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ABSTRACT
Ascorbic acid (AsA) is one of the most abundant natural antioxidants, and it is an
important indicator of the nutritional value of cucumber fruit. The aim of this study
was to elucidate the regulatory mechanism affecting AsA metabolism in cucumber
fruit. In this study, the AsA content in the fruit of two cucumber cultivars (H28 and
H105) was significantly higher in the exocarp and endocarp than in the mesocarp.
To clarify the regulation of AsA in cucumber fruit, the transcriptomes of three fruit
tissues (i.e., the exocarp, mesocarp, and endocarp) of two cucumber cultivars (H28 and
H105) were sequenced. Transcriptomic profiling combined with transcription factors
(TFs) and correlation analysis were performed to reveal that three genes, including
CsaV3_5G014110 (phosphomannomutase, PMM ), CsaV3_2G004170 (GDP-mannose-
3′, 5′-epimerase, GME) and CsaV3_5G006680 (dehydroascorbate reductase, DHAR),
were expressed at higher level in the exocarp and endocarp than in the mesocarp.
In both two cultivars, CsaV3_4G028360 (ethylene-responsive transcription factor, ERF)
was negatively correlated with PMM and GME, and positively correlated with DHAR.
CsaV3_6G042110 (ethylene-responsive transcription factor, ERF) was positively corre-
lated with PMM and GME, and negatively correlated with DHAR. CsaV3_6G032360
(mitogen-activated protein kinase, MAPK ) as positively correlatedwith PMM,GME and
DHAR. These six genes are considered the key candidate genes for further research.
This study provides insight for further study on the regulation of AsA biosynthesis in
cucumber fruit and provide potential candidate genes for future genetic improvement
of cucumber germplasm with enhanced AsA accumulation.

Subjects Agricultural Science, Genetics, Molecular Biology, Plant Science
Keywords Cucumber, Transcriptome analysis, Ascorbic acid, Ascorbate biosynthesis pathways,
Ascorbate recycling pathway

INTRODUCTION
AsA is one of the most important antioxidant molecules. It also plays important roles in
diverse physiological functions in plants, such as photosynthesis, signal transduction, cell
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division and expansion, plant growth, and flowering time (Foyer, Kyndt & Hancock, 2020;
Alves et al., 2021; Muñoz et al., 2023; Wang et al., 2024). AsA also has important roles in
human health, such as preventing various oxidative stress-related diseases, participating in
collagen synthesis. Due to the lack of the gene encoding the enzyme L-gulono1,4-lactone
oxidase, which catalyzes the last step of the animal AsA biosynthesis pathway, humans have
lost the ability to synthesize AsA and can only obtain it from our diet (Njus et al., 2020;
Muñoz et al., 2023). Fresh fruit and vegetable are our primary AsA source. However, AsA
content varies among species, and there are also differences among different varieties.

AsA concentration is determined by the balance between biosynthesis, oxidation,
enzymatic regeneration or recycling, and transport. To date, there are at least five pathways
involved in AsAmetabolism (Chen et al., 2023). Four AsA biosynthesis have been described
in plants: the D-mannose/L-galactose (D-Man/L-Gal) or Smirnoff-Wheeler, L-gulose, D-
galacturonate (D-GalA), and myo-inositol (MI) (Wheeler, Jones & Smirnoff, 1998; Ren et
al., 2013; Sodeyama et al., 2021; Chen et al., 2023). There is only one AsA recycling pathway
(Ascorbate-glutathione system, AsA-GSH system) in plants, and it plays an important role
in plant development and stress tolerance (Zhang et al., 2016; Liao et al., 2023).

In order to increase the content of AsA in plant, the regulatory mechanism of AsA in
plants has long been the subject of research. Many studies showed that AsA biosynthesis
and recycling are closely modulated by transcriptional mechanisms. Some studies have
shown that GDP-L-galactose-phosphorylase (GGP) is a crucial regulatory point in the
AsA pathway in Arabidopsis thaliana (Li et al., 2008; Fenech et al., 2021). Some studies
have shown that transport of AsA and its intermediates are crucial in AsA metabolism
(Miyaji et al., 2015; Sechet et al., 2018). Plant hormones also participate in regulating the
AsA biosynthesis in plants (Perin et al., 2019; Yu et al., 2019; Zhang et al., 2020; Chen et al.,
2021; Xu et al., 2022; Xu et al., 2023). However, due to control and influence of various
factors onAsA content, themechanisms controlling AsA levels in plants remain unexplored.

Cucumber (Cucumis sativus L.) is consumed in different industries of food such as
juicing, sauerkraut, and fresh food, and is a major vegetable crop grown worldwide
(Dong et al., 2023; Wang et al., 2023). Recognized for its fragrant and delectable fruit,
cucumber is primarily consumed in its fresh form. Cucumber boasts a rich composition
of carotenoids, vitamins, minerals, and a variety of organic acids, making its very popular
among consumers. AsA is one of the main components of cucumber, and increasing
the content of AsA in cucumber fruits is one of the breeding goals of cucumber. So far,
information about about the functions of AsA as well as the genetics and biochemistry of
AsA biosynthesis in cucumber seeding have been reported (Zhang et al., 2016), few studies
have focused on the mechanism of molecular regulation and accumulation in cucumber
fruits.

Exploring the roles and regulatory mechanisms of distinct AsA biosynthetic routes in
cucumber fruits could lay the foundation for improving the quality of this crop. The aim
of this study was to investigate the transcriptome of two cucumber varieties (H28 and
H105) across different tissues using RNA-seq, thus gaining further insight into the genes
and regulatory networks involved in AsA biosynthesis in cucumber fruit.
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MATERIALS & METHODS
Plant material
Two cucumber cultivars, H28 and H105, were grown in a greenhouse at the Institute of
Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China. They
were sowed on 20 March 2020. The greenhouse temperature ranged from 22–30 ◦C during
the day and 18–25 ◦C at night, with natural light, 60% ± 10% RH. H28 and H105 are
hybrid species preserved by our research group. The research background is clear. H28 is
a North China type cucumber, H105 is a South China type white jade type cucumber.

The fruits of H28 and H105 were harvested at the fruit ripening stage (around 14
days after flowering, between the 6th and 10th node). The exocarp (1), mesocarp (2),
and endocarp (3) (Fig. 1A) of the two cultivars were rapidly separated and immediately
frozen in liquid nitrogen. Three replicates were prepared at each collection time point.
The samples of H105 were named as A1 (A1_1, A1_2, A1_3), A2 (A2_1, A2_2, A2_3), A3
(A3_1, A3_2, A3_3). The samples of H28 were named as B1 (B1_1, B1_2, B1_3), B2 (B2_1,
B2_2, B2_3), B3 (B3_1, B3_2, B3_3).

Analyses of AsA, total AsA (T-AsA), and DHA
AsA, T-AsA, and DHA were analyzed according to Law, Charles & Halliwell (1983)
with slight modifications. T-AsA was determined after reduction of DHA to AsA with
dithiothreito (DTT), and the concentration of DHA was calculated by using the following
formula: (T-AsA) - (AsA level). Data were collected as previously described in Zhang et al.
(2016).

RNA-seq analysis
The methods for total RNA extracted, purification, and synthesis of first and second
stranded cDNA were the same as previously described in Li et al. (2023). Total RNA were
extracted following the manufacturer of Trizol Reagent (15596018; Invitrogen, Waltham,
MA, USA). The quantity and purity of total RNA were assessed usingthe RNA Nano 6000
Assay Kit (5067-1511; Agilent, Santa Clara, CA, USA) of the Bioanalyzer 2100 system.
mRNA was purified using Dynabeads Oligo (dT) (Thermo Fisher Scientific, Waltham,
MA, USA), and fragmented into small pieces using Magnesium RNA Fragmentation
Module (cat.e6150; NEB, Ipswich, MA, USA). First strand and second strand cDNA was
synthesized using SuperScript™ II Reverse Transcriptase (cat. 1896649, Invitrogen), E. coli
DNA polymerase I (cat.m0209; NEB), RNase H (cat.m0297; NEB) and dUTP Solution
(cat.R0133, Thermo Fisher Scientific). The quantity and purity of total RNA were analysis
of Bioanalyzer 2100 and RNA 6000 Nano LabChip Kit (5067-1511). The average insert
size for the final cDNA libraries were 300 ± 50 bp. The cDNA library construction and
transcriptome sequencing were performed by LC-Bio Technology CO., Ltd. (Hangzhou,
China) used Illumina Novaseq TM 6000 sequence platform.

Clean reads were generated through Cutadapt (v1.15) software, which eliminated data
with adapters and low-quality reads (average quality below Q20). The high-quality clean
reads were aligned with the cucumber (Chinese Long) reference genome using HISAT2
(https://daehwankimlab.github.io/hisat2/). The final transcriptome was generated using
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Figure 1 (A) Schematic diagram of different tissues in cucumber fruit; (B) ascorbic acid (AsA), dehy-
droascorbic acid (DHA), and total ascorbate (T-AsA) contents in different tissues in the two cucum-
ber cultivars of cucumber. ‘H105’ (A) and ‘H28’ (B). Exocarp (1), Mesocarp (2), and endocarp (3) Num-
bers above the bar chart columns represent the AsA/DHA ratio. Error bars represent the mean± SD of the
three corresponding replicates. Different lowercase letters represent significantly different AsA content in
the different tissues. A1: exocarp of ‘H105’, A2: mesocarp of ‘H105’, A3: endocarp of ‘H105’, B1: exocarp
of ‘H28’, B2: mesocarp of ‘H28’, B3: endocarp of ‘H28’ .

Full-size DOI: 10.7717/peerj.18327/fig-1

StringTie (http://ccb.jhu.edu/software/stringtie/, version:stringtie–2.1.6) and gffcompare
software (http://ccb.jhu.edu/software/stringtie/gffcompare.shtml, version:gffcompare–
0.9.8). Themethod of the final transcriptome assembly was the same as previously described
in Li et al. (2023). The expression levels of all transcripts were estimated using StringTie
and ballgown (http://www.bioconductor.org/packages/release/bioc/html/ballgown.html).
The expression abundance for mRNAs were performed by calculating FPKM (fragment
per kilobase of transcript per million mapped reads) value. The calculation formula
of RPKM was adopted as the previous study: RPKM = 109 × C/(N × L), where C
represented the number of reads for a gene, N represented the total number of reads,
and L represents the transcript length corresponding to the gene (Mortazavi et al., 2008).
The read counts of each sequenced library were adjusted using edgeR v.3.24.3 software
and the scale normalization factor before analyzing the DEGs. edgeR v.3.24.3 is a widely
used software that allows us to estimate the recounts of each gene. The differential
expression analysis is being conducted at the gene level. Genes differential expression
(DEGs) analysis was performed by DESeq2 software (Love, Huber & Anders, 2014) and
edgeR statistical package (http://bioconductor.org/packages/stats/bioc/edgeR/) according to
the criteria |log2(FoldChange)|>1 and a false discovery rate (FDR) <0.05. DEGs were then
subjected to enrichment analysis of GO functions and KEGG pathway. RNA-seq had three
biological repetitions at each point.

To explore the the functions of the DEGs, all DEGs were mapped to GO terms in the
Gene Ontology database (http://www.geneontology.org/), then GO enrichment analysis
was conducted using TBtools (Li et al., 2023), the p-value and and q-value were set to 0.05.
KEGG database (KEGG: Kyoto Encyclopedia of Genes and Genomes) was used to explore
the pathways associated with DEGs, and to analyze the statistical enrichment of candidate
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genes in the KEGG pathways. A enriched pathways with p-value <0.05 and and q-value
<0.05 were considered statistically significantly enriched.

Principal component analysis (PCA) was performed with principal function of R
(https://www.r-project.org/) in this experience. PCA is a statistical procedure that converts
hundreds of thousands of correlated variables (gene expression) into a set of values of
linearly uncorrelated variables called principal components. The correlation between
different samples was analyzed using the PCA.

Genes differential expression (DEGs) analysis was performed by DESeq2 software (Love,
Huber & Anders, 2014) according to the criteria |log2(FoldChange)|>1 and a false discovery
rate (FDR) <0.05. DEGs were then subjected to enrichment analysis of GO functions and
KEGG pathway. RNA-seq had three biological repetitions at each point.

Quantitative real-time PCR (qRT-PCR)
The quantitative real-time PCR (qRT-PCR) assay was configured following the
recommendations of ‘The MIQE guidelines’ (Bustin et al., 2009). Twenty-six AsA content
related genes were selected to validate the RNA-seq results. Primers for qRT-PCR were
designed using the Primer Premier 5.0 online software (http://bioinfo.ut.ee/primer3-0.4.0/)
and synthesized by Sangon Biotech Co., Ltd., Shanghai, China (Table S1). Only the qRT-
PCR primers with 90%–110% amplification efficiencies were used for the subsequent data
analysis. Actin was used as the internal reference gene (Table S1). For the cDNA synthesis,
1 µg of total RNA was reverse transcribed using the PrimeScript™ RT reagent Kit (Perfect
Real Time) (TaKaRa, Dalian, China), following the manufacturer’s protocol. qRT-PCR
was performed on the ABI 7500 system (Applied Biosystems) using the SYBR Green PCR
Master Mix (TIANGEN, Beijing, China). The consumables used include RNase-free tips
and 8 Strip PCR tubes from Axygen® Brand Products (Corning Incorporated, Corning,
NY, USA). The quantification was performed in triplicate using 20 µL reactions. Each
reaction included 10.0 µL of FastFire qPCR · PreMix, 0.6 µl of each primer (10 µM), 7.4 µl
of RNase-free water, 0.4 µl of 50x ROX· Reference Dye and 1.0 µL of 1:5 diluted cDNA.
The qRT-PCR program was as follows: 95 ◦C for 10 min (initial denaturation), followed
by 40 cycles of 95 ◦C for 5 s (denaturation), 60 ◦C for 15 s (annealing), and 72 ◦C for 35 s
(elongation). A melting curve was obtained at the end of each PCR by gradually increasing
the temperature to 95 ◦C (increment rates of 0.5 ◦C/s) after cooling to 65 ◦C for 5 s. Each
gene was analyzed on the same amplification for all samples, so inter-run calibration was
not necessary. The data obtained were analyzed by the QuantStudio Design & Analysis
Software, which generated the raw quantification cycle (Cq) values for each reaction.
Relative expression levels were quantified using the 2−11Ct method (Livak & Schmittgen,
2001). Three biological replicates and four technical replicates were performed for each
sample. Further qPCR details are supplied in a MIQE checklist table (Table S2).

Statistical analysis
The data were expressed as the mean ± standard deviation (SD) of three independent
biological replicates. Statistical analysis was performedby one-wayANOVA in SAS software.
Pearson’s correlation coefficient was used for correlation analysis with a two-tailed test.
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RESULTS
AsA contents in different tissues of different cucumber cultivars
For both cultivars, the distribution patterns of total ascorbate (T-AsA), AsA, and DHA in
the different fruit tissues were consistent (Fig. 1). T-AsA content in the three tissues was
not significantly different (Fig. 1). Accordingly, the DHA content in the mesocarp was
higher than in the exocarp and endocarp, but the AsA content of the mesocarp was lower
than that of the exocarp and endocarp. The ratio of AsA to DHA was computed in the
three different tissues. Thus, in these two cultivars, the AsA: DHA ratio was lower (and the
same) in the mesocarp but was higher in the exocarp and endocarp (Fig. 1).

Evaluation of transcriptome data
The transcriptomics of three fruit tissues (the exocarp, mesocarp, and endocarp) (Fig. 1A)
of two cucumber cultivars (H28 and H105) were conducted to elucidate regulation of AsA
metabolism in cucumber fruit. We analyzed three independent biological replicates of
fruits for each variety, resulting in a total of 18 samples. The quality of extracted RNA is
relatively high, with a yield ranging from 5.04 to 27.05 µg (Table S3).

In sequencing platforms, Q20 and Q30 are generally not less than 80%. To ensure the
quality and reliability of data analysis, filter the raw data, remove adapters, N containing
(N represents undetermined base information), and low-quality reads, and calculate the
Q20 and Q30. The sequencing results of this experiment showed that high quality libraries
with the Clean Reads Ratio of both groups of samples ≥ 94.47%, Q20 values ≥ 99.93%
and Q30 values ≥ 96.41% were obtained (Table S4). 801.59 million raw reads and 765.91
million high-quality clean reads were obtained from the samples collectively. The average
percentage of sequences matching to the reference genome was between 94.97%–96.88%
(Table S4). The statistical power of this experimental design, calculated usingRNASeqPower
(Hart et al., 2013). Based on a sample size of three (the number of biological replicates
used in this study), the statistical power among different groups ranged from 0.945 to
0.953, with an average value of 0.949 (Table S5). Pearson’s correlation coefficient was
used to investigate the sample correlation and biological repeatability. Correlation analysis
showed that there were good correlations (correlation coefffcient >0.94) between the three
replicates of each samples (Fig. 2). In addition, the correlation within genotypes was higher
than that among genotypes, indicating that the gene expression patterns within genotypes
were more similar than those among genotypes (Fig. 2). This finding suggests a high level
of reliability in the filtered data, which ensured its suitability for further analysis.

Differentially expression genes (DEGs) between different tissues
We used three different tissues from the two cultivars to compare DEGs. The DEGs were
performed by DESeq2 software between two different groups (and by edgeR between two
samples). The genes with the parameter of FDR<0.05 and |log2(FoldChange)|>1 were
considered DEGs.

In H28 (B), the number of DEGs between exocarp (1) and mesocarp (2) was 4442, the
number of DEGs between exocarp (1) and endocarp (3) was 7196, the number of DEGs
between mesocarp (2) and endocarp (3) was 5270 (Fig. 3). In H105 (A), the number of
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Figure 2 Correlations between the replicates of samples in different tissues in the fruits of two cucum-
ber varieties comparisons. A1_1 to A1_3: exocarp of ‘H105’, A2_1 to A2_3: mesocarp of ‘H105’, A3_1
to A3_3: endocarp of ‘H105’, B1_1to B1_3: exocarp of ‘H28’, B2_1 to B2_3: mesocarp of ‘H28’, B3_1 to
B3_3: endocarp of ‘H28’.

Full-size DOI: 10.7717/peerj.18327/fig-2

DEGs between A_1 and A_2 was 3133, the number of DEGs between A_1 and A_3 was
7035, the number of DEGs between A_2 and A_3was 5329 (Fig. 3). The trend of DEGs in
the 1, 2 and 3 of the two materials is consistent (Fig. 3), with the highest number of DEGs
in the 3, indicating a significant difference in the changes that occur in the 3 between the
two varieties. There were relatively few common DEGs among three tissues, with 796 in A
and 910 in B (Figs. 3B, 3C).

GO annotation and KEGG enrichment analysis of DEGs
To better understand the biological functions beyond the number of DEGs, GO terms were
employed for annotation. GO terms meeting this condition with p< 0.05 were defined
as significantly enriched GO terms in DEGs. Both up- and downregulated DEGs can be
classified under biological process, cellular component, and molecular function (Table 1;
Fig. 4; Fig. S1). Among the topmost GO terms, the prominent two terms for biological
process for the three comparative groups are obsolete oxidation–reduction process and
protein phosphorylation; molecular functions are protein binding and ATP binding
whereas membrane and its parts comprised the two most prominent cellular component
terms (Table 1; Fig. 4; Fig. S1).

KEGG (Kyoto Encyclopedia of Genes and Genomes) provides a network of
developmental pathway and can be used to study the gene expression of DEGs involved
in the biological pathways (P-value <0.05 as a threshold). The top 20 most significantly
enrichment pathways were selected and displayed in Table 2 and Fig. 5. The significantly
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Figure 3 Comparison of up- and down-regulated DEGs in different tissues in the fruits of two cucum-
ber varieties comparisons. (A) The DEG in A1 compared to A2, A1 compared to A3, A2 compared to A3,
B1 compared to B2, B1 compared to B3 and B2 compared to B3. (B) Venny analysis of differentially ex-
pressed miRNAs among the different tissues in H28 and B. A: H105, B: H28. A1: exocarp of ‘H105’, A2:
mesocarp of ‘H105’, A3: endocarp of ‘H105’, B1: exocarp of ‘H28’, B2: mesocarp of ‘H28’, B3: endocarp of
‘H28’.

Full-size DOI: 10.7717/peerj.18327/fig-3

Table 1 The enrichment analysis of DEGs in GO.

Parallels All GOs All DEGs Down-regulated
DEGs

Up-regulated
DEGs

A_2 vs A_1 778 5,312 3,455 1,857
A_3 vs A_2 1,130 8,730 3,783 4,947
A_3 vs A_1 1,330 11,823 5,779 6,044
B_2 vs B_1 1,107 7,606 5,386 2,220
B_3 vs B_2 1,138 8,695 3,776 4,919
B_3 vs B_1 1,387 12,141 7,137 5,004

enriched pathways for up- and down-regulated DEGs included biosynthesis of secondary
metabolites and metabolic pathways.
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Figure 4 Significantly enriched GO terms in cultivars H105 (A) and H28 (B). The GO terms of the most
significantly enriched genes in their three GO categories: molecular function (MF), biological process, and
cellular component.

Full-size DOI: 10.7717/peerj.18327/fig-4

Common DEGs involved in AsA metabolism between two cultivars
Multiple genes involved in the biosynthesis and recycling pathways of AsA were identified
through screening all DEGs. Among them, there were 34 DEGs were common across all
three tissues of both cultivars (Tables S6, S7; Fig. 6). These included five ascorbate oxidase
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Table 2 The enrichment analysis of DEGs in pathways.

Parallels Pathways All
DEGs

Down-regulated
DEGs

Up-regulated
DEGs

A_2 vs A_1 130 1,522 1,031 491
A_3 vs A_2 131 2,556 1,022 1,534
A_3 vs A_1 134 3,480 1,640 1,840
B_2 vs B_1 132 2,328 1,659 669
B_3 vs B_2 134 2,564 1,039 1,525
B_3 vs B_1 135 3,573 2,051 1,522

Figure 5 The KEGG enrichment classification of DEGs in H105 (A) and H28 (B). The specific pathways
are plotted along the y-axis, and the x-axis indicates the rich factor. The size of the colored dots indicates
the number of significantly differentially expressed genes associated with each corresponding pathway:
pathways with larger-sized dots contain a higher number of genes. The color of each dot indicates the cor-
rected P adjusted for the corresponding pathway.

Full-size DOI: 10.7717/peerj.18327/fig-5

(AO), four ascorbate peroxidase (APX), one monodehydroascorbate reductase (MDHAR),
one dehydroascorbate reductase (DHAR), three myo-inositol oxygenase (MIOX), one UDP-
sugar pyrophosphorylase (USPase), three UDP-glucuronosyltransferases (UGTs), one aldo-
keto reductase (AKRs), threeUDP-glucose 6-dehydrogenase (UGDH ), fourUDP-glucuronate
4-epimerase (GAE), oneMannose-6-phosphate isomerase (PMI ), one phosphomannomutase
(PMM), one GDP-D-mannose 3′,5′-epimerase (GME), one GDP-L-galactose-phosphorylase
(GGP) and two L-galactose 1-phosphate phosphatase (GPP). These DEGs were primarily
associated with the L-Galactose, D-Galacturonate, Myo-inositol and ascorbate recycling
pathway (Fig. 6). There are five expression patterns among them, and most genes in the
two cultivars had the same expression pattern. For example, PMI and GME transcripts
were highest in the exocarp, and lowest in the endocarp. In these two cultivars, the
expression patterns of PMM (CsaV3_5G014110), GME (CsaV3_2G004170) and DHAR
(CsaV3_5G006680) are positively correlated with the AsA content. Thus, these three genes
is considered to be key candidate genes.
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Figure 6 Schematic illustration depicting the pathway analysis of DEGs associated with AsA
metabolism in different tissues of the exocarp (1), mesocarp (2), and endocarp (3) in the two
cultivars of cucumber, including ‘H105’and ‘H28’. The heatmap shows log2(FC) , with red indicating
higher expression and blue indicating lower expression, as indicated in the scale bar on the right.
PMI, D-mannose-6-phosphate isomerase; PMM, phosphomannomutase; GME, GDP-mannose-30,
50-epimerase; 5, GGP, GDP-L-galactose phosphorylase; GPP, L-galactose-1- phosphate phosphatase;
APX, ascorbate peroxidase; AAO, ascorbate oxidase; MDHAR, monodehydroascorbate reductase; DHAR,
dehydroascorbate reductase; GR, glutathione reductase; GAE, UDPglucuronate 4-epimerase; UGDH,
UDP-glucose 6-dehydrogenase; AKR, aldo-keto reductase; MIOX, inositol oxygenase; USPase, UDP-sugar
pyrophosphorylase.

Full-size DOI: 10.7717/peerj.18327/fig-6

Key transcription factors in the regulation of AsA synthesis
Transcription factors are major proteins that control key biological processes such as
metabolism, growth, and responses to biotic and abiotic stresses (Czechowski et al., 2004;
Lloyd et al., 2017). Some studies showed AsA biosynthesis in plants is also regulated by plant
hormones (Chen et al., 2023; Xu et al., 2023). Therefore, we analyzed the transcription
factors (TFs) predicted from ‘plant hormone signal transduction’ pathway. We identified
29 TFs related to AsA in the transcriptomes between three different tissues of both
two cultivars, including ethylene-responsive transcription factor (ERF) (nine), MYB (two),
basic-helix-Loop-helix class (bHLH, eight),MAPK (six), auxin response factor (ARF, three),
ETHYLENE-INSENSITIVE 3/ETHYLENE-INSENSITIVE (EIN, one) (Tables S6, S7; Figs. 7
and 8). The correlation coefficients between TFs and AsA related genes are shown in
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Figure 7 Expression patterns of TFs transcription factors involved in the regulation of anthocyanin
synthesis. The value of log2[fold change (FC)] is represented using the depth of color, with blue repre-
senting downregulation and red representing upregulation. The progression of the color scale from blue to
red represents an increase in the FPKM values.

Full-size DOI: 10.7717/peerj.18327/fig-7

Figure 8 Correlation analysis between transcription factors and DEGs related to AsAmetabolism in
H105 (A) and H28 (B). Positive correlations are denoted in red, while negative correlations are denoted in
blue.

Full-size DOI: 10.7717/peerj.18327/fig-8

Fig. 8. In both two cultivars, CsaV3_4G028360 (ERF) was negatively correlated with PMM
and GME, and positively correlated with DHAR. CsaV3_6G042110 (ERF) was positively
correlated with PMM and GME, and negatively correlated with DHAR. CsaV3_6G032360
(MAPK ) as positively correlated with PMM, GME and DHAR.
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Figure 9 RNA-seq results using the FPKM values and gene expression levels, measured via qRT-PCR,
for the 15 selected DEGs. The capital letters represent the differences in qRT-PCR results among the
groups, and the lowercase letters represent the differences in RNA-seq data using the FPKM values.

Full-size DOI: 10.7717/peerj.18327/fig-9

Analysis of transcriptome data reliability using qRT-PCR
To validate the reliability of DEGs obtained from RNA-seq analyses, the expression levels
of 12 randomly selected DEGs related to metabolic pathways and antioxidant activity were
measured via qRT-PCR. The expression patterns of theses genes obtained from RNA-Seq
and qRT-PCR were basically consistent with each other (Fig. 9). All these data indicated
that the RNA-Seq results were of high quality, stable and reliable.

DISCUSSION
Cucumber is one of the most economically important vegetable crops, widely cultivated
for its edible fruit. AsA content is an important quality indicator for cucumber. Research
shows that AsA contents vary greatly among the cultivars. In this study, we found that AsA
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contents were spatially distributed in two genotypes. For both cultivars, the distribution
pattern of AsA in different parts of the fruit was consistent (Fig. 1). T-AsA and AsA
contents in the mesocarp were lower than those in the exocarp and endocarp (Fig. 1). This
the distribution pattern would help to understand the regulatory mechanism of AsA in
cucumber.

Transcriptome refers to the complete set of transcripts in a cell, specific to a particular
physiological condition or developmental stage (Wang, Gerstein & Snyder, 2009; Tan et
al., 2024). It has become a powerful tool for identifying DEGs and potential molecular
mechanisms (Yang et al., 2019; Chen et al., 2021; CNCB-NGDC Partners and Members,
2023; Tan et al., 2024). Many studies have shown that AsA content is strongly influenced
by environmental conditions, such as light and temperature, and by growing conditions and
water availability (Bartoli et al., 2009; Broad et al., 2020; Chen et al., 2023). The AsA content
of a plant is also tightly controlled by its biosynthesis, catabolism, reductive recovery from
the oxidized form, and transport (Muñoz et al., 2023; Xu et al., 2022; Xu et al., 2023). To
uncover the molecular mechanisms by which AsA accumulates in cucumber fruits, we
used transcriptome of three tissues (exocarp, mesocarp, and endocarp) of two cucumber
varieties (H28, H105) to identify structural genes and transcription factors, which play
vital roles in regulating AsA biosynthesis. A total of 34 DEGs involved in AsA metabolism
were common across all three tissues of both cultivars (Fig. 6).

To further narrow down the list of candidate genes, we analyzed and selected genes
related to their synthesis that were consistent with the AsA content pattern in both two
varieties, and genes related to their metabolism that were opposite to the AsA content
pattern. By focusing on this stage, we found that the expression patterns of PMM,
GME and DHAR are positively correlated with the AsA content in these two cultivars
(Fig. 6). In AsA synthesis, PMM catalyzes the interconversion of mannose-6-phosphate
to mannose-1-phosphate. In Nicotiana benthamiana, reducing PMM expression caused
a substantial decrease in AsA content; conversely, raising the PMM expression level led
to a 20–50% increase in AsA content (Qian et al., 2007; Badejo et al., 2012). GME is a key
enzyme in the AsA synthesis pathway, which catalyzes the conversion of GDP-D-mannose
to GDP-l-galactose. GME is the most conserved protein in AsA biosynthesis pathway, and
its function has been demonstrated in many higher plants (Wolucka & Van Montagu, 2007;
Beerens, Gevaert & Desmet, 2022). Numerous studies have shown that GME expression
levels are positively correlated with the AsA content. Overexprssion of GME enhanced
AsA accumulation in tomato, tobacco and Arabidopsis thaliana (Arabidopsis) (Zhang
et al., 2011; Imai et al., 2012; Ma et al., 2014). Meanwhile, the AsA content is decreased
significantly in GME-silenced tomato (Gilbert et al., 2009; Voxeur et al., 2011). DHAR is
a key enzyme involved in the recycling of AsA, which catalyses the glutathione (GSH)-
dependent reduction of oxidized ascorbate (dehydroascorbate, DHA). Previous studies
have shown that overexpression of DHAR can increased amounts of AsA in rice (Yin et al.,
2010; Do et al., 2016). Thus, these three genes are considered to be key candidate genes.

In recent years, an increasing number of studies indicated that AsA biosynthesis in
plants is regulated by plant hormones (Chen et al., 2023; Xu et al., 2023). ERF98, a member
of the AP2/ERF transcription factor family, can modulates AsA accumulation by positively
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regulates the transcription of the AsA biosynthetic gene GMP in Arabidopsis (Zhang et al.,
2012). The tomato C2H2-type zinc finger protein ZF3 interacts with CSN5B and inhibits
the ubiquitination-dependent degradation of GMP by CSN5B. Increased expression of
the tomato ZF3 gene increased the AsA concentration and enhanced tolerance to salt
stress (Wang et al., 2013; Li et al., 2018). The PbrMYB5 protein from birchleaf pear (Pyrus
betulifolia) is an R2R3-type MYB transcription factor that modulates AsA biosynthesis by
transcriptionally regulating PbrDHAR2 expression. The exogenous expression of PbrMYB5
in Nicotiana benthamiana increased the AsA concentration and enhanced tolerance to
cold stress (Xing et al., 2019). bHLH55, a basic helix–loop–helix 55 transcription factor
(TF), modulates AsA biosynthesis by transcriptionally regulating ZmGMP1 and ZmGGP,
ZmPGI2, and ZmGME1 in maize (Yu et al., 2021). Xu et al. (2022) showed that auxin
and ABA antagonistically regulated AsA accumulation via SlMAPK8–SlARF4–SlMYB11
module in tomato. ETHYLENE-INSENSITIVE 3/ETHYLENE-INSENSITIVE 3-LIKEs
(EIN3/EILs) are important ethylene response factors during fruit ripening. It could
modulates AsA accumulation by transcriptionally regulating GPP and MIOX expression
in tomato (Chen et al., 2023). These regulatory factors reported in the researches are all
transcription factors (TFs). Thus, we analyzed the transcription factors (TFs) predicted
from the ERF,MYB,MAPK, ARF, bHLH, EIN3/EILs. We analyzed and selected 29 TFs with
similar expression patterns in both two varieties from DEGs, including ERF (nine), MYB
(two), bHLH (eight), MAPK (six), ARF (three), EIN (one) (Tables S6, S7; Figs. 7 and 8).
Correlation analysis of TFs and genes showed that in both two cultivars, CsaV3_4G028360
(ERF) was negatively correlatedwithPMM andGME, and positively correlatedwithDHAR.
CsaV3_6G042110 (ERF) was positively correlated with PMM and GME, and negatively
correlated with DHAR. CsaV3_6G032360 (MAPK ) as positively correlated with PMM,
GME and DHAR (Tables S6, S7; Fig. 8). In summary, at the transcriptional level, there is a
complex regulatory system between TFs and AsA-related genes. CsaV3_4G028360 (ERF),
CsaV3_6G042110 (ERF) and CsaV3_6G032360 (MAPK)may be involved in regulating the
expression of AsA -related genes.

CONCLUSIONS
In this study, the AsA content in the exocarp and endocarp was significantly higher than
that in the mesocarp of cucumber cultivars. Duo to the positively correlated between the
expression patterns of PMM (CsaV3_5G014110), GME (CsaV3_2G004170) and DHAR
(CsaV3_5G006680) and AsA content, these three genes are considered to be key candidate
genes for regulating AsA content in cucumber fruits. Three TFs, includingCsaV3_4G028360
(ERF), CsaV3_6G042110 (ERF) and CsaV3_6G032360 (MAPK ) could potentially be novel
candidate genes for AsA based on their expression patterns. These findings contribute to a
comprehensive understanding of the distribution and regulation of AsA in cucumber fruits
and provide potential target genes for the genetic improvement of AsA-rich cucumber
germplasm.
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