

ex
pr

es
si

on
 (I

H
C

3+
 

or
 H

 s
co

re
 ⩾

20
0)

Fi
rs

t l
in

e+
R

EG
N

50
93

 2
00

0 
m

g 
q3

w
36

16
.7

e
N

R
N

R
N

R

Ta
bl

e 
2.

 (
C

on
tin

ue
d)

(C
on

tin
ue

d)

https://journals.sagepub.com/home/tam


TherapeuTic advances in 
Medical Oncology Volume 17

8 journals.sagepub.com/home/tam

Tr
ia

l n
am

e,
 N

CT
#

P
ha

se
M

ol
ec

ul
ar

 a
lt

er
at

io
n

Li
ne

 o
f t

he
ra

py
P

re
tr

ea
tm

en
t 

de
ta

ils

R
eg

im
en

(s
)

P
at

ie
nt

s,
 

n
O

ve
ra

ll
 r

es
po

ns
e 

ra
te

,a

%
 (9

5%
 C

I)

M
ed

ia
n 

du
ra

ti
on

 o
f 

re
sp

on
se

,a  m
on

th
s

(9
5%

 C
I)

M
ed

ia
n 

pr
og

re
ss

io
n-

fr
ee

 
su

rv
iv

al
,a  m

on
th

s
H

R
 (9

5%
 C

I)

M
ed

ia
n 

ov
er

al
l 

su
rv

iv
al

, 
m

on
th

s
H

R
 (9

5%
 C

I)

 
 

 LU
M

IN
O

SI
TY

, N
C

T0
35

39
53

6
 

 
P

ha
se

 II
76

c-
M

ET
 o

ve
re

xp
re

ss
io

n
Se

co
nd

 li
ne

+
Te

lis
ot

uz
um

ab
 V

ed
ot

in
 

1.
9 

m
g/

kg
 q

2w
12

2
22

.1
N

SQ
 E

G
FR

 W
T:

 
36

.5
 (2

3.
6–

51
.0

)
N

SQ
 E

G
FR

 
m

ut
an

t:
 1

1.
6 

(3
.9

–2
5.

1)
SQ

: 1
1.

1 
(2

.4
–2

9.
2)

N
R

N
SQ

 E
G

FR
 W

T:
 6

.9
 

(4
.1

–N
E)

N
SQ

 E
G

FR
 m

ut
an

t:
 

N
E 

(3
.0

–N
E)

SQ
: 4

.4
 (3

.0
–N

E)

N
R

N
R

 
 

 LU
N

G
-M

A
P

, N
C

T0
21

54
49

0
 

 
 P

ha
se

 II
 (p

la
tf

or
m

)
 

 
Su

b-
st

ud
y 

S1
40

0K
77

c-
M

ET
 o

ve
re

xp
re

ss
io

n
SQ

 lu
ng

 c
an

ce
r

Fi
rs

t l
in

e+
Te

lis
ot

uz
um

ab
 V

ed
ot

in
 

2.
7 

m
g/

kg
 Q

D
 q

3w
23

9e  (
0–

20
)

N
R

2.
4e  (

1.
4–

3.
0)

5.
6 

(3
.9

–9
.5

)

 
M

ET
 e

xo
n 

14
-m

ut
an

t

 
 

 G
EO

M
ET

R
Y 

m
on

o-
1,

 
N

C
T0

24
14

13
9

 
 

P
ha

se
 II

70
,7

8

M
ET

ex
14

 s
ki

pp
in

g 
m

ut
at

io
n

C
oh

or
t 5

b,
 F

ir
st

 
lin

e
C

ap
m

at
in

ib
 4

00
 m

g 
B

ID
28

67
.9

 (4
7.

6–
84

.1
)

12
.6

 (5
.6

–N
E)

12
.4

 (8
.2

–2
3.

4)
20

.8
 (1

2.
4–

N
E)

C
oh

or
t 4

, s
ec

on
d/

th
ir

d 
lin

e
69

40
.6

 (2
8.

9–
53

.1
)

9.
7 

(5
.6

–1
3.

0)
5.

4 
(4

.2
–7

.0
)

13
.6

 (8
.6

–2
2.

2)

Ex
pa

ns
io

n 
co

ho
rt

6,
 s

ec
on

d 
lin

e
31

51
.6

 (3
3.

1–
69

.8
)

8.
4 

(4
.2

–N
E)

6.
9 

(4
.2

–1
3.

3)
N

E 
(1

3.
5–

N
E)

Ex
pa

ns
io

n 
co

ho
rt

7,
 fi

rs
t l

in
e

32
65

.6
 (4

6.
8–

81
.4

)
N

E 
(5

.5
–N

E)
10

.8
 (6

.9
–N

E)
N

E 
(1

0.
6–

N
E)

 
 

 G
eo

M
ET

ry
-I

II,
 N

C
T0

44
27

07
2

 
 

P
ha

se
 II

I79
M

ET
ex

14
 m

ut
at

io
n

Se
co

nd
 li

ne
+

C
ap

m
at

in
ib

 4
00

 m
g 

B
ID

15
53

.3
 (2

6.
6–

78
.7

)
9.

9 
(2

.9
–N

E)
6.

1
H

R
 0

.4
6 

(0
.1

6–
1.

3)
 

p 
= 

0.
06

6

N
R

D
oc

et
ax

el
 7

5 
m

g/
m

2  q
3w

7
0 

(0
–4

1.
0)

N
R

4.
1

N
R

 
 

 C
IN

C
28

0J
12

20
1,

 N
C

T0
43

23
43

6
 

 
P

ha
se

 II
79

M
ET

ex
14

 s
ki

pp
in

g 
m

ut
at

io
n

Fi
rs

t l
in

e
Tr

ea
tm

en
t n

aï
ve

C
ap

m
at

in
ib

 4
00

 m
g 

B
ID

 
pl

us
 S

pa
rt

al
iz

um
ab

 
40

0 
m

g 
q4

w

31
38

.7
b  (

21
.8

–5
7.

8)
N

YR
13

.3
b  (

9.
3–

N
E)

N
R

 
 

 VI
SI

O
N

, N
C

T0
28

64
99

2 
C

oh
or

ts
 

A
 a

nd
 C

 
 

P
ha

se
 II

80
,8

1

M
ET

ex
14

 s
ki

pp
in

g 
m

ut
at

io
n

Fi
rs

t l
in

e
Te

po
tin

ib
 5

00
 m

g 
da

ily
16

4
57

.3
 (4

9.
4–

65
.0

)
46

.4
 (1

3.
8–

N
E)

12
.6

 (9
.7

–1
7.

7)
21

.3
 (1

4.
2–

25
.9

)

Se
co

nd
 li

ne
+

Te
po

tin
ib

 5
00

 m
g 

da
ily

14
9

45
.0

 (3
6.

8–
53

.3
)

12
.6

 (9
.5

–1
8.

5)
11

.0
 (8

.2
–1

3.
7)

19
.3

 (1
5.

6–
22

.3
)

 
 

 G
LO

R
Y,

 N
C

T0
42

70
59

1
 

 
P

ha
se

 I/
II82

M
ET

ex
14

 s
ki

pp
in

g 
m

ut
at

io
n

Fi
rs

t l
in

e+
G

um
ar

on
tin

ib
 3

00
 m

g 
Q

D
79

66
 (5

4–
76

)
8.

3 
(6

.3
–N

E)
8.

5 
(7

.6
–9

.7
)

17
.3

 (1
2.

1–
N

E)

 
 

 K
U

N
P

EN
G

, N
C

T0
42

58
03

3
 

 
P

ha
se

 II
83

M
ET

ex
14

 s
ki

pp
in

g 
m

ut
at

io
n

Fi
rs

t l
in

e+
Ve

br
el

tin
ib

 2
00

 m
g 

B
ID

 
q4

w
52

75
 (6

1.
1–

86
.0

)
15

.9
 (9

.2
–1

7.
8)

14
.1

 (6
.4

–1
7.

9)
20

.7
 (1

6.
2–

N
E)

 
 

 20
16

-5
04

-0
0C

H
1,

 N
C

T0
28

97
47

9
 

 
P

ha
se

 II
84

,8
5

M
ET

ex
14

 s
ki

pp
in

g 
m

ut
at

io
n

Fi
rs

t l
in

e+
Sa

vo
lit

in
ib

 4
00

 o
r 

60
0 

m
g 

da
ily

70
47

.1
 (3

5.
1–

59
.5

)
6.

9 
(4

.9
–1

2.
5)

6.
9 

(4
.6

–8
.3

)
12

.5
 (1

0.
5–

21
.4

)

Ta
bl

e 
2.

 (
C

on
tin

ue
d)

(C
on

tin
ue

d)

https://journals.sagepub.com/home/tam


B Melosky, RA Juergens et al.

journals.sagepub.com/home/tam 9

Tr
ia

l n
am

e,
 N

CT
#

P
ha

se
M

ol
ec

ul
ar

 a
lt

er
at

io
n

Li
ne

 o
f t

he
ra

py
P

re
tr

ea
tm

en
t 

de
ta

ils

R
eg

im
en

(s
)

P
at

ie
nt

s,
 

n
O

ve
ra

ll
 r

es
po

ns
e 

ra
te

,a

%
 (9

5%
 C

I)

M
ed

ia
n 

du
ra

ti
on

 o
f 

re
sp

on
se

,a  m
on

th
s

(9
5%

 C
I)

M
ed

ia
n 

pr
og

re
ss

io
n-

fr
ee

 
su

rv
iv

al
,a  m

on
th

s
H

R
 (9

5%
 C

I)

M
ed

ia
n 

ov
er

al
l 

su
rv

iv
al

, 
m

on
th

s
H

R
 (9

5%
 C

I)

 
 

 C
H

R
YS

A
LI

S,
 N

C
T0

26
09

77
6

 
 

 P
ha

se
 I86

M
ET

ex
14

 m
ut

at
io

n
Fi

rs
t l

in
e+

A
m

iv
an

ta
m

ab
 1

05
0–

14
00

 m
g 

q1
w

 ×
4 

th
en

 
q2

w

43
33

.3
b  (

18
.6

–5
1.

0)
N

YR
b  (

2.
1–

12
.2

)
N

R
N

R

R
ET

-r
ea

rr
an

ge
d

 
A

LL
-R

ET
, U

M
IN

00
00

20
62

8
 

 P
ha

se
 I/

II 
(e

xp
an

si
on

)87
R

ET
 fu

si
on

EG
FR

 m
ut

at
io

n 
an

d 
AL

K
 r

ea
rr

an
ge

m
en

t 
ne

ga
tiv

e

Se
co

nd
 li

ne
+

P
ri

or
 C

T,
 R

ET
 

in
hi

bi
to

r-
na

ïv
e

A
le

ct
in

ib
 4

50
 m

g 
B

ID
25

4
N

R
3.

4 
(2

.0
–5

.4
)

19
 (5

.4
–N

E)

 
LI

B
R

ET
TO

-0
01

, N
C

T0
31

57
12

8
 

 P
ha

se
 II

 d
os

e 
ex

pa
ns

io
n88

,8
9

R
ET

 fu
si

on
Fi

rs
t l

in
e

Se
lp

er
ca

tin
ib

 1
60

 m
g 

B
ID

69
84

 (7
3–

92
)

20
.2

 (1
3.

0–
N

E)
22

.0
 (1

3.
8–

N
E)

N
E

Se
co

nd
 li

ne
+

 
(p

ri
or

 p
la

tin
um

)
Se

lp
er

ca
tin

ib
 1

60
 m

g 
B

ID
24

7
61

 (5
5–

67
)

28
.6

 (2
0.

4–
N

E)
24

.9
 (1

9.
3–

N
E)

N
E

 
LI

B
R

ET
TO

-3
21

, N
C

T0
42

80
08

1
 

 P
ha

se
 II

90
R

ET
 fu

si
on

Fi
rs

t l
in

e+
Se

lp
er

ca
tin

ib
 1

60
 m

g 
B

ID
26

69
.2

 (4
8.

2–
85

.7
)

N
YR

N
YR

N
YR

 
LI

B
R

ET
TO

-4
31

, N
C

T0
41

94
94

4
 

 P
ha

se
 II

I91
R

ET
 fu

si
on

Fi
rs

t l
in

e
Se

lp
er

ca
tin

ib
 1

60
 m

g 
B

ID
 q

3w
12

9
84

 (7
6–

90
)

24
.2

 (1
7.

9–
N

E)
24

.8
 (1

6.
9–

N
E)

H
R

 0
.4

6 
(0

.3
1–

0.
70

)
p 
<

 0
.0

01

N
YR

H
R

 0
.9

6 
(0

.5
0–

1.
83

)

P
em

et
re

xe
d 

pl
us

 C
Tf

83
65

 (5
4–

75
)

11
.5

 (9
.7

–2
3.

3)
11

.2
 (8

.8
–1

6.
8)

N
YR

 
A

R
R

O
W

, N
C

T0
30

37
38

5
 

 P
ha

se
 I/

II92
R

ET
 fu

si
on

C
oh

or
t A

, f
ir

st
 

lin
e+

P
ra

ls
et

in
ib

 4
00

 m
g 

da
ily

28
72

 (6
0–

82
)

N
YR

N
YR

N
R

C
oh

or
t B

, s
ec

on
d 

lin
e 

(p
ri

or
 

pl
at

in
um

)

P
ra

ls
et

in
ib

 4
00

 m
g 

da
ily

13
6

59
g  (

50
–6

7)
22

.3
 (1

5.
1–

N
YR

)
16

.5
 (1

0.
5–

24
.1

)

 
B

O
S1

72
73

8-
01

, N
C

T0
37

80
51

7
 

 P
ha

se
 I93

R
ET

 fu
si

on
Se

co
nd

 li
ne

+
 (n

o 
al

te
rn

at
iv

e 
th

er
ap

y 
ap

pr
ov

ed
)

B
O

S1
72

73
8 

10
–1

50
 m

g 
da

ily
30

33
e

N
YR

N
R

N
R

 
K

L4
00

-I
/I

I-
01

, N
C

T0
52

65
09

1
 

 P
ha

se
 I94

R
ET

 fu
si

on
Fi

rs
t l

in
e

K
L5

90
58

6 
40

–1
20

 m
g 

da
ily

25
76

e
N

YR
N

R
N

R

Se
co

nd
 li

ne
+

P
ri

or
 a

nt
i-

P
D

-1
/

P
D

-L
1 

th
er

ap
y

32
63

e
N

YR
N

R
N

R

 
SY

-5
00

7-
I, 

N
C

T0
52

78
36

4
 

 P
ha

se
 I95

R
ET

 fu
si

on
Se

co
nd

 li
ne

+
 

(p
re

vi
ou

sl
y 

tr
ea

te
d)

SY
-5

00
7 

20
 m

g 
da

ily
 o

r 
20

–2
00

 m
g 

B
ID

55
75

.0
e  (

53
.3

–9
0.

2)
N

R
N

R
N

R

H
ER

2-
al

te
re

d

 
20

16
-0

78
3,

 N
C

T0
30

66
20

6
 

 P
ha

se
 II

96
H

ER
2 

ex
on

 2
0 

m
ut

at
io

n
Fi

rs
t l

in
e+

P
oz

io
tin

ib
 1

6 
m

g 
da

ily
 

q4
w

30
27

b  (
12

–4
6)

5b  (
4.

0–
N

E)
5.

5b  (
4.

0–
7.

0)
15

 (9
.0

–N
E)

Ta
bl

e 
2.

 (
C

on
tin

ue
d)

(C
on

tin
ue

d)

https://journals.sagepub.com/home/tam


TherapeuTic advances in 
Medical Oncology Volume 17

10 journals.sagepub.com/home/tam

Tr
ia

l n
am

e,
 N

CT
#

P
ha

se
M

ol
ec

ul
ar

 a
lt

er
at

io
n

Li
ne

 o
f t

he
ra

py
P

re
tr

ea
tm

en
t 

de
ta

ils

R
eg

im
en

(s
)

P
at

ie
nt

s,
 

n
O

ve
ra

ll
 r

es
po

ns
e 

ra
te

,a

%
 (9

5%
 C

I)

M
ed

ia
n 

du
ra

ti
on

 o
f 

re
sp

on
se

,a  m
on

th
s

(9
5%

 C
I)

M
ed

ia
n 

pr
og

re
ss

io
n-

fr
ee

 
su

rv
iv

al
,a  m

on
th

s
H

R
 (9

5%
 C

I)

M
ed

ia
n 

ov
er

al
l 

su
rv

iv
al

, 
m

on
th

s
H

R
 (9

5%
 C

I)

 
ZE

N
IT

H
20

, N
C

T0
33

18
93

9
 

 P
ha

se
 II

97
–9

9
H

ER
2 

ex
on

 2
0 

in
se

rt
io

ns
C

oh
or

t 2
Se

co
nd

 li
ne

+
P

oz
io

tin
ib

 1
6 

m
g 

da
ily

90
27

.8
 (1

8.
9–

38
.2

)
5.

1 
(4

.2
–5

.5
)

5.
5 

(3
.9

–5
.8

)
N

R

C
oh

or
t 4

Fi
rs

t l
in

e
P

oz
io

tin
ib

 1
6 

m
g 

da
ily

80
39

 (2
8–

50
)

5.
7 

(4
.6

–1
1.

9)
5.

6 
(5

.4
–7

.3
)

N
R

 
C

hi
C

TR
18

00
02

02
62

 
 P

ha
se

 II
10

0
H

ER
2 

ex
on

 2
0 

m
ut

at
io

n 
(7

9.
5%

)
H

ER
2 

no
n-

ex
on

 2
0 

m
ut

at
io

n 
(2

0.
5%

)

Fi
rs

t l
in

e+
P

yr
ot

in
ib

 4
00

 m
g 

da
ily

78
19

.2
e  (

11
.2

–3
0.

0)
9.

9e  (
6.

2–
13

.6
)

5.
6e  (

2.
8–

8.
4)

10
.5

 (8
.7

–1
2.

3)

 
TR

U
M

P
, N

C
T0

35
74

40
2

 
 P

ha
se

 II
 (p

la
tf

or
m

)
 

 H
ER

2 
co

ho
rt

10
1

H
ER

2 
m

ut
at

io
n

Fi
rs

t l
in

e
P

yr
ot

in
ib

 4
00

 m
g 

da
ily

28
35

.7
b  (

18
.0

–5
3.

5)
6.

4b  (
0.

9–
12

.0
)

7.
3b  (

1.
3–

13
.4

)
14

.3
 (6

.0
–2

2.
7)

 
P

A
TH

ER
2,

 C
hi

C
TR

19
00

02
16

84
 

 P
ha

se
 II

10
2

H
ER

2 
m

ut
at

io
n 

or
 

am
pl

ifi
ca

tio
n

Se
co

nd
 li

ne
+

P
ri

or
 a

nt
i-

H
ER

2/
TK

I a
nd

/o
r 

C
T

P
yr

ot
in

ib
 4

00
 m

g 
pl

us
 

A
pa

tin
ib

 2
50

 m
g 

da
ily

33
51

.5
b  (

33
.5

–6
9.

2)
6.

0b  (
4.

4–
8.

6)
6.

9b  (
5.

8–
8.

5)
14

.8
 (1

0.
4–

23
.8

)

 
21

60
7,

 N
C

T0
50

99
17

2
 

 P
ha

se
 I10

3
H

ER
2 

ex
on

 2
0 

in
se

rt
io

ns
Se

co
nd

 li
ne

+
B

A
Y2

92
70

88
 q

3w
 

fo
llo

w
in

g 
a 

B
ay

es
ia

n 
ad

ap
tiv

e 
do

se
-s

el
ec

tio
n 

m
od

el

20
60

e,
h

N
R

N
R

N
R

 
B

ea
m

io
n 

Lu
ng

 1
, N

C
T0

48
86

80
4

 
 P

ha
se

 I10
4,

10
5

H
ER

2 
TK

D
 m

ut
at

io
ns

Se
co

nd
 li

ne
+

Zo
ng

er
tin

ib
 3

0–
30

0 
m

g 
Q

D
27

46
e

N
R

N
R

N
R

 
20

21
-F

XY
-1

91
, N

C
T0

50
16

54
4

 
 P

ha
se

 Ib
10

6
H

ER
2 

m
ut

at
io

n
N

R
In

et
et

am
ab

 8
 m

g/
kg

 
lo

ad
in

g 
→

 6
 m

g/
kg

 p
lu

s 
P

yr
ot

in
ib

 3
20

 m
g 

da
ily

41
36

.6
e

N
R

N
R

N
R

 
TA

P
U

R
, N

C
T0

26
93

53
5

 
 P

ha
se

 II
 (p

la
tf

or
m

)
 

 H
ER

2 
co

ho
rt

10
7

H
ER

2 
m

ut
at

io
n 

or
 

am
pl

ifi
ca

tio
n

Fi
rs

t l
in

e+
Lu

ng
 c

an
ce

r 
of

 a
ny

 
hi

st
ol

og
y 

(9
6.

4%
 

N
SC

LC
)

P
er

tu
zu

m
ab

 8
40

 m
g 

lo
ad

in
g 

do
se

 th
en

 4
20

 m
g 

q3
w

 p
lu

s 
Tr

as
tu

zu
m

ab
 

8 
m

g/
kg

 lo
ad

in
g 

do
se

 
th

en
 6

 m
g/

kg
 q

3w

28
11

b  (
2–

28
)

N
R

3.
7b  (

ra
ng

e:
 2

.1
–5

.3
)i

N
R

 
M

yP
at

hw
ay

, N
C

T0
20

91
14

1
 

 P
ha

se
 II

 (p
la

tf
or

m
)

 
 H

ER
2 

co
ho

rt
10

8

H
ER

2 
am

pl
ifi

ed
 (4

3.
2%

)
Se

co
nd

 li
ne

+
P

er
tu

zu
m

ab
 8

40
 m

g 
lo

ad
in

g 
do

se
 →

 4
20

 m
g 

q3
w

 p
lu

s 
Tr

as
tu

zu
m

ab
 

8 
m

g/
kg

 lo
ad

in
g 

do
se

 →
 

6 
m

g/
kg

 q
3w

16
13

b  (
2–

38
)

7b  (
6–

8)
2b  (

1–
6)

N
R

H
ER

2 
m

ut
at

ed
 (5

6.
8%

)
21

19
b  (

5–
42

)
9b  (

6–
10

)
4b  (

3–
5)

N
R

 
IF

C
T 

17
03

-R
2D

2,
 N

C
T0

38
45

27
0

 
 P

ha
se

 II
10

9
H

ER
2 

m
ut

at
io

n
Se

co
nd

 li
ne

+
P

ro
gr

es
se

d 
on

 
pl

at
in

um
-b

as
ed

 C
T

P
er

tu
zu

m
ab

 8
40

 m
g 

lo
ad

in
g 

do
se

 →
 4

20
 m

g 
q3

w
 p

lu
s 

Tr
as

tu
zu

m
ab

 
8 

m
g/

kg
 lo

ad
in

g 
do

se
 →

 
6 

m
g/

kg
 q

3w

45
29

e  (
17

.8
–4

0.
0)

11
e  (

2.
9–

14
.9

)
6.

8e  (
4.

0–
8.

5)
N

R

Ta
bl

e 
2.

 (
C

on
tin

ue
d)

(C
on

tin
ue

d)

https://journals.sagepub.com/home/tam


B Melosky, RA Juergens et al.

journals.sagepub.com/home/tam 11

Tr
ia

l n
am

e,
 N

CT
#

P
ha

se
M

ol
ec

ul
ar

 a
lt

er
at

io
n

Li
ne

 o
f t

he
ra

py
P

re
tr

ea
tm

en
t 

de
ta

ils

R
eg

im
en

(s
)

P
at

ie
nt

s,
 

n
O

ve
ra

ll
 r

es
po

ns
e 

ra
te

,a

%
 (9

5%
 C

I)

M
ed

ia
n 

du
ra

ti
on

 o
f 

re
sp

on
se

,a  m
on

th
s

(9
5%

 C
I)

M
ed

ia
n 

pr
og

re
ss

io
n-

fr
ee

 
su

rv
iv

al
,a  m

on
th

s
H

R
 (9

5%
 C

I)

M
ed

ia
n 

ov
er

al
l 

su
rv

iv
al

, 
m

on
th

s
H

R
 (9

5%
 C

I)

 
Ja

pi
cC

TI
-1

94
62

0
 

 P
ha

se
 II

11
0

H
ER

2 
ex

on
 2

0 
in

se
rt

io
n 

m
ut

at
io

n
Se

co
nd

 li
ne

+
P

ri
or

 C
T

T-
D

M
1 

3.
6 

m
g/

kg
 q

3w
21

38
.1

e  (
90

%
C

I, 
23

.0
–5

5.
9)

3.
5e  (

2.
7–

6.
5)

2.
8e  (

1.
4–

4.
4)

8.
1 

(3
.5

–1
3.

2)

 
TR

A
EM

O
S,

 N
C

T0
37

84
59

9
 

 P
ha

se
 I/

II11
1

H
ER

2
ov

er
ex

pr
es

si
on

 
(IH

C
2+

)

Se
co

nd
 li

ne
+

P
ri

or
 E

G
FR

 T
K

I
T-

D
M

1 
3.

6 
m

g/
kg

 q
3w

 
pl

us
 O

si
m

er
tin

ib
 8

0 
m

g 
Q

D

27
12

 w
ee

ks
 O

R
R

e :
 4

 
(0

–2
0)

N
R

2.
8e  (

1.
4–

4.
6)

13
.9

 (1
0–

16
.9

)

 
D

ES
TI

N
Y-

Lu
ng

01
, N

C
T0

35
05

71
0

 
 P

ha
se

 II
11

2–
11

4
H

ER
2 

al
te

ra
tio

ns
C

oh
or

ts
 1

&
2

Se
co

nd
 li

ne
+

T-
D

Xd
 6

.4
 m

g/
kg

 q
3w

91
55

 (4
4–

65
)

9.
3 

(5
.7

–1
4.

7)
8.

2 
(6

.0
–1

1.
9)

17
.8

 (1
3.

8–
22

.1
)

H
ER

2
ov

er
ex

pr
es

si
on

 
(IH

C
2+

/3
+

)

C
oh

or
t 1

Se
co

nd
 li

ne
+

P
ri

or
 C

T 
(9

2%
) a

nd
 

P
D

-1
/P

D
-L

1 
(7

3%
)

T-
D

Xd
 6

.4
 m

g/
kg

 q
3w

49
26

.5
 (1

5.
0–

41
.1

)
5.

8 
(4

.3
–N

E)
5.

7 
(2

.8
–7

.2
)

12
.4

 (7
.8

–1
7.

2)

C
oh

or
t 1

a
Se

co
nd

 li
ne

+
P

ri
or

 C
T 

(9
8%

) a
nd

 
P

D
-1

/P
D

-L
1 

(8
0%

)

T-
D

Xd
 5

.4
 m

g/
kg

 q
3w

41
34

.1
 (2

0.
1–

50
.6

)
6.

2 
(4

.2
–9

.8
)

6.
7 

(4
.2

–8
.4

)
11

.2
 (8

.4
–N

E)

H
ER

2
m

ut
at

io
n

C
oh

or
t 2

Se
co

nd
 li

ne
+

P
ri

or
 P

D
-1

/P
D

-L
1 

(5
4.

8%
)

T-
D

Xd
 6

.4
 m

g/
kg

 q
3w

42
61

.9
 (4

5.
6–

76
.4

)
N

YR
 (5

.3
–N

E)
14

.0
 (6

.4
–1

4.
0)

N
YR

 (1
1.

8–
N

E)

 
D

ES
TI

N
Y-

Lu
ng

02
, N

C
T0

46
44

23
7

 
 R

an
do

m
iz

ed
 p

ha
se

 II
11

5
H

ER
2 

m
ut

at
io

n
Se

co
nd

 li
ne

+
(p

ri
or

 p
la

tin
um

)
T-

D
Xd

 5
.4

 m
g/

kg
 q

3w
10

2
49

.0
 (3

9.
0–

59
.1

)
16

.8
 (6

.4
–N

E)
9.

9 
(7

.4
–N

E)
19

.5
 (1

3.
6–

N
E)

T-
D

Xd
 6

.4
 m

g/
kg

 q
3w

50
56

.0
 (4

1.
3–

70
.0

)
N

E 
(8

.3
–N

E)
15

.4
 (8

.3
–N

E)
N

E 
(1

2.
1–

N
E)

 
K

R
AS

 G
12

C
(X

)-
M

ut
an

t

 
 

 C
od

eB
re

aK
 1

00
, N

C
T0

36
00

88
3

 
 

 P
ha

se
 II

11
6

K
R

AS
 G

12
C

 m
ut

at
io

n
Se

co
nd

 li
ne

+
P

ri
or

 P
D

-1
/P

D
-L

1 
th

er
ap

y 
(9

1.
3%

)

So
to

ra
si

b 
96

0 
m

g 
da

ily
17

4
41

 (3
3.

3–
48

.4
)

12
.3

 (7
.1

–1
5.

0)
6.

3 
(5

.3
–8

.2
)

12
.5

 (1
0.

0–
17

.8
)

 
 

 C
od

eB
re

aK
 2

00
, N

C
T0

43
03

78
0

 
 

 P
ha

se
 II

I11
7

K
R

AS
 G

12
C

 m
ut

at
io

n
Se

co
nd

 li
ne

+
So

to
ra

si
b 

96
0 

m
g 

da
ily

17
1

28
.1

 (2
1.

5–
35

.4
)

p 
<

 0
.0

01
8.

6 
(7

.1
–1

8.
0)

5.
6 

(4
.3

–7
.8

)
H

R
: 0

.6
6 

(0
.5

1–
0.

86
), 

p 
= 

0.
00

17

10
.6

 (8
.9

–1
4.

0)
H

R
 1

.0
1 

(0
.7

7–
1.

33
), 

p 
= 

N
S

D
oc

et
ax

el
 7

5 
m

g/
m

2  q
3w

17
4

13
.2

 (8
.6

–1
9.

2)
6.

8 
(4

.3
–8

.3
)

4.
5 

(3
.0

–5
.7

)
11

.3
 (9

.0
–1

4.
9)

 
 

 K
R

YS
TA

L-
1,

 N
C

T0
37

85
24

9
 

 
 P

ha
se

 I/
II11

8
K

R
AS

 G
12

C
 m

ut
at

io
n

Se
co

nd
 li

ne
+

P
ri

or
 C

T 
an

d 
P

D
-1

/
P

D
-L

1 
th

er
ap

y

A
da

gr
as

ib
 6

00
 m

g 
B

ID
11

6
42

.9
 (3

3.
5–

52
.6

)
8.

5 
(6

.2
–1

3.
8)

6.
5 

(4
.7

–8
.4

)
12

.6
j  (

9.
2–

19
.2

)

 
 

 G
O

42
14

4,
 N

C
T0

44
49

87
4

 
 

 P
ha

se
 Ia

11
9

K
R

AS
 G

12
C

 m
ut

at
io

n
Se

co
nd

 li
ne

+
D

iv
ar

as
ib

 5
0–

40
0 

m
g 

Q
D

 q
3w

58
53

.4
b  (

39
.9

–6
6.

7)
14

.0
b  (

8.
3–

N
E)

13
.1

b  (
8.

8–
N

E)
N

R

 
 

 D
15

53
-1

02
, N

C
T0

53
83

89
8

 
 

 P
ha

se
 I/

II12
0

K
R

AS
 G

12
C

 m
ut

at
io

n
Se

co
nd

 li
ne

+
G

ar
so

ra
si

b 
60

0 
m

g 
B

ID
62

38
.7

b  (
26

.6
–5

1.
9)

6.
9b  (

5.
4–

N
E)

7.
6b  (

5.
7–

N
E)

N
R

Ta
bl

e 
2.

 (
C

on
tin

ue
d)

(C
on

tin
ue

d)

https://journals.sagepub.com/home/tam


TherapeuTic advances in 
Medical Oncology Volume 17

12 journals.sagepub.com/home/tam

Tr
ia

l n
am

e,
 N

CT
#

P
ha

se
M

ol
ec

ul
ar

 a
lt

er
at

io
n

Li
ne

 o
f t

he
ra

py
P

re
tr

ea
tm

en
t 

de
ta

ils

R
eg

im
en

(s
)

P
at

ie
nt

s,
 

n
O

ve
ra

ll
 r

es
po

ns
e 

ra
te

,a

%
 (9

5%
 C

I)

M
ed

ia
n 

du
ra

ti
on

 o
f 

re
sp

on
se

,a  m
on

th
s

(9
5%

 C
I)

M
ed

ia
n 

pr
og

re
ss

io
n-

fr
ee

 
su

rv
iv

al
,a  m

on
th

s
H

R
 (9

5%
 C

I)

M
ed

ia
n 

ov
er

al
l 

su
rv

iv
al

, 
m

on
th

s
H

R
 (9

5%
 C

I)

 
 

 K
on

tR
A

St
-0

1,
 N

C
T0

46
99

18
8

 
 

P
ha

se
 Ib

/I
I12

1
K

R
AS

 G
12

C
 m

ut
at

io
n

Se
co

nd
 li

ne
+

JD
Q

44
3 

m
on

ot
he

ra
py

 in
 

do
se

 e
sc

al
at

io
n 

an
d 

fo
od

 
ef

fe
ct

 c
oh

or
ts

24
41

.7
e

N
R

N
R

N
R

 
 

 C
od

eB
re

aK
 1

00
/1

01
, 

N
C

T0
36

00
88

3/
N

C
T0

41
85

88
3

 
 

P
ha

se
 Ib

-I
I12

2

K
R

AS
 G

12
C

 m
ut

at
io

n
Se

co
nd

 li
ne

+
So

to
ra

si
b 

96
0 

m
g/

da
y +

 A
te

zo
liz

um
ab

 
12

00
 m

g 
q3

w
 o

r 
P

em
br

ol
iz

um
ab

 2
00

 m
g 

q3
w

 w
ith

 o
r 

w
ith

ou
t l

ea
d-

in
 S

ot
or

as
ib

 9
60

 m
g/

da
y

58
29

 (1
8–

43
)

17
.9

 (5
.6

–N
E)

N
R

15
.7

 (9
.8

–1
7.

8)

 
 

 C
od

eB
re

aK
 1

01
, N

C
T0

41
85

88
3

 
 

P
ha

se
 Ib

/I
I12

3
K

R
AS

 G
12

C
 m

ut
at

io
n

Se
co

nd
-l

in
e+

So
to

ra
si

b 
96

0 
m

g/
da

y +
 R

M
C

-4
63

0 
10

0/
14

0/
20

0 
m

g 
tw

ic
e 

q1
w

11
27

b  (
6–

61
)

N
R

N
R

N
R

 
 

 N
C

T0
52

88
20

5
 

 
P

ha
se

 I/
IIa

12
4

K
R

AS
 G

12
C

 m
ut

at
io

n
Se

co
nd

 li
ne

+
G

12
C

i n
aï

ve
G

le
ci

ra
si

b 
pl

us
 J

A
B

-3
31

2
28

50
e

N
R

N
R

N
R

K
R

AS
G

12
C

i-
pr

et
re

at
ed

7
14

.3
e

N
R

N
R

N
R

 
 

 R
A

M
P

 2
02

, N
C

T0
46

20
33

0
 

 
P

ha
se

 II
12

5
K

R
AS

 G
12

V 
m

ut
at

io
n

Se
co

nd
 li

ne
+

A
vu

to
m

et
in

ib
 4

 m
g 

B
ID

16
0

7.
9

N
R

N
R

A
vu

to
m

et
in

ib
 3

.2
 m

g 
pl

us
 

D
ef

ac
tin

ib
 2

00
 m

g 
B

ID
19

11
8.

5
N

R
N

R

 
 

 SW
O

G
 S

15
07

, N
C

T0
26

42
04

2
 

 
P

ha
se

 II
12

6
K

R
AS

 m
ut

at
io

n
Se

co
nd

 li
ne

+
P

ri
or

 IO
 a

nd
/o

r 
C

T
Tr

am
et

in
ib

 2
 m

g 
da

ily
 

pl
us

 d
oc

et
ax

el
 7

5 
m

g/
m

2
53

34
e  (

22
–4

8)
5.

0e  (
2.

3–
5.

6)
4.

1e  (
3.

1–
5.

3)
10

.9
 (8

.0
–1

6.
3)

 
 

 K
R

YS
TA

L-
7,

 N
C

T0
46

13
59

6
 

 
P

ha
se

 II
12

7
K

R
AS

 G
12

C
 m

ut
at

io
n

P
D

-L
1 
⩾

50
%

Fi
rs

t l
in

e
A

da
gr

as
ib

 4
00

 m
g 

B
ID

 
pl

us
 P

em
br

ol
iz

um
ab

 
20

0 
m

g 
q3

w

14
8

63
N

YR
 (1

2.
6–

N
E)

N
YR

 (8
.2

–N
E)

N
R

 
 

 SC
A

R
LE

T,
 jR

C
T2

05
12

10
08

6
 

 
P

ha
se

 II
12

8
K

R
AS

 G
12

C
 m

ut
at

io
n

Fi
rs

t l
in

e,
 N

SQ
So

to
ra

si
b 

96
0 

m
g 

Q
D

 p
lu

s 
C

ar
bo

pl
at

in
 A

U
C

5 
an

d 
P

em
et

re
xe

d 
50

0 
m

g/
m

2  
q3

w
 ×

4

27
88

.9
 (8

0%
 C

I: 
78

.5
–9

4.
8)

N
R

N
YR

6-
m

os
 O

S:
 8

7.
0

 
 

 R
M

C
-6

23
6-

00
1,

 N
C

T0
53

79
98

5
 

 
P

ha
se

 I12
9

K
R

AS
 G

12
X(

no
n-

C
) 

m
ut

at
io

n
Se

co
nd

 li
ne

+
R

M
C

-6
23

6 
80

–4
00

 m
g 

da
ily

40
38

e
N

R
N

R
M

ed
ia

n 
tim

e 
on

 
tr

ea
tm

en
t:

 3
.1

N
R

Ta
bl

e 
2.

 (
C

on
tin

ue
d)

(C
on

tin
ue

d)

https://journals.sagepub.com/home/tam


B Melosky, RA Juergens et al.

journals.sagepub.com/home/tam 13

Tr
ia

l n
am

e,
 N

CT
#

P
ha

se
M

ol
ec

ul
ar

 a
lt

er
at

io
n

Li
ne

 o
f t

he
ra

py
P

re
tr

ea
tm

en
t 

de
ta

ils

R
eg

im
en

(s
)

P
at

ie
nt

s,
 

n
O

ve
ra

ll
 r

es
po

ns
e 

ra
te

,a

%
 (9

5%
 C

I)

M
ed

ia
n 

du
ra

ti
on

 o
f 

re
sp

on
se

,a  m
on

th
s

(9
5%

 C
I)

M
ed

ia
n 

pr
og

re
ss

io
n-

fr
ee

 
su

rv
iv

al
,a  m

on
th

s
H

R
 (9

5%
 C

I)

M
ed

ia
n 

ov
er

al
l 

su
rv

iv
al

, 
m

on
th

s
H

R
 (9

5%
 C

I)

 
FG

FR
-a

lt
er

ed

 
 

 FI
N

D
, 2

01
8-

00
03

99
-1

3
 

 
P

ha
se

 II
13

0
FG

FR
 a

lt
er

at
io

nk
N

R
Er

da
fit

in
ib

 3
 m

g–
9 

m
g 

da
ily

22
9e,

h,
l

N
R

N
R

N
R

 
N

R
G

1-
re

ar
ra

ng
ed

 
 

 eN
R

G
y,

 N
C

T0
29

12
94

9
 

 
P

ha
se

 II
13

1
N

R
G

1 
fu

si
on

Fi
rs

t l
in

e+
 (7

2%
 

pr
io

r 
pl

at
in

um
)

Ze
no

cu
tu

zu
m

ab
 7

50
 m

g 
q2

w
40

37
.2

b  (
26

.5
–4

8.
9)

14
.9

b  (
7.

4–
20

.4
)

N
R

N
R

 
PT

K
7-

po
si

tiv
e

 
 

 M
19

-6
11

, N
C

T0
41

89
61

4
 

 
P

ha
se

 Ib
13

2
P

TK
7-

ex
pr

es
si

ng
Se

co
nd

 li
ne

+
 (a

ll 
pa

tie
nt

s 
en

ro
lle

d)
C

of
et

uz
um

ab
 p

el
id

ot
in

 
2.

8 
m

g/
kg

 q
3w

56
19

.6
e  (

10
.2

–3
2.

4)
7.

2e  (
2.

8–
9.

7)
5.

3e  (
3.

6–
5.

9)
N

R

N
SQ

 E
G

FR
 W

T,
 

P
TK

7 
⩾

90
%

/⩾
2+

 
ev

al
ua

bl
e 

su
bs

et

20
30

.0
e  (

11
.9

–5
4.

3)
5.

8e  (
2.

8–
N

E)
5.

5e  (
2.

6–
8.

5)
N

R

St
ud

y 
in

cl
us

io
n 

cr
ite

ri
a:

 P
re

se
nt

ed
 o

r 
pu

bl
is

he
d 

cl
in

ic
al

 tr
ia

ls
 o

f n
ov

el
 ta

rg
et

ed
 th

er
ap

y 
ag

en
ts

 a
ss

es
se

d 
in

 m
ol

ec
ul

ar
ly

 s
el

ec
te

d,
 a

lt
er

at
io

n-
dr

ug
-m

at
ch

ed
 a

dv
an

ce
d/

m
et

as
ta

tic
 N

SC
LC

. T
ri

al
s 

re
po

rt
in

g 
ef

fic
ac

y 
ou

tc
om

es
 in

 th
e 

la
st

 3
 ye

ar
s 

an
d 

w
ith

 ⩾
20

 N
SC

LC
 p

at
ie

nt
s 

as
 w

el
l a

s 
se

le
ct

 p
iv

ot
al

 tr
ia

ls
 a

re
 in

cl
ud

ed
. T

ri
al

s 
ex

cl
us

iv
el

y 
in

 th
e 

lo
ca

lly
 a

dv
an

ce
d 

se
tt

in
g 

w
er

e 
no

t i
nc

lu
de

d.
 T

hi
s 

ta
bl

e 
se

rv
es

 a
s 

an
 u

pd
at

e 
to

 T
ab

le
 2

 o
f o

ur
 in

iti
al

 r
ev

ie
w

 o
n 

th
is

 to
pi

c8 —
st

ud
ie

s 
in

cl
ud

ed
 in

 th
at

 ta
bl

e 
w

er
e 

no
t i

nc
lu

de
d 

he
re

 u
nl

es
s 

th
ei

r 
re

su
lt

s 
w

er
e 

up
da

te
d 

si
nc

e 
th

e 
cu

to
ff

 d
at

e 
fo

r 
th

e 
pr

ev
io

us
 r

ev
ie

w
.

a B
y 

in
de

pe
nd

en
t r

ev
ie

w
 u

nl
es

s 
ot

he
rw

is
e 

sp
ec

ifi
ed

.
b B

y 
in

ve
st

ig
at

or
 (l

oc
al

 r
ad

io
lo

gi
ca

l) 
as

se
ss

m
en

t.
c B

as
ed

 o
n 

th
e 

in
iti

al
 r

ep
or

t o
f c

lin
ic

al
 a

ct
iv

ity
 in

 2
6 

R
O

S1
+

 p
at

ie
nt

s 
en

ro
lle

d 
in

 th
e 

re
sp

ec
tiv

e 
st

ud
y 

co
ho

rt
.48

d W
ith

 a
 7

-d
ay

 le
ad

-i
n 

pe
ri

od
 a

t 9
0 

m
g.

e T
yp

e 
of

 r
ad

io
lo

gi
ca

l a
ss

es
sm

en
t (

by
 in

ve
st

ig
at

or
 o

r 
in

de
pe

nd
en

t r
ev

ie
w

) n
ot

 s
pe

ci
fie

d.
f C

T 
of

 in
ve

st
ig

at
or

’s
 c

ho
ic

e 
w

ith
 o

r 
w

ith
ou

t p
em

br
ol

iz
um

ab
 2

00
 m

g 
q3

w
.

g I
nc

lu
de

s 
tw

o 
pa

tie
nt

s 
st

ill
 o

n 
tr

ea
tm

en
t w

ith
 p

ar
tia

l r
es

po
ns

es
 p

en
di

ng
 c

on
fir

m
at

io
n.

h I
nc

lu
de

s 
un

co
nf

ir
m

ed
 r

es
po

ns
es

.
i T

ra
ns

fo
rm

ed
 fr

om
 w

ee
ks

 to
 m

on
th

s 
us

in
g 

a 
co

nv
er

si
on

 fa
ct

or
 o

f 4
.3

5 
w

ee
ks

/m
on

th
.

j W
ith

 a
n 

up
da

te
d 

da
ta

 c
ut

-o
ff

 d
at

e 
of

 J
an

ua
ry

 1
5,

 2
02

2 
(m

ed
ia

n 
fo

llo
w

-u
p 

of
 1

5.
6 

m
on

th
s)

.
k P

at
ie

nt
s 

en
ro

lle
d 

in
 th

re
e 

co
ho

rt
s 

ac
co

rd
in

g 
to

 th
e 

ty
pe

 o
f a

lt
er

at
io

n:
 H

ig
h 

co
nf

id
en

ce
 a

ct
iv

at
in

g 
FG

FR
 tr

an
sl

oc
at

io
ns

 (1
), 

hi
gh

 c
on

fid
en

ce
 a

ct
iv

at
in

g 
FG

FR
 m

ut
at

io
ns

 (2
), 

an
d 

lo
w

 c
on

fid
en

ce
 a

ct
iv

at
in

g 
FG

FR
 a

lt
er

at
io

ns
 (3

).
l B

ot
h 

re
sp

on
se

s 
w

er
e 

ob
se

rv
ed

 in
 th

e 
co

ho
rt

 o
f p

at
ie

nt
s 

w
ith

 h
ig

h 
co

nf
id

en
ce

 a
ct

iv
at

in
g 

FG
FR

 tr
an

sl
oc

at
io

ns
. O

R
R

 in
 th

at
 c

oh
or

t w
as

 2
9%

.
A

LK
, a

na
pl

as
tic

 ly
m

ph
om

a 
ki

na
se

; B
ID

, t
w

ic
e 

da
ily

; B
R

A
F,

 v
-R

af
 m

ur
in

e 
sa

rc
om

a 
vi

ra
l o

nc
og

en
e 

ho
m

ol
og

 B
1;

 C
EP

, c
en

tr
om

er
e 

of
 c

hr
om

os
om

e 
7;

 C
I, 

co
nf

id
en

ce
 in

te
rv

al
; c

-M
et

, h
ep

at
oc

yt
e 

gr
ow

th
 fa

ct
or

 r
ec

ep
to

r;
 C

T,
 

ch
em

ot
he

ra
py

; D
oR

, d
ur

at
io

n 
of

 r
es

po
ns

e;
 E

G
FR

, e
pi

de
rm

al
 g

ro
w

th
 fa

ct
or

 r
ec

ep
to

r;
 F

G
FR

, f
ib

ro
bl

as
t g

ro
w

th
 fa

ct
or

 r
ec

ep
to

r;
 G

C
N

, g
en

e 
co

py
 n

um
be

r;
 H

ER
2,

 h
um

an
 e

pi
de

rm
al

 g
ro

w
th

 fa
ct

or
 r

ec
ep

to
r 

2;
 H

R
, h

az
ar

d 
ra

tio
; H

R
G

, 
he

re
gu

lin
; I

H
C

, i
m

m
un

oh
is

to
ch

em
is

tr
y;

 K
R

A
S,

 K
ir

st
en

 r
at

 s
ar

co
m

a 
vi

ra
l o

nc
og

en
e 

ho
m

ol
og

; M
ET

, h
ep

at
oc

yt
e 

gr
ow

th
 fa

ct
or

 r
ec

ep
to

r;
 m

os
, m

on
th

s;
 n

, n
um

be
r;

 N
C

T,
 n

at
io

na
l c

lin
ic

al
 tr

ia
l; 

N
E,

 n
ot

 e
st

im
ab

le
; N

R
, n

ot
 r

ep
or

te
d;

 
N

R
G

1,
 n

eu
re

gu
lin

-1
; N

S,
 n

on
-s

ig
ni

fic
an

t;
 N

SC
LC

, n
on

-s
m

al
l-

ce
ll 

lu
ng

 c
an

ce
r;

 N
SQ

, n
on

-s
qu

am
ou

s 
ce

ll;
 N

TR
K

, n
eu

ro
tr

op
hi

c 
ty

ro
si

ne
 r

ec
ep

to
r 

ki
na

se
; N

YR
, n

ot
 y

et
 r

ea
ch

ed
; O

R
R

, o
bj

ec
tiv

e 
re

sp
on

se
 r

at
e;

 O
S,

 o
ve

ra
ll 

su
rv

iv
al

; 
P

D
-1

, p
ro

gr
am

m
ed

 c
el

l d
ea

th
 p

ro
te

in
 1

; P
D

-L
1,

 p
ro

gr
am

m
ed

 d
ea

th
 li

ga
nd

 1
; P

FS
, p

ro
gr

es
si

on
-f

re
e 

su
rv

iv
al

; P
TK

7,
 ty

ro
si

ne
-p

ro
te

in
 k

in
as

e-
lik

e 
7;

 Q
D

, o
nc

e 
da

ily
; q

Xw
, e

ve
ry

 X
 w

ee
ks

; R
2P

D
, r

ec
om

m
en

de
d 

ph
as

e 
II 

do
se

; R
ET

, 
re

ar
ra

ng
ed

 d
ur

in
g 

tr
an

sf
ec

tio
n;

 R
O

S1
, c

-r
os

 o
nc

og
en

e 
1;

 S
Q

, s
qu

am
ou

s 
ce

ll;
 T

-D
M

1,
 tr

as
tu

zu
m

ab
 e

m
ta

ns
in

e;
 T

-D
Xd

, t
ra

st
uz

um
ab

 d
er

ux
te

ca
n;

 T
K

D
, t

yr
os

in
e 

ki
na

se
 d

om
ai

n;
 T

K
I, 

ty
ro

si
ne

 k
in

as
e 

in
hi

bi
to

r;
 W

T,
 w

ild
-t

yp
e;

 #
th

 
lin

e+
, #

th
 li

ne
 o

f t
re

at
m

en
t i

n 
th

e 
ad

va
nc

ed
 s

et
tin

g 
or

 h
ig

he
r.

Ta
bl

e 
2.

 (
C

on
tin

ue
d)

https://journals.sagepub.com/home/tam


TherapeuTic advances in 
Medical Oncology Volume 17

14 journals.sagepub.com/home/tam

from 174 clinical trials or integrated analyses 
reporting efficacy outcomes on novel oncogene-
directed therapies in alteration-matched 
advanced NSCLC (PRISMA, Figure 1). Study 
analyses were grouped by molecular target and 
will be discussed chronologically based on the 
availability of a Food and Drug Administration 
(FDA) approved agent: c-ros oncogene 1 (ROS1)-
rearranged (n = 23), v-Raf murine sarcoma viral 
oncogene homolog B1 (BRAF) V600-mutated 
(n = 9), neurotrophic tyrosine receptor kinase 
(NTRK)-rearranged (n = 4), hepatocyte growth 
factor receptor (MET)-altered (n = 35), rearranged 
during transfection (RET)-rearranged (n = 15), 
human epidermal growth factor receptor (HER)2-
altered (n = 38), Kirsten rat sarcoma viral oncogene 
homolog (KRAS)-mutated (n = 32), fibroblast 
growth factor receptor (FGFR)-altered (n = 10), 
HER3-/neuregulin-1 (NRG1)-altered (n = 10), 
phosphoinositide 3-kinase (PI3K)-altered (n = 2), 
and tyrosine-protein kinase-like 7 (PTK7)-mutated 
(n = 1). Analyses with ⩾20 NSCLC biomarker-
selected patients reporting outcomes in the last 
3 years (since September 2020) are summarized 
in Table 2 (n = 73).

ROS1-rearranged
The ROS1 tyrosine kinase domain shares 84% 
and 86% sequence similarity with ALK and tro-
pomyosin receptor kinase (TRK), respec-
tively.133,134 Consequently, two main types of 
inhibitors have been assessed in patients with 
tyrosine kinase inhibitor (TKI)-naïve and -pre-
treated NSCLC harboring ROS1 rearrange-
ments: those that co-inhibit ALK/ROS153,135–146 
and those that co-inhibit TRK/ROS1.144–147 In 
TKI-naïve patients, the ALK/ROS1/MET co-
inhibitor crizotinib was the first agent to receive 
regulatory approval for NSCLC with ROS1 rear-
rangements in 2016 based on results from the 
phase I PROFILE-1001 study.148 Updated results 
confirmed initial findings of frequent (objective 
response rate (ORR) 72%) and durable (median 
duration of response (mDoR) 24.7 months) 
responses and showed strong median progres-
sion-free survival (mPFS 19.3 months) and 
median overall survival (mOS 51.4 months) out-
comes.141 Multiple other phase I–II studies of cri-
zotinib in ROS1-rearranged NSCLC have 
confirmed its clinical efficacy45,46,48,50,140 and 
updated results from three of these studies dem-
onstrated robust survival outcomes with mPFS of 
13.8–19.4 months and mOS of 40.5–54.8 months 
at a median follow-up of 54.4–81.4 months45,47,49,50 

(Table 2). With few exceptions where ORRs were 
modest (ensartinib 27%, iruplinalkib 36.8%),55,138 
other ALK/ROS1 inhibitors (ceritinib, lorlatinib, 
brigatinib, and unecritinib) have shown high clin-
ical activity as initial ROS1-directed therapy 
(ORR 62%–80.2%),53,54,136,142,143 however have 
yet to receive regulatory approval for ROS1-
rearranged NSCLC. In particular, unecritinib (a 
novel derivative of crizotinib) was recently associ-
ated with an 80.2% ORR, 20.3-month mDoR, 
and mPFS of 16.5 months.53

Entrectinib is a brain-penetrant agent and was the 
first TRK/ROS1 inhibitor to receive accelerated 
approval for TKI-naïve ROS1-rearranged 
NSCLC based on results from an NSCLC-
specific integrated analysis of phase I–II studies in 
multiple tumors.149 At a median follow-up of 
29.1 months, entrectinib continued to show fre-
quent and durable responses (ORR 67.9%; 
mDoR 20.5 months), with a mPFS and mOS of 
15.7 and 47.8 months, respectively.52 Taletrectinib 
and repotrectinib are potent, next-generation 
TRK/ROS1 inhibitors designed to improve cen-
tral nervous system activity and overcome treat-
ment resistance with favorable safety profiles that 
showed early signs of activity in ROS1-rearranged 
NSCLC.146,147,150 Treatment with repotrectinib 
resulted in frequent and durable responses and 
robust PFS in the ROS1-TKI-naïve cohort of the 
phase II trial TRIDENT-1 (ORR 79%; mDoR 
34.1 months; mPFS 35.7 months),56,144 leading to 
a priority review designation151 and subsequent 
approval by the FDA.152 After displaying promis-
ing activity in phase I studies,147,153 taletrectinib 
showed the highest response rates across studies 
of ROS1 inhibitors in the phase II trials TRUST 
and TRUST-II (92.5% and 92.0%),57,58,145 lead-
ing to a breakthrough therapy designation by the 
FDA.154

Since the seminal approval of crizotinib, several 
studies have assessed the clinical activity of 
ROS1 inhibitors, in ROS1-TKI-pretreated 
patients. The ALK/ROS1 inhibitors, lorlatinib 
and brigatinib, were among the first to demon-
strate activity in this setting with ORRs between 
26.3% and 35%.135,143,155 In a small study of 
patients with brain-only progression while on 
crizotinib, lorlatinib (an agent designed specifi-
cally to penetrate the blood–brain barrier)156 led 
to an ORR of 67% at 12 weeks and 87% while on 
the study.137 Recently, the next-generation TRK/
ROS1 inhibitors, repotrectinib and taletrectinib, 
have also shown promise. Repotrectinib received 
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FDA approval in this setting based on an ORR 
of 38% and a mDoR of 14.8 months in the 
cohort of ROS1-TKI-pretreated patients from 
TRIDENT-1144,56,152 and taletrectinib demon-
strated impressive ORRs of 52.6% and 57.1% in 
the cohorts of ROS1-TKI-pretreated patients 
from TRUST and TRUST-II.57,58,145,146 NVL-
520, a ROS1-selective inhibitor designed to 
avoid neurotoxicity associated with TRK inhibi-
tion, showed promising clinical activity (ORR 
48%) in a heavily pretreated population, includ-
ing at least one prior ROS1-inhibitor, displaying 
both brain penetration and activity against resist-
ance mutations.59

In summary, both ALK/ROS1 and TRK/ROS1 
inhibitors are highly active and have been 
approved for the treatment of NSCLC with ROS1 
rearrangements; more potent and selective next-
generation inhibitors continue to improve clinical 
efficacy and safety leading to additional regula-
tory approvals.

BRAF-V600-mutant
In contrast with ROS1-altered and other onco-
gene-driven NSCLCs (see below), high clinical 
activity in BRAF-V600-mutated NSCLC was 
only achieved thus far with a combination of both 
direct and downstream inhibition with BRAF60,63–

65,108,157–161 and mitogen-activated protein kinase 
kinase (MEK)1/2 inhibitors.60,63–65,161,162 Similar 
to the targeting of BRAF mutations in melanoma, 
the use of these inhibitors as monotherapy 
(namely selumetinib or vemurafenib) produced 
minimal to modest clinical activity in 
NSCLC108,158,159,162 leading to combination ther-
apy trials. The first combination to be approved 
was the BRAF inhibitor dabrafenib plus the 
MEK1/2 inhibitor trametinib for BRAF-V600E-
mutated NSCLC based on outcomes from the 
phase II BRF113928 trial.61,62,163 At a median 
follow-up of 16.3–16.6 months, initial findings in 
both treatment-naïve and pretreated cohorts were 
confirmed with frequent and durable responses 
(ORR 63.9% and 68.4%; mDoR 10.2 and 
9.8 months, respectively) and robust mPFS (10.8 
and 10.2 months) and OS outcomes (17.3 and 
18.2 months; Table 2).60 The clinical activity of 
dabrafenib plus trametinib in this setting is also 
supported by an ORR of 75% from a recent phase 
II trial.63

Two additional inhibitor combinations were 
developed to increase the potency, selectivity, and 

safety of at least one of the combination  
partners relative to prior BRAF and/or MEK 
inhibitors.30,164,165 The PHAROS phase II study 
demonstrated good activity for the second-gener-
ation combination of encorafenib plus binimetinib 
in treatment-naïve and pretreated cohorts (ORRs 
of 75% and 46%, respectively), durable responses 
(mDoR not yet reached (NYR) and 16.7 months), 
and robust mPFS (NYR and 9.3 months).64 
These findings supported approval of encorafenib 
plus binimetinib for the treatment of metastatic 
BRAF-V600E NSCLC on October 2023.166 
Recently, the HL-085-102 trial reported favora-
ble outcomes for vemurafenib plus the highly 
potent and selective MEK inhibitor tunlametinib 
in pretreated NSCLC patients with BRAF-V600 
mutations (ORR 60.6%, mDoR 11.3 months, 
mPFS 11.7 months).65 Other BRAF inhibitor 
combinations have been tested in this setting with 
no breakthrough results to date.157,160,161

The development of BRAF and MEK inhibitor 
combinations continues to evolve with next-gen-
eration agents. A promising approach currently in 
early clinical testing is the use of BRAF dimer 
inhibitors (belvarafenib, DCC-3084, BGB-3245, 
PF-07799933)161,167–169 which prevent the para-
doxical activation of MAPK signaling leading to 
resistance observed with BRAF monomer inhibi-
tors and the need for a MEK inhibitor. These 
new agents are also active against Class II and III 
BRAF mutations.170,171

NTRK-rearranged
Inhibitors of TRK-A/B/C have been assessed in 
NTRK-rearranged solid tumors including the 
first-generation agents larotrectinib66,172 and 
entrectinib67,173 and the next-generation TRK 
inhibitors taletrectinib146 and repotrectinib.68,174 
Both larotrectinib and entrectinib were approved 
in 2018 and 2019, respectively, for tumor-agnos-
tic indications in NTRK fusion-positive tumors 
based on integrated analyses of multicenter, sin-
gle-arm trials.149,175 Up-to-date, tumor-agnostic 
and tumor-specific analyses have generally con-
firmed the benefit of these agents in lung cancer. 
Integrated analysis of phase I/II LOXO-
TRK-14001, NAVIGATE, and SCOUT trials 
reported an ORR of 69% and mDoR, mPFS, and 
mOS of 32.9, 29.4, and NYR months for laro-
trectinib among 269 patients with solid tumors 
and an ORR of 73%, mDoR, mPFS, and mOS of 
33.9, 35.4, and 40.7 months, respectively, among 
a subgroup of 20 lung cancer patients66 (Table 2). 

https://journals.sagepub.com/home/tam


TherapeuTic advances in 
Medical Oncology Volume 17

16 journals.sagepub.com/home/tam

Similar analyses of the phase I/II STARTRK-2, 
STARTRK-1, and ALKA-372-001 studies eval-
uating entrectinib reported an ORR of 62.4% and 
mDoR, mPFS, and mOS of 29.4, 15.7, and 
38.2 months among 194 patients with solid 
tumors173 and an ORR of 62.7% and mDoR, 
mPFS, and mOS of 27.3, 28.0, and 41.5 months 
among 51 patients with NSCLC.67

The next-generation TRK inhibitor repotrectinib 
has also demonstrated clinical activity in patients 
with NTRK-rearranged solid tumors,174 leading 
to a breakthrough therapy designation by the 
FDA in October 2021.176 In a recent update of 
the TRIDENT-1 basket trial, repotrectinib con-
tinued to show promising clinical activity in solid 
tumors with ORRs of 58% and 50% in TKI-naïve 
and -pretreated cohorts and of 62% and 42% in 
the respective subsets of NSCLC patients.68

TRK inhibitors have shown strong activity and 
robust clinical outcomes across different NTRK-
fusion positive tumors including NSCLC, repre-
senting one of the most compelling examples of 
alteration-drug matching.

MET-altered
A host of agents have been assessed in MET-altered 
NSCLC including nonselective MET inhibitors 
(crizotinib48,69,140,177–182 and S49076183), selective 
MET inhibitors (capmatinib,70,72,78,79,184,185 tepo-
tinib,71,80,81 savolitinib,84,85,186,187 glumetinib,188,189 
bozitinib,190 ABN401,191 SAR125844,192 vebrel-
tinib,83 and gumarontinib82), dual MET/X inhibi-
tors (glesatinib,73 BPI-9016M,74 and OMO-1193), 
anti-MET antibodies (onartuzumab194 and emi-
betuzumab195), antibody mixtures (Sym015-01196), 
bispecific METxEGFR (amivantamab,86 CKD-
702197) and METxMET (REGN509375) antibod-
ies, and anti-MET antibody–drug conjugates 
(ADCs; telisotuzumab vedotin76,77,198). Multiple 
biomarkers and thresholds have also been used to 
select patients with variable clinical activity across 
studies with different agents and biomarker selec-
tion criteria.

MET-amplified or -overexpressed. In patients 
selected exclusively based on MET amplification, 
the multi-targeted-TKI crizotinib and the selec-
tive MET inhibitor capmatinib are the most  
well-studied agents and have generally shown 
only limited to modest clinical activity with an 
apparent relationship between higher MET ampli-
fication and improved outcomes in some 

studies.48,69,70,140,177,179,184 Other selective MET 
inhibitors have also shown preliminary efficacy 
signals in patients with MET-amplified 
tumors.71,184,192

Multiple MET inhibitors have been assessed in 
patients with MET overexpression or a variety of 
MET alterations. The first-in-class ADC telisotu-
zumab vedotin failed to meet the pre-specified 
response criteria for continuing enrolment in the 
subprotocol S1400K of Lung-MAP with an  
ORR of 9%77 and displayed only modest activity  
in the LUMINOSITY phase II trial (ORR 
22.1%).76 Interestingly, biomarker analyses from 
LUMINOSITY revealed higher ORR in nonsqua-
mous NSCLC without EGFR mutations and high 
MET overexpression (⩾50% by immunohisto-
chemistry; ORR 52.2%).76 Studies assessing small-
molecule inhibitors or antibody-based agents with 
dual or bispecific targeting showed limited to mod-
est activity (ORRs 2.6%–25.9%).73–75,196

METex14-mutant. Studies of MET inhibitors  
in patients with NSCLC harboring predomi-
nantly METex14 mutations generally resulted 
in more favorable clinical outcomes than  
those seen in MET-amplified/-overexpressed 
NSCLC.140,70,81,177,180,186,187 Crizotinib demon-
strated variable activity in METex14 NSCLC 
(ORR 12%–65%),57,177,179–181 and received an 
FDA breakthrough therapy designation in 
2018199 based on favorable results from the 
PROFILE-1001 study.182 The first regulatory 
approval in this setting was granted to the selec-
tive MET inhibitor capmatinib based on results 
from the multi-cohort GEOMETRY mono-1 
phase II trial.200 Updated results from this study 
showed frequent and durable responses and 
robust PFS and OS outcomes in both treat-
ment-naïve (ORR 65.6%–67.9%, mDoR 12.6–
NYR months, mPFS 10.8–12.4 months, mOS 
20.8–NYR months in initial and expansion 
cohorts) and previously treated patients (ORR 
40.6%–51.6%, mDoR 8.4–9.7 months, mPFS 
5.4–6.9 months, mOS 13.6–NYR months in 
initial and expansion cohorts).70,78 More 
recently, the GeoMETry-III phase III trial 
comparing capmatinib to standard-of-care 
docetaxel in previously treated METex14 
NSCLC showed numerical differences in ORR 
(53.3% vs 0%) and PFS (6.1 vs 4.1 months; 
hazard ratio (HR) 0.46, 95% confidence inter-
val (CI) 0.16–1.3, p = 0.066) that although con-
sistent with GEOMETRY mono-1 results did 
not reach statistical significance after early trial 
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termination.79 Tepotinib was the second selec-
tive MET inhibitor to receive accelerated 
approval for METex14 NSCLC in February 
2021 based on initial results from the large phase 
II VISION trial.201 Updated results confirmed 
initial findings with frequent and durable 
responses and robust PFS and OS outcomes in 
both treatment-naïve and pretreated patients 
(ORR 57.3% and 45.0%, mDoR 46.4 and 
12.6 months, mPFS 12.6 and 11.0 months, mOS 
21.3 and 19.3 months, respectively).80 Addi-
tional selective MET inhibitors have also shown 
preliminary efficacy signals187,189–191 that were 
confirmed in larger cohorts of phase II studies of 
savolitinib, gumarontinib, and vebreltinib (ORRs 
47.1%, 66%, and 75%, respectively).82–86 Nota-
bly, vebreltinib showed high activity, durable 
responses, and robust PFS outcomes in both 
treatment-naïve and pretreated cohorts of the 
KUNPENG study (ORR 77.1% and 70.6%; 
mDoR 16.5 and 15.3 months; mPFS 14.5 and 
7.1 months).83 The dual MET/OCT-2 inhibitor 
OMO-1 and the bispecific METxEGFR anti-
body CKD-702 have shown early signs of activ-
ity.193,197 The combination of capmatinib with 
the immune checkpoint inhibitor (ICI) spartali-
zumab was assessed in treatment-naïve patients 
resulting in a modest ORR (38.7%) and high 
rates of treatment-related adverse events prompt-
ing early trial termination.185

In crizotinib-pretreated patients with predomi-
nantly skipping alterations (75%), capmatinib 
showed minimal activity (ORR 10%)72 while in 
MET-inhibitor-pretreated patients, the bispecific 
METxEGFR antibody amivantamab demon-
strated promising clinical activity (ORR 33%) in 
the METex14 cohort of the CHRYSALIS phase I 
trial.86

In summary, targeting MET dysregulation with 
MET inhibitors has been successful in METex14 
NSCLC. More potent and selective next-genera-
tion TKIs have shown high clinical activity and are 
the only type of agents approved thus far in this set-
ting. In MET-amplified/-overexpressed tumors, 
encouraging results have been observed particu-
larly in MET-amplified subsets. An interesting rela-
tionship between levels of MET enrichment and 
clinical activity was apparent in multiple studies.

RET-rearranged
Earlier generation multi-kinase inhibitors (cabo-
zantinib, alectinib, vandetanib, lenvatinib, and 

ponatinib)87,202–208 and more selective RET 
TKIs (selpercatinib, pralsetinib, BOS172738, 
KL590586, SY-5007)88–95,209 have been assessed 
in patients with NSCLC harboring RET rear-
rangements. Small phase I–II trials (⩽25 
patients) assessing multitargeted TKIs for which 
RET is a secondary target generally reported 
minimal activity (ORRs 4%–28%)87,202,203,205,207 
except the LURET phase II trial of vandetanib 
which reported a promising ORR of 53%.204,208 
More recently, studies of selective RET TKIs 
have demonstrated improved outcomes. 
Selpercatinib was the first agent approved by the 
FDA in this setting210 based on initial results of 
the large, multi-cohort non-randomized 
LIBRETTO-001 phase II trial.89 Trial results 
were recently confirmed showing frequent and 
durable responses and robust PFS outcomes in 
both treatment-naïve (ORR 84%, mDoR 
20.2 months, mPFS 22.0 months) and pre-
treated patients (ORR 61%, mDoR 28.6 months, 
mPFS 24.9 months; Table 2).88 The smaller 
phase II trial LIBRETTO-321 further confirmed 
the favorable clinical activity of selpercatinib in 
patients with RET-rearranged NSCLC with an 
ORR of 69.2% (87.5% in treatment-naïve and 
61.1% in pre-treated subsets).90 Recently, the 
phase III trial LIBRETTO-431 comparing selp-
ercatinib to chemotherapy as initial treatment of 
RET-rearranged NSCLC met its primary end-
point with a large improvement in mPFS (24.8 
vs 11.2 months; HR 0.46, p < 0.001) and more 
frequent and longer responses (ORR 84% vs 
65%; mDoR 24.2 vs 11.5 months) for selper-
catinib.91 In September 2022, selpercatinib 
received full FDA approval for RET-rearranged 
NSCLC based on the updated results from the 
NSCLC cohort of the LIBRETTO-001 trial.211 
The FDA has also granted full approval to pral-
setinib for the treatment of RET fusion-positive 
NSCLC in August 2023212 based on the recently 
updated results of the phase II ARROW trial 
which confirmed initial findings209 with an ORR 
of 72% and mDoR NYR among chemotherapy-
naïve patients and ORR of 59% and mDoR of 
22.3 months among platinum-pretreated 
patients.92 Median PFS was NYR and 
16.3 months in chemotherapy-naïve and -pre-
treated patients, respectively. Other highly 
potent and selective RET inhibitors 
(BOS172738, KL590586, and SY-5007) have 
shown promising clinical activity in phase I trials 
(ORR 33%–76%).93–95 Similar to other altera-
tion-matched settings, selective RET TKIs have 
improved outcomes relative to multitargeted 
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TKIs in the treatment of RET-arranged NSCLC; 
selpercatinib and pralsetinib are the only agents 
approved in this setting.

HER2-altered
Four main types of inhibitors, dual- or pan-HER 
TKIs (BAY2927088, neratinib, dacomitinib, 
afatinib, pyrotinib, poziotinib, and tarloxotinib-
effector),96–103,213–221 selective HER2 TKIs 
(zongertinib),104,105,222 anti-HER2 monoclonal 
antibodies (mAbs; trastuzumab, pertuzumab, 
and inetetamab),106–109,223–227 and anti-HER2 
ADCs (ado-trastuzumab emtansine (T-DM1) 
and trastuzumab deruxtecan (T-DXd))110–115,228–

232 have been assessed in patients with NSCLC 
with HER2 alterations.

Second-generation small-molecule TKIs that 
were primarily developed as EGFR inhibitors in 
NSCLC (dacomitinib, afatinib, and neratinib) 
were tested in HER2-altered NSCLC showing 
limited activity as single agents (ORRs 
0%–12%).213,215,216,218,219 More recently, newer 
next-generation multi-HER TKIs (poziotinib, 
pyrotinib, tarloxotinib, BAY2927088, BDTX-
189) and HER2-selective TKIs (zongertinib) 
have shown better yet generally modest activity in 
primarily HER2ex20-mutated NSCLC (ORR 
19.2%–60%; Table 2).96–105,214,220–222 Of these, 
the highest ORR was observed with the multi-
HER TKI BAY2927088 (60%)103 leading to an 
FDA breakthrough designation for HER2-
mutated NSCLC.223 No small-molecule HER2 
TKI has been approved to date for the treatment 
of HER2-altered NSCLC.

Antibody-based agents have the potential to 
increase selectivity and specificity relative to mul-
titargeted TKIs. However, the use of single or 
dual anti-HER2 mAb regimens with or without 
chemotherapy has resulted in minimal to modest 
activity in HER2-altered NSCLC (0%–45%; 
Table 2).106–109,224–228 Recently, two ADCs, 
T-DM1 and T-DXd, have been prospectively 
assessed in this setting. T-DM1, which delivers a 
microtubule-inhibitory payload to HER2-
presenting cells, has shown minimal activity in 
patients with pretreated HER2-amplified/-
overexpressed NSCLC (ORR 6.7%–20%)229–231 
and moderate activity in chemotherapy-pre-
treated patients with HER2ex20 insertions (ORR 
38.1%).110 T-DM1 also showed limited activity 
when combined with osimertinib in osimertinib-
pretreated patients with HER2 overexpression.111 

T-DXd, which delivers a topoisomerase 1 inhibi-
tor payload, has shown greater activity overall in 
HER2-altered (including overexpressed and 
mutated) NSCLC with ORRs of 55.6% and 55% 
in heavily pretreated patients from a phase I study 
dose-expansion cohort and the phase II 
DESTINY-Lung01 trial, respectively.113,114,232 
Both studies reported high ORRs in patients with 
HER2 mutations compared with HER2 overex-
pression (72.7% and 61.9% vs 26.5%–34.1%, 
respectively).112,113,232 Longer mDoR, mPFS, and 
mOS in HER2-mutated relative to HER2-
overexpressed patients were also apparent in 
DESTINY-Lung01 (NYR vs 5.8–6.2 months, 
14.0 vs 5.7–6.7 months, and NYR vs 11.2–
12.4 months, respectively). T-DXd received a 
breakthrough therapy designation for use in plat-
inum-pretreated HER2-mutant NSCLC patients 
from the FDA in May 2020 based on results of 
DESTINY-Lung01.233 More recently, results 
from the randomized phase II trial DESTINY-
Lung2 comparing two doses of T-DXd (5.4 vs 
6.4 mg/kg every 3 weeks (q3w)), confirmed the 
favorable outcomes (ORR 49.0% and 56.0%; 
mDoR 16.8 months and NYR; mPFS 9.9 and 
15.4 months; mOS 19.5 months and NYR for the 
5.4 and 6.4 mg/kg q3w doses, respectively)115 
leading to the FDA granting only the lower-dose 
regimen accelerated approval for use in HER2-
mutant NSCLC in August 2022 due to concerns 
of higher rates of interstitial lung disease/pneu-
monitis with 6.4 mg/kg q3w.234 This regimen is 
also being evaluated for a HER2-amplified, 
tumor-agnostic indication with promising effi-
cacy.235 Other HER2-directed ADCs (A166 and 
ARX788) and bispecific antibodies (KN026) 
have shown promising results in early-phase stud-
ies in HER2-altered tumors; however, their effi-
cacy in NSCLC has yet to be established.236–238

Several clinical studies now show a greater benefit 
for HER2-directed therapy in those with HER2 
mutations compared to other types of HER2 
alterations, with the best outcomes observed for 
the ADC T-DXd which was approved for HER2-
mutated NSCLC.

KRAS-mutant
Multiple approaches have sought to target KRAS 
mutations in NSCLC, including direct inhibition 
with RAS/RAF blockers125,239,240 and indirect 
approaches such as inhibition of downstream 
effectors,125,126,240–251 cyclin-dependent kinases 
4/6,252–254 and other targets.125,242,247,249,250,255 The 
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first successful effort to directly target KRAS in 
NSCLC emerged from the development of agents 
that selectively and irreversibly bind and stabilize 
the KRAS-G12C inactive form (single-OFF 
KRAS-G12C inhibitors).118,256–259 Sotorasib and 
adagrasib received accelerated approval from the 
FDA in May 2021 and December 2022260,261 for 
previously treated, KRAS-G12C-mutant NSCLC 
based on results from the multicenter, single-arm 
trials CodeBreaK100 and KRYSTAL-1, respec-
tively.118,258 Initial results from CodeBreaK100 
were confirmed in a 2-year update showing fre-
quent and durable responses and robust time-to-
event outcomes (ORR of 41% and mDoR, mPFS, 
and mOS of 12.3, 6.3, and 12.5 months, respec-
tively).116 After a median follow-up of 17.7 months, 
the confirmatory, phase III trial CodeBreaK200 
met its primary endpoint of PFS (median 5.6 vs 
4.5 months, HR 0.66, p = 0.0017) and showed 
significant improvement in ORR (28.1% vs 
13.2%, p < 0.001) with sotorasib relative to doc-
etaxel in platinum-pretreated patients.117 
However, benefits in mDoR (8.6 months (95% 
CI 7.1–18.0) vs 6.8 months (95% CI 4.3–8.3)) 
and OS (10.6 vs 11.3 months, p = 0.53) were not 
apparent which may be in part due to removal of 
OS as a co-primary endpoint, consequent reduc-
tion in sample size and introduction of crossover 
from docetaxel to sotorasib in a trial amend-
ment.262 Despite CodeBreaK200 meeting its pri-
mary endpoint, the FDA ruled that the primary 
endpoint data could not be reliably interpreted 
and postponed conversion to full approval.263 
Initial results from the KRYSTAL-1 trial leading 
to accelerated approval of adagrasib were compa-
rable to sotorasib’s registrational data with an 
ORR of 42.9% and mDoR, mPFS, and mOS of 
8.5, 6.5, and 12.6 months, respectively.118 
Adagrasib’s confirmatory trial KRYSTAL-12 is 
ongoing. More recently, the new potent and 
selective G12C inhibitors divarasib, JDQ443, 
and garsorasib have shown promising activity as 
single agents with ORRs of 53.4%, 41.7%, and 
38.7%, mDoR of 14.0, not reported (NR) and 
6.9 months, and mPFS of 13.1, NR and 
7.6 months, respectively.119–121 Additional single-
OFF G12C inhibitors are either in very early 
stages of clinical development or have been halted 
due to safety and/or efficacy concerns.264–268

New RAS inhibitors are now being developed 
toward different individual mutations (KRAS-
G12X) or with a wider selectivity range (from 
multi-KRAS to multi-RAS), and targeting active 
(ON) forms.259 Recently, the first-in-class, 

RAS-selective, tri-complex multi-ON RAS 
inhibitor, RMC-6236, showed promising pre-
liminary clinical activity in KRAS-G12X(D/V/A/
S/R) NSCLC (ORR 38%; Table 2).129

Data on combination regimens in patients with 
KRAS-G12C mutations have recently emerged. 
Combination of sotorasib with ICIs (atezoli-
zumab or pembrolizumab) showed only moder-
ate activity (ORR 29%) in cohorts of the 
CodeBreak100/101 trials where frequent grade 
3/4 hepatotoxicity limited ability to maintain 
dosing.122 Higher ORRs were observed with the 
selective KRAS-G12C inhibitors MK-1084 and 
adagrasib in combination with pembrolizumab 
(47% and 63%, respectively) in programmed 
death-ligand 1 (PD-L1)-positive (tumor pro-
portion score (TPS) ⩾1%) and PD-L1-high 
(TPS ⩾ 50%) patients, respectively.127,269 
Combinations of sotorasib or glecirasib with 
SHP2 inhibitors (RMC4630 or JAB-3312, 
respectively) in pretreated patients showed mod-
erate ORRs overall (43% and 27%, respectively) 
with promising activity in G12C inhibitor-naïve 
subsets (ORR of 50% in both studies).123,124 
Combinations of MEK inhibitors (binimetinib, 
trametinib, or avutometinib) with other systemic 
agents (chemotherapy, defactinib, or multi-
TKIs (erlotinib, anlotinib, ponatinib)) have 
shown variable activity in pretreated patients 
with KRAS mutations (ORRs 0%–
60%).125,126,242,243,246–249 In chemotherapy-naïve 
non-squamous NSCLC patients, first-line soto-
rasib plus carboplatin-pemetrexed showed an 
impressive ORR of 88.9% and PFS and OS rate 
at 6 months of 81.2% and 87.0% in the 
SCARLET phase II trial.128

In summary, the development of agents that indi-
rectly target KRAS (such as MEK/ERK inhibi-
tors) has not been successful in KRAS-mutant 
NSCLC. KRAS-G12C single-OFF inhibitors 
have shown strong activity in previously treated, 
KRAS-G12C-mutant NSCLC and are the only 
type of targeted agents approved in this setting. 
New single- and multi-ON inhibitors are promis-
ing agents as they can more directly inhibit active 
RAS forms and have the potential to simultane-
ously inhibit different aberrant forms; however, 
these are still in very early stages of development.

Other targets
Several targeted therapies are being developed in 
alteration-drug-matched settings without a 
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first-in-class regulatory approval to date, includ-
ing FGFR-, HER3-, NRG1-, PTK7-, and PI3K-
altered NSCLC.

FGFR inhibition of FGFR-altered NSCLC was 
initially attempted with non-selective inhibitors 
mostly in FGFR-amplified/overexpressed tumors 
resulting in considerable toxicity with minimal 
activity.270–273 The use of FGFR-selective, multi- 
or pan-FGFR inhibitors eased safety concerns; 
however, clinical activity remained minimal 
(ORRs 4%–11%).274–277 The recently presented 
results of the FIND and RAGNAR trials of 
erdafitinib followed this trend with minimal to 
modest activity in NSCLC patients with FGFR 
alterations (ORRs of 9% and 26%, respec-
tively).130,278 Moreover, rogaratinib treatment of 
squamous NSCLC with FGFR alterations pro-
duced no responses in SAKK19/18 which was 
closed prematurely due to futility.279

In addition to inhibition of HER2-altered 
NSCLC, multiple approaches have sought to 
address aberrant HER signaling, including 
anti-HER3 mAbs and small-molecule pan-
HER inhibitors in patients with HER3 or 
NRG1 overexpression/amplification or NRG1 
rearrangements. Testing of small-molecule 
pan-HER inhibitors in HER1-3-altered NSCLC 
had limited success.280–282 Although circulating 
NRG1 levels were initially identified as poten-
tially predictive of efficacy of the anti-HER3 
mAb patritumab plus erlotinib in the rand-
omized phase II HERALD trial,283 the phase III 
HER3-Lung study failed to confirm this find-
ing.284 Similarly, the addition of the anti-HER3 
mAbs lumretuzumab or seribantumab to either 
chemotherapy or EGFR inhibitors did not show 
meaningful benefit (ORRs of 6.3% and 19.7% 
in pretreated patients and 42.9% in a small sub-
set of chemotherapy-naïve patients) despite 
early signals of higher activity in HER3- or 
NRG1-enriched NSCLC.285–288 The anti-
HER3 mAb GSK2849330 showed minimal 
activity in HER3-expressing cancers (n = 29) 
with a single yet durable response in an NSCLC 
patient with a cluster of differentiation 74-NRG1 
rearrangement.289 When NRG1 rearrangements 
were used as biomarker selection criteria, serib-
antumab and the HER2/HER3 bispecific anti-
body zenocutuzumab showed moderate yet 
promising activity with durable responses in 
previously treated NSCLC patients enrolled in 
the CRESTONE (ORR 36%)290 and eNRGy 
trials (ORR 37.2%; mDoR 14.9 months).131 

These agents have received fast-track or prior-
ity review designations from the FDA in NRG1-
rearranged tumor-agnostic or NSCLC-specific 
indications.291,292

Development of therapies targeted to PI3K and 
PTK7 in the respective biomarker alteration-
matched NSCLC populations is in the very early 
stages of development without a clear break-
through to date.132,293,294

Discussion
Development of therapies directed toward 
driver genes in molecularly selected, advanced 
NSCLC is an extremely active research field 
with a large number of studies evaluating new 
agents in previously identified targets (particu-
larly in MET-, HER2-, and KRAS-altered dis-
ease) and new potentially actionable molecular 
targets (NRG1 and PTK7). MET, HER2, 
KRAS, ROS1, RET, and BRAF alterations are 
both clinically actionable and relatively com-
mon in NSCLC patients (>1%). It is therefore 
not surprising that these are among the most 
studied populations. Although NTRK altera-
tions are uncommon (⩽1%), their clinical 
actionability has been convincingly demon-
strated independent of tumor type, with high 
clinical activity across multiple tumors and sev-
eral tumor-agnostic approvals.

The number of unique clinically actionable set-
tings defined by oncogenic alterations (other 
than those of EGFR and ALK) continues to grow 
and clinical research efforts in this field have led 
to a large number of FDA approvals in the last 
3 years (n = 9).295 Many of these are in patient 
populations with a high clinical need as onco-
genic alterations tend toward more aggressive 
cancers with few treatment options. The clinical 
impact of alteration-matched therapies is also 
reflected in trial eligibility for new non-onco-
genic-targeted agents (such as ICIs) which now 
often exclude patients with clinically actionable 
alterations (EGFR, ALK, ROS1, and others). 
Moreover, approval of tumor-agnostic indica-
tions for the same alteration-drug pairs previ-
ously approved in NSCLC296,297 serves as further 
validation of the applicability of this strategy. 
However, despite efforts to standardize reporting 
and interpretation of alteration-drug-matched 
clinical trial data,298–302 regulatory approvals and 
reimbursement vary across regions limiting 
access in certain jurisdictions.303–308
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Our review highlights the considerable develop-
ment of targeted therapy in NSCLC, resulting in 
an overall increase in the antitumor activity of 
alteration-drug-matched strategies across multi-
ple oncogene-driven settings (Figure 2). Fueled 
by developments in molecular diagnostic tools, 
patient selection has evolved from biomarker-
unselected populations to those defined by an 
altered biomarker and, more recently, by specific 
alterations with known oncogenic potential. 
Target actionability has also improved through 
the development of increasingly selective and 
potent agents, with better pharmacokinetic 

profiles, that are capable of inhibiting specific 
alterations at lower doses and with fewer off-tar-
get effects. Although the initial use of multi-tar-
geted TKIs allowed multiple alterations to 
become simultaneously actionable (e.g., crizo-
tinib in ALK-, ROS1-, and MET-altered disease), 
these agents have generally been replaced with 
more potent, selective, and/or direct small-mole-
cule inhibitors or antibody-based agents. For 
example, even though crizotinib had initially 
shown considerable activity in ROS1-rearranged 
NSCLC, ORRs in this setting continue to 
improve with next-generation inhibitors that 
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Figure 2. Clinical activity of selected types of agents used as initial targeted therapy across different 
oncogene-driven NSCLC settings.
Box and whiskers plot of full (horizontal line segments) and interquartile ranges (boxes), median (vertical lines inside the 
boxes) and mean (dots) ORR values from clinical studies grouped by setting and type of systemic agent. ORRs for first-line 
CT alone (platinum doublets),313 with TT,314 or ICIs315 were obtained from meta-analyses and are provided as reference 
points. Studies of initial TT in alteration-drug-matched settings often include patients previously treated with standards of 
care for advanced, biomarker-unselected NSCLC. Studies in patients previously treated with alteration-matched TT were not 
included (e.g., studies of ROS1 inhibitors in patients previously treated with a ROS1 TKI).
a“Altered” was used to convey any alteration type, including amplification, overexpression, and mutation. Most of the 
alterations in “MET-altered” are in MET-amplified or -overexpressed but may also include a small fraction of patients with 
MET mutations.
b“Enriched” was used to convey increased levels of gene products (RNA or protein amplification or overexpression).
ADC, antibody–drug conjugate; ALK, anaplastic lymphoma kinase; BRAF, v-Raf murine sarcoma viral oncogene homolog 
B1; CT, chemotherapy; HER2, human epidermal growth factor receptor 2; ICI, immune checkpoint inhibitor; KRAS, Kirsten 
rat sarcoma viral oncogene homolog; MA, meta-analysis; MEK, mitogen-activated protein kinase kinase; MET, hepatocyte 
growth factor receptor gene; NMA, network meta-analysis; NSCLC, non-small-cell lung cancer; NTRK, neurotrophic 
tyrosine receptor kinase; ORR, overall response rate; PK, pharmacokinetics; PLT, platinum (doublets); RET, rearranged 
during transfection; ROS1, c-ros oncogene 1; RNA, ribonucleic acid; TKI, tyrosine kinase inhibitor; TRK, tropomyosin 
receptor kinase; TT, targeted therapy; 1L, first-line.
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display higher selectivity toward ROS1 and its 
mutant forms (Figure 2).57–59,309 Nonetheless, 
strategies involving simultaneous inhibition of 
multiple targets such as co- and pan-inhibitory 
approaches may still be useful in areas where a 
more stringent biological control is required due 
to compensatory mechanisms (such as functional 
redundancy and pathway feedback loops) or weak 
primary target inhibition. With the establishment 
of alteration-drug-matched approaches as first-
line therapy in the advanced setting, there is an 
increasing need for strategies to overcome both 
innate and acquired resistance.310 These com-
monly involve co-inhibition with combination 
therapy or bispecific agents to address off-target 
mechanisms (e.g., KRAS-G12C plus SHP2 
inhibitors against adaptative resistance to KRAS 
inhibition123,124,310 or amivantamab to overcome 
reciprocal resistance and signaling crosstalk 
between EGFR and MET)310–312 and/or use of 
next-generation inhibitors which typically address 
on-target resistance mechanisms (e.g., taletrec-
tinib against the ROS1 secondary solvent-front 
mutation G2032R).309 Current research also 
increasingly favors direct alteration targeting over 
indirect strategies such as modulation of proximal 
“pathway” components or levels of effector mol-
ecules or by stabilizing inactive/OFF states. 
Newer antibody-based agents are improving the 
clinical actionability of alteration-matched 
approaches by directed delivery of cytotoxic moi-
eties (ADCs) or by specifically and simultane-
ously targeting multiple alterations with potential 
synergistic effects (bispecific antibodies). 
Bispecific antibodies have also the potential of 
combining alteration-drug-matching with other 
therapeutic approaches that have been successful 
in the treatment of NSCLC, such as immune 
modulation of the tumor microenvironment with 
ICIs.

Development of effective therapeutic strategies 
has been challenging in some biomarker-selected 
settings, such as PI3K- and FGFR-altered 
NSCLC for which no agent was approved despite 
decades-long research efforts. In particular, alter-
ations to PI3K and its efferent (PI3K-AKT-
mammalian target of rapamycin (mTOR)) 
pathway are relatively common in NSCLC and 
multiple direct and indirect inhibitory approaches 
have been attempted with pan-class I PI3K, PI3K 
subtype, AKT, mTOR, and PI3K/mTOR inhibi-
tors in both alteration-drug-matched and 
-unmatched populations.316–318 PI3K-AKT-
mTOR is an example of a pathway with complex 

regulatory mechanisms and intricate crosstalk, 
where target inhibition is challenged by multiple 
intra- and inter-pathway compensatory mecha-
nisms (including functional redundancy of PI3K 
isoforms) and on-target toxicities.316–320 
Moreover, PI3K pathway alterations are geneti-
cally diverse, occur in a clinically heterogenous 
group of patients, and are often associated with 
alterations in other oncogenes and high muta-
tional load, where they may be “passengers” 
rather than “drivers” of the oncogenic pro-
cess.320–322 In addition to addressing issues with 
inhibitor selectivity and toxicity, and similar to 
MET inhibitors in MET-altered disease, a critical 
step in the development of PI3K inhibitors in 
NSCLC may be the identification and targeting 
of oncogenic drivers among the range of PI3K 
pathway alterations.320

It is important to note that many targeted agents 
are currently being developed in unselected/
non-matched populations, using indirect 
(“pathway”) inhibition strategies and targeting 
non-oncogene tumor-associated alterations. 
For example, treatment of NFE2L2/KEAP1-
altered NSCLC is being attempted indirectly 
with glutaminase323 and mTOR inhibitors.324,325 
ADCs targeting the human trophoblast cell sur-
face glycoprotein antigen 2 (TROP2; dato-
potamab deruxtecan, sacituzumab govitecan, 
and SKB264) have recently shown promise in 
NSCLC in combination with ICIs326,327 or as 
single agents.328–330 However, their development 
has been directed toward TROP2-unselected 
populations as biomarker analyses have failed to 
establish TROP2 expression as a predictor of 
clinical activity.328,331 Development of ADCs 
against other tumor-associated markers espe-
cially in populations with high levels of target 
expression is a promising approach that is cur-
rently being explored.332–334

Summary
Research in alteration-drug matching continues 
to evolve at a rapid pace in NSCLC. The number 
of settings defined by oncogenic alterations has 
increased and alteration targeting has become 
increasingly specific and effective with the refine-
ment of biomarker selection criteria and the use 
of newer, more selective, and potent agents. 
Future developments should focus on the contin-
ued application of these principles to new settings 
and the exploration of novel ways to target onco-
gene-driven NSCLC.
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