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ABSTRACT

B lymphoblastic leukemia/lymphoma (B-ALL) is a clonal hematopoietic stem 
cell neoplasm derived from B-cell progenitors, which mostly occurs in children 
and adolescents and is regarded as one of top leading causes of death related to 
malignancies in this population. Despite the majority of patients with B-ALL have 
fairly good response to conventional chemotherapeutic interventions followed by 
hematopoietic stem cell transplant for the last decades, a subpopulation of patients 
show chemo-resistance and a high relapse rate. Adult B-ALL exhibits similar clinical 
course but worse prognosis in comparison to younger individuals. Ample evidences 
have shown that the clinical behavior, response rate and clinical outcome of B-ALL 
rely largely on its genetic and molecular profiles, such as the presence of BCR-ABL1 
fusion gene which is an independent negative prognostic predictor. New B-ALL 
subtypes have been recognized with recurrent genetic abnormalities, including 
B-ALL with intrachromosomal amplification of chromosome 21 (iAMP21), B-ALL with 
translocations involving tyrosine kinases or cytokine receptors (“BCR-ABL1-like ALL”). 
Genome-wide genetic profiling studies on B-ALL have extended our understanding of 
genomic landscape of B-ALL, and genetic mutations involved in various key pathways 
have been illustrated. These include CRLF2 and PAX5 alterations, TP53, CREBBP 
and ERG mutations, characteristic genetic aberrations in BCR-ABL1-like B-ALL and 
others. The review further provides new insights into clinical implication of the genetic 
aberrations in regard to targeted therapy development.

INTRODUCTION

B lymphoblastic leukemia (B-ALL), a hematopoietic 
malignancy derived from B-cell progenitors, is 
predominantly a childhood disease but can occur in 
adolescents and adults as well. According to the 2016 
United States statistics data of lymphoid neoplasm by World 
Health Organization classification, the incidence rate of 
B-ALL is 1.2% in 2011-2012 with an estimated 4930 new 

cases in 2016 [1]. It accounts for approximately 2% of the 
lymphoid neoplasms, and the incidence is approximately 
11 cases per million persons per year in the United States 
[2]. Since 1980s, clinical outcomes of B-ALL patients have 
been steadily improved with an overall complete remission 
(CR) rate of >95% and 60-85% and overall survival (OS) 
rate of greater than 80% and less than 50% in children and 
adults, respectively [3–5]. The current treatment guideline 
recommends risk stratification based on patient age and 
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BCR-ABL1 translocation status. For example, patients with 
older ages, higher white blood cell counts, unfavorable 
cytogenetic changes, and residual disease after induction 
chemotherapy and comorbidities usually have a greater 
risk of relapse and shorter OS. The non-pediatric B-ALL 
patients are subclassified into four different groups based 
on age and BCR-ABL1 status: 1) Philadelphia positive 
(Ph+) ALL adolescent and young adult (aged 15-39 years), 
2) Ph+ ALL adult (aged ≥ 40 years), 3) Ph negative (Ph-
) ALL adolescent and young adult, and 4) Ph- ALL adult 
[6]. Meanwhile, risk stratification of ALL in childhood is 
based on clinical and biological factors including age, white 
blood cell count, cytogenetics, response to initial induction 
chemotherapy, and involvement in central nervous system 
and testis [7]. Nevertheless, the current risk stratification 
system fails to identify a subgroup of refractory patients 
in low risk groups. The subset of patients with “low risk” 
behaves aggressively and could be undertreated without 
appropriate follow-up [8].

There have been major advances in recent years on 
the underlying pathogenesis of B-ALL, mostly attributed 
to the recent development of gene expression profiling 
and genome-wide sequencing analyses. In addition to 
revealing leukemogenesis of B-ALL in more depth, 
novel B-ALL subtypes with clinical significance have 
been proposed based on the newly emerged genetic data. 
Biomarkers with significant prognostic and predictive 
values (e.g., IKZF1, CRLF2, JAK, ABL1, ABL2, CSFR, 
PDGFRB, CREBBP) are identified. These markers would 
probably be, in part or in whole, integrated into the risk 
stratification system after validation through large clinical 
cohorts.

This review will summarize current understanding 
of B-ALL cytogenetics, and recently identified genetic 
aberrations, emphasizing on novel subclassification based 
on genetic changes, prognostic and predictive parameters 
that are directly related to clinical management of B-ALL 
patients.

B-ALL CYTOGENTIC 
ABNORMALITTIES AND 
SUBCLASSIFICATION

B-ALL is a heterogeneous disease that is 
associated with a plethora of chromosomal abnormalities, 
involving both numerical and structural alterations, 
such as hyperdiploidy, hypodiploidy, translocation, and 
intrachromosomal amplification. Approximately 75% 
of B-ALL cases have recurrent chromosomal changes 
detectable by conventional cytogenetic analysis [9], many 
of which have impacts on prognosis and are used for risk 
stratification on some treatment protocols [10] (Table 1, 
Figure 1).

Of note, two chromosomal abnormalities, including 
hyperdiploidy and t(12;21)/ETV6-RUNX1 translocation, 

are associated with favorable clinical outcome. Cases 
with hyperdiploidy constitute one of the largest subgroups 
in B-ALL. The chromosomal gain is most often seen 
with chromosomes 4, 6, 10, 14, 17, 18, 21 and X [13] 
and least seen with chromosomes 1, 2 and 3 [14]. The 
overall prognosis is excellent [15]. However, extra number 
of specific chromosomes show different prognostic 
significance. For example, simultaneous trisomies of 4,10 
and 17 carry the best prognosis [16]. Gain of chromosomes 
4, 6, 10, and 17 indicates good prognosis [17], while 
gain of chromosome 5 or isochromosome 17 indicates 
poorer prognosis in this group [18]. Abnormality of 
t(12;21)/ETV6-RUNX1 is usually cryptic by conventional 
karyotyping but detectable by fluorescence in situ 
hybridization (FISH) or polymerase chain reaction (PCR). 
The fusion protein likely acts in a dominant negative 
manner, disrupting normal function of the transcription 
factor RUNX1. Studies show that the translocation is an 
early event in leukemogenesis but by itself is insufficient 
for the development of overt leukemia [19]. Further 
cooperating genetic changes appear to be needed [20, 21].

Genetic abnormalities associated with an increased 
risk of disease relapse or worse prognosis include 
t(9;22) translocation (Philadelphia chromosome, or 
Ph chromosome), KMT2A/MLL translocations, and 
hypodiploidy. The t(9;22) translocation leads to a 190 
kD or 210 kD BCR-ABL fusion protein, which is a 
dysfunctional tyrosine kinase. The incidence of t(9;22) 
increases with age and is present in up to 50% in older 
patients [22]. The clinical outcome with conventional 
chemotherapy in this patient group is extremely poor. 
However, tyrosine kinase inhibitors (TKIs) such as 
imatinib mesylate, in combination with intensive 
chemotherapy, have been used successfully, although 
primary or secondary drug resistance and high rates 
of relapse are problematic [23]. Mutations in ABL1 
(frequently T315I, Y253F/H, E255K/V, M351T, G250E, 
F359C/V, H396R/P, M244V, E355G, F317L, M237I, 
Q252H/R, D276G, L248V, F486S, etc.) are thought to 
be the major contributors to the drug resistance [24], 
for which new TKIs have been developed to bypass the 
signaling pathways or to bind to alternative sites, such as 
nilotinib, saracatinib, and ponatinib. They have shown 
great improvement on the clinical response in certain 
patients [25]. Nevertheless, clonal evolution, secondary 
gene aberrations such as deletions or mutations of 
IKZF1 (discussed below) or other genes are found to be 
significantly associated with the resistance and relapse 
[26, 27]. Rearrangements involving the KMT2A/MLL 
gene located at chromosome 11q23 and one of the ~80 
fusion gene partners are most common in infants less than 
1 year of age, and are associated with a poor prognosis. 
There is also a high frequency of central nervous system 
involvement at diagnosis. The most frequent partner gene 
is AF4, located at chromosome 4q21, with a fusion protein 
of KMT2A/MLL-AF4. The fusion proteins have an altered 
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Table 1: Common recurrent cytogenetic abnormalities in pediatric and adult B-ALL [3, 10, 11]

Risk groups Cytogenetic abnormalities Clinical significance Frequency

Good risk Hyperdiploidy (>50 chromosomes) Favorable prognosis 25-30% in children; 7-8% in adults

t(12;21)/ ETV-RUNX1
Favorable prognosis in 

children, undetermined in 
adults

25% in children; 0-4% in adults

Intermediate risk t(1;19)/E2A-PBX1 Intermediate to favorable 
prognosis 1-6% in children; 1-3% in adults

t(5;14)/IL3-IGH Intermediate Rare

Poor risk t (9; 22)/BCR-ABL1 Poor prognosis 1-3% in children; 25-30% in adults

t(v;11q23)/ KMT2A (MLL) 
rearrangements Poor prognosis 2/3 in infants; 1-2% in older 

children; 4-9% in adults

Hypodiploidy (<44 chromosomes) Poor prognosis 6% in children, 7-8% in adults

Figure 1: Frequency of cytogenetic and molecular genetic abnormalities in pediatric ALL (A) [9] and adult ALL (B) [12].
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histone methylation pattern of KMT2A/MLL target genes, 
and subsequently cause leukemic transformation of the 
hematopoietic cells. Hypodiploidy (<46 chromosomes, 
with some people suggesting a stricter criteria with <44 
chromosomes [28]) is a poor prognostic indicator. It 
can be further classified into different categories: high 
hypodiploidy (42-45 chromosomes), low hypodiploidy 
(33-39 chromosomes) and near haploidy (23-29 
chromosomes) [29]. The patient has progressively poor 
prognosis with decreasing chromosome numbers. Near-
haploidy and low hypoploidy B-ALL patients have 
extremely poor prognosis [30]. B-ALL with rearrangement 
of IGH locus occurs in less than 5% of the cases and 
confers poor prognosis [31]. The most common partner 
gene is cytokine receptor-like factor 2 (CRLF2) located at 
chromosome X, and other partner genes can be inhibitor of 
DNA binding 4 (ID4), EPOR, CCAAT/enhancer-binding 
protein (CEBP) family members, BCL2, the LIM domain 
homeobox 4 (LHX4) [17]. One of the rare B-ALL subtypes 
recognized in WHO classification is B-ALL with t(5;14) 
translocation which involves IL3 and IGH, which is 
characteristically associated with non-clonal eosinophilia.

Some genetic changes that are associated with 
poor prognosis include the very rare t(17;19)/E2A-HLF 
translocation [32], abnormal 17p, and loss of 13q [10], as 
well as complex karyotype with 5 or more abnormalities 
in adult B-ALL patients [33]. Certain genetic changes 
that do not show significant impact on prognosis include 
t(1;19)/E2A-PBX1 [34], del(6q), del(9p), and del(12p) [10, 
11, 35, 36].

NEWLY RECOGNIZED B-ALL 
SUBTYPES

In the 2016 revision of WHO classification, 
two new provisional B-ALL subtypes with recurrent 
genetic abnormalities have been recognized: B-ALL 
with intrachromosomal amplification of chromosome 
21 (iAMP21), and B-ALL with translocations involving 
tyrosine kinases or cytokine receptors (“BCR-ABL1-like 
ALL”) [37]. These two entities further identify subgroups 
of B-ALL patients who have inferior clinical outcome 
and may benefit from more aggressive therapies or 
combination regimens with targeted therapy.

B-ALL with intrachromosomal amplification of 
chromosome 21 (iAMP21)

Intrachromosomal amplification of chromosome 
21 (iAMP21) is present in about 2% of pediatric B-ALL, 
mostly in older children and adolescents (median age 
9 years), but is uncommon in adults. The patients harbor 
amplification of a large but variable region of chromosome 
21, which can be detected by FISH with a RUNX1 probe 
that reveals extra signals (5 or more copies per interphase 
nucleus, or 3 or more copies on a single abnormal 

chromosome 21 in metaphase FISH). This aberration 
manifests instability of chromosome 21 [38].

The patients are characterized by lower white blood 
cell and blast cell counts, older age, the French-American-
British classification (FAB) L1 morphology, and common 
B-lymphoblast immunophenotype with a subset showing 
aberrant myeloid-associated antigen expression [39]. 
These cases can be detected by conventional karyotyping 
analysis by identification of the absence of a second 
normal copy of chromosome 21, which may not always 
be present, and concurrent FISH studies using RUNX1 
probe [39].

B-ALL with iAMP21 patients’ presentation of 
pancytopenia or mildly elevated white blood cell counts 
at diagnosis (usually ≤10 × 109/L, with most ≤50 × 109/L) 
may reduce the risk stratification. However, the patients 
demonstrated a consistently poor prognosis with worse 
event-free survival and OS when treated with standard-
risk chemotherapy regimens [40]. In addition, cytogenetic 
change of iAMP21 has been confirmed to be a primary 
genetic event [38]. Therefore, B-ALL with iAMP21 is 
now considered as a distinct cytogenetic subgroup of 
B-ALL associated with a poor prognosis in pediatric 
patient population, and it is justified to assign such patients 
in the very high-risk group and treat them with more 
intensive chemotherapy. The clinical outcome has been 
significantly improved with more aggressive therapy [30, 
41]. As iAMP21 is extremely rare in adults, its prognostic 
effect in adult group is undetermined.

B-ALL with translocations involving tyrosine 
kinases or cytokine receptors (BCR-ABL1-like 
ALL, or Ph-like ALL)

BCR-ABL1-like ALL is a subgroup of B-ALL 
associated with unfavorable prognosis, which was 
originally described as a subgroup of childhood B-ALL 
that lacks chromosomal rearrangement of BCR-ABL1 but 
exhibits similar gene expression profile to that of B-ALL 
with BCR-ABL1 rearrangement [42, 43], and shares the 
similar poor prognosis and high risk for relapse [44, 45]. 
More studies suggest that BCR-ABL1-like ALL occurs 
in all age groups, accounting for up to 15% of children, 
20-25% of adolescents and young adults, and 20-25% 
of adults with B-ALL, and is associated with event-free 
and OS rates equal or inferior to high-risk ALL subtypes, 
including BCR-ABL1 positive and KMT2A/MLL-
rearranged B-ALL [8, 46, 47].

BCR-ABL1-like ALL is a heterogeneous subgroup 
involving many different genetic alterations. There 
are several common underlying genetic changes: 
translocations involving tyrosine kinases other than ABL1, 
translocation involving cytokine receptor genes such as 
CRLF2, and activating mutations or deletions of critical 
genes such as tyrosine kinase genes (ABL1, JAK2. etc.) 
and Ras signaling pathway genes [46] (see below for a 
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more detailed discussion). More importantly, in this group, 
especially those with translocations involving tyrosine 
kinases, patients have improved clinical outcome with 
remarkable responses to TKI therapy [46, 48].

Currently in the clinical setting it is difficult to 
identify such cases without gene expression profiling 
assays or genetic approaches such as genome and RNA 
sequencing, although certain laboratory screening assays 
have been used to identify some of the cases, such as 
targeted gene sequencing (RNA sequencing, RNAseq), 
low-density gene expression arrays, reverse transcription 
polymerase chain reaction (RT-PCR) and fluorescence 
in situ hybridization (FISH) for known translocations. 
Although there has been no standard guideline established 
for BCR-ABL1-like ALL diagnosis at initial workup of 
B-ALL, possible workflow was proposed, and is adapted 
in the following flow chart (Figure 2) [49].

MOLECULAR GENETIC CHANGES

Genome-wide genetic profiling studies on B-ALL 
have extended our understanding of genetic landscape 
of B-ALL in children and young adults over the past 
decade. Mutations involved in various key pathways 
are found in different subtypes of B-ALL. The genes 
include transcriptional factors promoting early lymphoid 
cell development, e.g., PAX5, IKZF1, EBF1, ETV6, 
LMO2, which were detected in ~40% of B-ALL cases 
[50], and other genes including tumor suppressor genes 
and cell cycle regulators (e.g., TP53, RB1, CDKN2A/
CDKN2B), cytokine receptor (e.g., CRLF2, RPOR), 

kinase (e.g., ABL1, ABL2, CSF1R, JAK2, PDGFRB), Ras 
signaling pathway (e.g., KRAS, NF1, NRAS, PTPN11), 
lymphoid signaling (e.g., BTLA, CD200), and epigenetic 
modification (e.g., EZH2, CREBBP, SETD2, MLL2, 
NSD2) [46, 50]. Among them, a few specific genetic 
alterations are found to be associated with adverse clinical 
outcome and increased risk for relapse [51]. Below are 
the most common molecular genetic changes identified 
in B-ALL, listed in a rough order of frequency reported 
in different B-ALL populations, and the most common 
genetic changes in BCR-ABL1-like B-ALL at the end.

IKZF1 mutations

Mutations of transcription factors involved in 
early lymphoid development are considered a hallmark 
of B-ALL genetic changes. The transcription factors 
include IKZF1, PAX5, EBF1, ETV6, LMO2, etc. Among 
them, IKZF1 mutation is one of the most frequent 
genetic aberrations in B-ALL. IKZF1 gene encodes the 
Ikaros transcription factor that is an important regulator 
of normal lymphoid development and differentiation 
[52, 53]. IKZF1 gene mutation is observed in high 
risk B-ALL, including approximately 80% of BCR-
ABL1 positive B-ALL cases and 70% of BCR-ABL1-
like B-ALL cases [54, 55]. IKZF1 mutations are often 
deletions and rarely point mutations [56, 57]. Most 
deletions are monoallelic and involve exons 3-6, 
which encode the N-terminal zinc finger DNA-binding 
domain [56]. The deletions result in dominant negative 
form of the Ikaros protein that inhibits the function of 

Figure 2: Proposed flow chart for the initial BCR-ABL1-like ALL workup. Modified from [49].
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wild-type Ikaros. It has been shown that induction of 
mutant, dominant negative Ikaros in early pre-B cells 
arrest the cell differentiation, suggesting that loss of 
Ikaros activity contributes to B-ALL leukemogenesis 
and IKZF1 mutations are likely driver mutations [58]. 
Multiple studies support that IKZF1 mutation/deletion is 
an independent indicator of B-ALL unfavorable clinical 
outcome including chemotherapy resistance and higher 
risk for relapse [27, 46, 59–61].

CRLF2 alterations

CRLF2 alterations are found in approximately 
8% of pediatric B-ALL patients, and more than 50% of 
patients with Down-syndrome associated B-ALL [62]. 
CRLF2 alterations are commonly gene rearrangement 
with immunoglobulin heavy chain locus resulting in 
IGH-CRLF2 fusion gene, less often interstitial deletions 
resulting in P2RY8-CRLF2 fusion gene, and rarely can 
be point mutations [63, 64]. These changes usually 
result in overexpression of CRLF2 (therefore can be 
analyzed by flow cytometry). CRLF2 alterations are 
associated with constitutive activation in the JAK-2 
pathway such as JAK-STAT, PI3K/mTOR and BCL-
2 transduction [65]. The alterations are often found 
in high-risk B-ALL [64], although the prognostic 
significance of CRLF2 deregulation in B-ALL remains 
controversial [63].

PAX5 alterations

Alterations of PAX5, another key transcription 
factor involved in normal lymphoid development, have 
been found in ~30% of B-ALL cases [50]. The alterations 
include acquired mutations, rearrangements involving 
various partner genes such as ETV6 and JAK2, and 
germline mutations [50, 66, 67]. Unlike IKZF1, PAX5 
alterations do not appear to impact clinical outcomes, 
however, the PAX5 mutations may be driver mutations in 
B-ALL leukemogenesis and play a role in susceptibility 
of B-ALL [67, 68].

TP53 mutations

TP53 deletions and mutations are initially found 
in 2-4% of pediatric patients [69] and 8% of adult 
patients [70] at initial diagnosis of B-ALL. However, 
next generation sequencing (NGS) data revealed that 
overall TP53 mutations were present in up to 16% of 
B-ALL patients and the incidence increased with age and 
hypodiploid karyotype [71–73]. Notably, half of pediatric 
low hypodiploid B-ALL with 30-39 chromosomes show 
constitutional TP53 mutations, indicating a unique 
association between low hypodiploid B-ALL and Li-
Fraumeni syndrome [73]. Multiple studies suggest 
that TP53 aberrations at diagnosis are independently 
associated with early relapse and poor OS [74, 75].

CREBBP mutations

Deletions and mutations of CREBBP, which encodes 
the transcriptional coactivators and acetyltransferase 
CREB binding protein, are found in 18% of relapsed 
pediatric B-ALL patients, but less than 1% at diagnosis 
in those who did not relapse [76], suggesting CREBBP 
gene mutations are associated with relapse of the disease. 
The mutations result in loss of function of CREBBP. 
In one study, CREBBP mutations were associated 
with hyperdiploid B-ALL relapse. Up to 60% of high-
hyperdiploid relapse cases show CREBBP mutation, 
altering the clinical outcome in the favorable B-ALL 
group [77]. It might be a marker that can be integrated 
into risk stratification system after large cohort study.

ERG mutations

Several studies have identified a subgroup of 
pediatric B-ALL patients, comprising 3-5% of B-ALL 
cases, with monoallelic deletion of ERG gene, which 
encodes an ETS-domain-containing transcription factor 
[78, 79]. The deletions result in an aberrant ERG protein 
that functions as a competitive inhibitor of wild-type 
ERG [80]. The ERG deletion and other known classifying 
genetic lesions are mutually exclusive, suggesting that 
B-ALL with ERG deletion may be a distinct subtype. 
Interestingly, these patients generally have excellent 
prognosis, despite an association with frequent IKZF1 
deletions, which is different from BCR-ABL1 positive 
and BCR-ABL1-like B-ALL cases [79]. Whether or not 
the ERG mutations function as a negative regulator under 
IKZF1 mutated status needs to be explored.

Genetic aberrations in BCR-ABL1-like B-ALL

BCR-ABL1-like B-ALL is a unique group that 
is subcategorized under high risk B-ALL. The genetic 
abnormalities in this subtype of B-ALL involve a plethora 
of genes that can be categorized into different subgroups 
(Figure 3). They usually have a high frequency of IKZF1 
deletion (~70%), CRLF2 overexpression (~50%) and 
JAK mutations (~30%) [46, 64]. Deletions or mutations 
of IKZF1 are a hallmark of both BCR–ABL1–positive 
ALL as well as BCR-ABL1-like ALL [43, 50]. There are 
several types of kinase alteration in BCR-ABL1-like ALL 
including the rearrangements of CRLF2, rearrangements 
of ABL tyrosine kinase genes, rearrangements of JAK2 
and EPOR, mutations activating Janus kinase and signal 
transducer and activator of transcription (JAK-STAT) 
signaling and Ras, and less common kinase alterations 
(NTRK3 and PTK2B) [81, 82]. Genomic profiling study on 
154 B-ALL cases revealed most common rearrangements 
of kinase and cytokine receptor genes involving JAK2, 
ABL1 (with partners other than BCR), and other genes 
controlling tyrosine kinases including ABL2, CRLF2, 
CSF1R, EPOR, NTRK3, PDGFRB, PTK2B, TSLP, or 
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TYK2, and gene mutations involving FLT3, IL7R, or 
SH2B3 [46]. Notably, more than 80% of the BCR-ABL1-
like cases have one or more genetic abnormalities in genes 
involved in B lymphoid cell development, including 
IKZF1, TCF3 (E2A), EBF1, PAX5, and VPREB1 [42]. 
Kinase activation and signaling via JAK-STAT and ABL-
1 pathway are also considered key pathways in B-ALL 
leukemic transformation. Overexpression of the cytokine 
receptor CRLF2 was often found to have association with 
JAK mutations, especially JAK2.

In a brief summary, genetic changes underlying 
kinase-signaling pathways dysregulation include 1) ABL1-
like rearrangements involving ABL1, ABL2, CSF1R and 
PDGFRB; 2) JAK2 or EPOR rearrangements; 3) CRLF2 
rearrangements (often with JAK gene mutations and 
activation of JAK-STAT signaling); 4) Ras signaling 
pathway gene mutations; and 5) uncommon kinase 
alterations including NTRK3, PTK2B TYK2, etc. [46]. The 
clinical significance of the activation of kinase-signaling 
pathways is that the patients can be benefited from tyrosine 
kinase inhibitor therapy [46, 83].

CLINICAL IMPLICATIONS OF GENETIC 
ABNORMALITIES

The current treatment regimens recommended by 
National Comprehensive Cancer Network guideline has 
mainly been based on risk stratification with appropriate 
chemotherapy intensification for high-risk patients [6]. 
Over the last several decades, advances in the treatment of 
B-ALL have significantly improved the clinical outcomes. 
Besides the successful utilization of TKIs in the treatment 
of BCR-ABL1-positive B-ALL, collaborative studies 

such as the project Therapeutically Applicable Research 
to Generate Effective Treatments (TARGET) (https://ocg.
cancer.gov/programs/target/) use comprehensive molecular 
characterization to determine the genetic changes and 
identify therapeutic targets and prognostic markers. The 
studies identified novel targets for therapy in high risk and 
relapsed B-ALL, as summarized in Table 2 [85].

TKIs addition to cytotoxic chemotherapy in patients 
with BCR-ABL1-like B-ALL has significantly improved 
even-free survival and OS [46, 48, 83, 86]. The group of 
TKIs has been widely implicated in B-ALL patients who 
harbored ABL1, CSF1R and PDGFRB aberrations. Studies 
have shown that BCR-ABL1-like B-ALL cases, including 
cases with gene rearrangement involving ABL1, JAK2, 
PDGFRB and IL7R and other tyrosine kinase genes, had 
a poor response to conventional induction chemotherapy 
but showed sustained responses to TKIs [46, 48, 83, 86].

Preclinical studies demonstrated that JAK 
kinase inhibitors can be used in B-ALL with activated 
JAK-STAT signaling such as in B-ALL with CRLF2 
rearrangements and JAK gene mutations [87]. JAK2 
inhibitors are particularly used in the subgroup of B-ALL 
with JAK2, EPOR, CRLF2 and TSLP aberrations, while 
JAK1 and JAK3 inhibitors selectively inhibit patients 
with IL2RB gene rearrangements. Likewise, PI3K/
mTOR pathway inhibitors and Ras signaling pathway 
inhibitors are exploited and may become new therapeutic 
targets for high risk and relapsed B-ALL subgroups 
[88, 89]. Multiple small molecules developed to target 
specific pathways in the preclinical studies have shown 
potential treatment effects as well. MEK inhibitors (e.g. 
selumetinib) can overcome glucocorticosteroid resistance 
in B-ALL [90]. Korfi K. et al. used anti-MEK molecule, 
MEKi/Trametinib, and BCL-2/BCL-XL family inhibitors 

Figure 3: Breakdown of kinase alterations in children (inner doughnut), adolescents (middle doughnut) and young 
adults (outer doughnut) BCR-ABL1-like ALL [46, 84].
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to increase inhibitory functions and to induce apoptosis in 
B-ALL cells [91].

Besides the aforementioned targeted therapies 
for newly diagnosed or refractory B-ALL, several 
monoclonal antibodies (anti-CD20, rituximab; anti-
CD52, alemtuzumab; and anti-CD22, epratuzumab) are 
developed and added to conventional chemotherapy to 
achieve optimal clinical outcomes. Novel agents such as 
inotuzumab ozogamicin (anti-CD22, immunoconjugate) 
and blinatumomab (anti-CD19 BiTE antibody) have 
also been adopted as single agent therapy for those 
with relapsed or refractory B-ALL [99]. Clinically a 
combination of monoclonal antibody and targeted pathway 
inhibitor might be the option to achieve synergistic effects. 
In addition, targeted immunotherapty using chimeric 
antigen receptor (CAR) modified T cells targeting CD19 
has emerged as a powerful targeted immunotherapy, 
particularly to relapsed and refractory B-ALL with high 
response rates and durable remissions reported [100].

However, it is still in early stage for B-ALL target 
therapy, and it may take a lengthy time to translate the 

promising therapeutic agents in preclinical studies to clinical 
implementation. Development of more inhibitory small 
molecules, study of their efficacy and side effects clinically 
and careful clinical evaluation of the long term outcome of 
the targeted agents, including combination use of two or more 
agents, are the future directions. It will be necessary to put 
more priority on treatment of high-risk and relapsed B-ALL 
cases, and to minimize development of drug resistance.

CONCLUSIONS

In conclusion, gene expression profiling and 
genome-wide sequencing analyses have made great 
advancement over the past few years in understanding 
B-ALL biology and genetics. The development is very 
helpful in subclassifying B-ALL patients with different 
risks, identifying novel therapeutic targets, and improving 
the overall clinical outcomes. Biomarkers with prognostic 
and predictive values, as well as targeted therapeutic 
agents, have been emerged as promising approaches in 
clinical care of B-ALL in the era of personalized medicine.

Table 2: Potential targeted therapy in B-ALL ([46, 85], if not otherwise specified)

Altered singling pathways Inhibitor FDA approved medication Potential agents

BCR-ABL1-like ALL

  ABL1, ABL2, CSFR, 
PDGFRB TKIs

Imatinib *
Dasatinib*
Ponatinib*

  CRLF2, JAK2, EPOR, 
TSLP JAK2 inhibitor Ruxolitinib #

 IL2RB JAK1/JAK3 inhibitor Tofacitinib #
Oclacitinib #

 NTRK3 NTRK3 inhibitor Crizotinib #

 TYK2 TYK2 inhibitor Ndi-031301 [92]

 PTK2B FAK inhibitor VS-4718 [93]

CREBBP (CREB-binding 
protein- CBP)

Histone deacetylase 
(HiDAC) inhibitors ICG-001 (bind to CBP) [94]

Mutations in Ras/RTK 
pathway and PI3K pathway 
genes

PI3K/mTOR inhibitors Rapamycin # [95]

MLL/KTM2A rearrangement
Inhibitor of histone 

methyltransferase: DOLT1, 
FLT3 inhibitors

Lestaurtinib # (FLT-3 
inhibitor) [96, 97]

Hypodiploidy (TP53, RAS/
RTK/PI3K pathways)

MEK inhibitors PI3K 
inhibitors Trametinib # [91] Selumetinib [90]

Hyperdiploidy (RAS 
pathway) MEK inhibitors Trametinib # [91, 98] Selumetinib [90]

*. FDA approved for lymphoblastic leukemia treatment
#. FDA approved for other diseases but not for acute lymphoblastic leukemia
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Still, current challenges include fully understanding 
the genetic basis of B-ALL, discovering more efficacious 
therapeutic regimens, and importantly, identifying B-ALL 
subgroups with characteristic molecular features that 
can be used in targeted therapy, such as B-ALL with 
other kinase-activating aberrancies. There is a need to 
implement molecular diagnosis and subclassification 
in our practice, in order to utilize the potentially more 
efficacious therapeutic agents for this malignancy in the 
era of personalized medicine.
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