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Abstract

Background

The novel nonsteroidal mineralocorticoid receptor (MR) antagonist finerenone holds prom-
ise to be safe and efficient in the treatment of patients with heart failure and/or chronic kid-
ney disease. However, its effects on vascular function remain elusive.

Purpose

The aim of this study was to determine the functional effect of selective MR antagonism by
finerenone in vascular cells in vitro and the effect on vascular remodeling following acute
vascular injury in vivo.

Methods and results

In vitro, finerenone dose-dependently reduced aldosterone-induced smooth muscle cell
(SMC) proliferation, as quantified by BrdU incorporation, and prevented aldosterone-
induced endothelial cell (EC) apoptosis, as measured with a flow cytometry based caspase
3/7 activity assay.

In vivo, oral application of finerenone resulted in an accelerated re-endothelialization 3
days following electric injury of the murine carotid artery. Furthermore, finerenone treatment
inhibited intimal and medial cell proliferation following wire-induced injury of the murine fem-
oral artery 10 days following injury and attenuated neointimal lesion formation 21 days fol-
lowing injury.

Conclusion

Finerenone significantly reduces apoptosis of ECs and simultaneously attenuates SMC pro-
liferation, resulting in accelerated endothelial healing and reduced neointima formation of
the injured vessels. Thus, finerenone appears to provide favorable vascular effects through
restoring vascular integrity and preventing adverse vascular remodeling.
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Introduction

Whereas acute myocardial infarction incidence has decreased globally throughout the last
two decades, the prevalence of ischemic heart failure and diabetes without or with kidney
disease has steadily increased [1]. Direct deleterious effects of aldosterone and mineralocor-
ticoid receptor (MR) activation occur in both the heart and kidneys [2]. MR blockade pre-
vents some of these detrimental effects and markedly improves morbidity and mortality of
patients with moderate to severe heart failure as evidenced by large randomized controlled
clinical multi-center trials [3-6]. De Boer and colleagues showed that MRA use markedly
increased over the last 20 years among patients with diabetic kidney disease, who are at high
risk for vascular complications [7]. However, the available (steroidal) MR antagonists
(MRAs) spironolactone, and its sole successor eplerenone, suffer from substantial drawbacks
that limit their clinical use, e.g. hyperkalemia especially in patients with severe chronic kid-
ney disease (CKD) [8]. A novel non-steroidal MRA, finerenone, has been developed in an
effort to overcome these limitations by achieving high specificity for the MR as well as a bal-
anced and equal tissue distribution between cardiac and renal tissues which is in contrast to
steroidal MRAs. [9, 10]. The phase 2a MinerAlocorticoid Receptor antagonist Tolerability
Study (ARTS) indeed confirmed a reduced risk for developing hyperkalemia in patients hos-
pitalized for worsening chronic heart failure treated with finerenone compared with those
treated with spironolactone despite comparable reduction of efficacy parameters like the
brain natriuretic peptide (BNP), NT-proBNP, and albuminuria [11]. Moreover, in the phase
2b MinerAlocorticoid Receptor antagonist Tolerability Study-Heart Failure (ARTS-HF) the
investigators found a lower incidence of the clinical composite endpoint (all-cause death,
cardiovascular hospitalization or emergency presentation for worsening chronic heart fail-
ure) among patients treated with finerenone compared with eplerenone, even though the
study was not powered for this observation [12].

Ischemic cardiomyopathy as a result of coronary artery disease is the leading cause for
heart failure. Notably, overactivation of the MR has also been implicated in vascular remodel-
ing processes following vascular injury in animal studies as well as in coronary artery disease
and in-stent restenosis in clinical settings: Aldosterone has not only been shown to promote
medial cell proliferation by direct effects on the smooth muscle cell (SMC)-MR, but to be an
independent predictor for in-stent restenosis and mortality in patients with coronary artery
disease [13-15]. In consequence, the effect of MRAs on vascular function and remodeling pro-
cesses is of pivotal interest. Existing data on beneficial or detrimental vascular effects of spiro-
nolactone and eplerenone are inconsistent [16-18]. Based on the favorable vascular effects of
MR knockout studies on the one hand [13], and the high specificity of finerenone for the MR
and its unique tissue distribution profile in comparison to steroidal MRAs on the other hand,
we aimed to assess the effects of finerenone on vascular remodeling processes.

Material and methods
Reagents

Aldosterone was purchased from Sigma-Aldrich (St. Louis, MO, USA). Finerenone was pro-
vided by Bayer Pharma AG (Wuppertal, Germany). For in vitro-studies, aldosterone or finere-
none were dissolved in dimethylsulfoxide (DMSO, Cat. W387520, Sigma-Aldrich). For oral
application in in vivo-studies, finerenone was dissolved in 40% macrogol (15)-hydroxystearate
(Solutol®, Cat. 42966, Sigma-Aldrich) and 10% ethanol. In vitro, aldosterone was used at con-
centrations of 10 nM except for Fig 1A and 1C, where aldosterone was used at indicated
concentrations.
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Fig 1. Functional effects of finerenone in vitro. Human smooth muscle cells (SMC) and human endothelial
cells (EC) were incubated either with aldosterone alone or with aldosterone and different concentrations of
finerenone, each dissolved in dimethylsulfoxide (DMSO, final concentration 0.1%) for 24 hours. A-D, Cell
proliferation was determined by BrdU incorporation assays (n = 10 for SMCs/n = 6 for ECs, * P<0.05 to serum-
free, #P<0.05 to DMSO by ordinary 1way ANOVA followed by multiple comparisons using the Tukey method).
E-F, Apoptosis was determined by flow-cytometry-based caspase 3/7 activity measurement (n = 3, **P<0.01
to serum-free, #P<0.05 and ##P<0.01 to DMSO by ordinary 1way ANOVA followed by multiple comparisons
using the Tukey method, aldosterone 10 nM was used for B and D-F).

https://doi.org/10.1371/journal.pone.0184888.9001

Cell culture

Human coronary artery smooth muscle cells (SMC) and human umbilical vein endothelial
cells (EC) were purchased from Lonza (Cologne, Germany). Cells between passages 2 and 4
were used for all experiments and cultured in optimized growth media according to the suppli-

>
er’s protocols.
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Cells were incubated with aldosterone with or without finerenone for 24 hours after 24
hours of serum-starvation for the assessment of cell proliferation and apoptosis. Immediately
prior to the addition of aldosterone, cells were preincubated with finerenone or vehicle for 30
minutes.

Functional in vitro assays

Quantification of cell proliferation was assessed by using a BrdU-based Cell Proliferation
ELISA according to the manufacturer’s protocol (Cat. 11 647 229 001, Roche Applied Science,
Mannheim, Germany). Cell apoptosis was quantified by using a FLICA®™ 660 caspase 3/7 assay
kit according to the manufacturer’s protocol (Cat. 9152, ImmunoChemistry Technologies,
Bloomington, MN, USA).

Vascular injury models

All procedures concerning animal experiments complied with the Directive 2010/63/EU of the
European Parliament as well as with local ethical guidelines and had been approved by the
Lower Saxony’s institutional committee for animal research (LAVES). Adult male C57BL/6
mice were purchased from Charles River (Sulzfeld, Germany).

1.1.1. Mouse carotid artery model of reendothelialization. The electric deendotheliali-
zation of the carotid artery was performed as previously described [19]. Briefly, mice were
anesthetized by a singular intraperitoneal injection of 100 mg/kg body weight ketamine hydro-
chloride (Anesketin, Albrecht, Aulendorf, Germany) and 16 mg/kg body weight xylazine
(Rompun™ 2%, Bayer Health Care AG, Leverkusen, Germany) diluted in 0.9% sodium chlo-
ride. Adequate anesthesia was confirmed by the lack of tail-pinch-induced pain reflex. The left
common carotid artery was exposed through ventral middle line neck incision and injured
with a bipolar microregulator (ICC50, ERBE-Elektromedizin GmbH, Tuebingen, Germany)
below the carotid bifurcation. An electric current of 2 W was applied for the duration of 2 sec-
onds to each millimeter of the carotid artery over a total length of 4 mm with the use of a size
marker parallel to the artery. Immediately before surgery and then once daily, finerenone or
vehicle was delivered as oral gavage. Three days after carotid injury, reendothelialization was
evaluated by staining of the denuded area after injection of 50 uL of a 5% Evan’s blue solution.
Pictures of en face prepared injured arteries were taken and reendothelialization was assessed.
The reendothelialized area was calculated as difference between the blue-stained area and the
initially injured area by computer-assisted morphometric analysis (Image] 1.48 software,
National Institutes of Health, Bethesda, MD, USA) and presented as percentage of
reendothelialization.

1.1.2. Mouse femoral artery injury model of neointimal hyperplasia. The dilation of the
femoral artery was performed as previously described [20, 21]. In brief, mice were anesthetized
as described above. For the wire-induced injury model of the femoral artery, a straight spring
wire (0.38 mm in diameter, Cook Medical Inc., Bloomington, IN, USA) was advanced through
the profunda femoris artery for 1 cm into the femoral artery and left in place for 1 minute.
After withdrawal, the profunda femoris artery was ligated and reperfusion of the dilated femo-
ral artery was confirmed. Immediately before surgery and then once daily, finerenone or vehi-
cle was delivered as oral gavage. At 21 days after dilation, mice were sacrificed, blood was
drawn from the right ventricle, and perfusion with PBS or 4% para-formaldehyde (PFA, Carl
Roth, Karlsruhe, Germany) in PBS was performed via the left ventricle. The femoral artery was
carefully excised and postfixed in 4% PFA and embedded in Tissue-Tek OCT embedding
medium (Sakura Finetek Europe B.V., Zoeterwoude, The Netherlands). Afterwards, the arter-
ies were snap-frozen and stored at -80°C until sectioning.
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Morphometry

The whole femoral artery was cut in 6 um serial sections and 6 cross-sections from regular
intervals throughout the artery were stained with van Gieson staining (n = 6 mice per condi-
tion). For morphometric analyses, Image] 1.48 software was used to measure external elastic
lamina, internal elastic lamina, and lumen circumference, as well as medial and neointimal
area.

Immunofluorescence

Femoral artery cross sections or cell samples were incubated with antibodies recognizing o-
SMA (C6198, Sigma-Aldrich) or Ki-67 (ab15580, Abcam plc). Ensuing incubations were car-
ried out with Alexa 488-coupled secondary antibodies (LifeTechnologies) and counterstained
with nuclear 4.6-diamidino-2-phenylindole (Immunoselect Antifading Mounting Medium
DAPI, Dianova GmbH, Hamburg, Germany). Monoclonal antibodies to a-SMA were labelled
directly with Cy3. Negative controls were conducted by substituting the primary antibody
through an appropriate species- and isotype-matched control antibody (Santa Cruz
Biotechnology).

Microscopy

Tissue samples were analyzed using bright-field and immunofluorescence microscopy (Eclipse
TE2000-S, Nikon Instruments Europe B.V., Amstelveen, The Netherlands) equipped with
appropriate filter blocks and image processing software (NIS Elements AR 4.20.01, Nikon
Instruments Europe B.V.,).

Statistical analysis

Data were stored and analyzed on personal computers using Microsoft Excel 2010 (Microsoft
Corporation) and GraphPad Prism 6.01 (GraphPad Software Inc., La Jolla, CA, USA). Data
among study groups were analyzed by ordinary one-way ANOVA or 2way ANOVA followed
by pair wise multi comparisons using the Tukey method depending on the number of groups
and affecting factors. All data are represented as mean + standard error of the mean (SEM). A
probability value <0.05 was considered statistically significant for all comparisons.

Results

Finerenone prevents aldosterone-induced EC apoptosis and SMC
proliferation in vitro

To investigate vascular cell function in response to aldosterone with or without finerenone in
vitro, EC and SMC were incubated with different concentrations of aldosterone and finere-
none. At 24 hours after stimulation, we detected significantly increased SMC proliferation
rates following stimulation with 10 nM, 20 nM or 50 nM aldosterone as assessed by BrdU-
incorporation assays. Whereas finerenone treatment at concentrations of 1 nM showed a clear
trend towards reduced SMC proliferation rates, 10 nM finerenone sufficiently and significantly
prevented aldosterone-induced SMC proliferation (*P<0.05 to serum-free, “P<0.05 to
DMSO, n = 6, Fig 1A and 1B). However, aldosterone did not affect EC proliferation in vitro,
and there was also no effect of finerenone (Fig 1C and 1D).

In contrast, flow cytometry-based detection of FLICA™-labeled SMC revealed no aldoste-
rone-dependent induction of SMC apoptosis (Fig 1E). In contrast, EC apoptosis was increased
after stimulation with aldosterone in vitro but this effect could be prevented by the treatment
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Fig 2. Finerenone promotes early endothelial recovery. Electrical denudation of the carotid artery was
performed in 10 weeks old C57BL/6J mice. Finerenone or vehicle was daily delivered as oral gavage. A,
Three days following injury, endothelial regeneration was evaluated by injection of a 5% Evan’s blue solution
and en face microscopy. B, The re-endothelialized distance was calculated by substraction of the
deendothelialized distance from 4 mm (standardized denudated area, n = 9, **P<0.01 by ordinary 1way
ANOVA followed by multiple comparisons using the Tukey method).

https://doi.org/10.1371/journal.pone.0184888.g002

with finerenone even at low concentrations of 1 nM (**P<0.01 to serum-free, “P<0.05 and
*P<0.01 to DMSO, n = 6, Fig 1F).

Finerenone accelerates the re-endothelialization process following
vascular injury

Early endothelial recovery was assessed by Evan’s blue injection and en face microscopy 3 days
after electric injury of the carotid artery in C57BL/6 mice. Daily oral application of finerenone
(1 mg/kg/d or 10 mg/kg/d) markedly accelerated the re-endothelialization process at that time
point compared with daily vehicle application (0.52 + 0.12 mm re-endothelialization in vehi-
cle-treated mice vs. 1.13 + 0.16 mm in 1mg/kg/d finerenone-treated mice vs. 1.083 + 0.086
mm in 10 mg/kg/d finerenone-treated mice, **P<0.01 to vehicle, n = 8, Fig 2).

Finerenone reduces the recruitment of leukocytes and the inflammatory
response following vascular injury

The number of accumulating leukocytes in vascular lesions was determined by immunobhisto-
chemical detection of the pan-leukocyte marker CD45 at 10 days following wire-induced
injury of the murine femoral artery. Oral application of finerenone dose-dependently and sig-
nificantly reduced the amount of leukocytes within both the intimal and the medial vascular
layer (95.14 + 5.07 in vehicle-treated mice vs. 66.33 + 8.13 in 1 mg/kg/d finerenone-treated
mice vs. 65.69 + 4.26 in 10 mg/kg/d finerenone-treated mice, *P<0.05, **P<0.01, n = 6, Fig 3.

Finerenone attenuates smooth muscle cell proliferation and neointimal
lesion formation following vascular injury

Intimal and medial cell proliferation was determined by immunohistochemical staining for
the proliferation marker Ki-67 10 days following wire-induced injury of the murine femoral
artery. Oral application of finerenone dose-dependently and significantly reduced the amount
of proliferating Ki-67" cells within both the intimal and the medial vascular layer (ratio of Ki-
67"/DAPI" cells 0.281 + 0.032 in vehicle-treated mice vs. 0.127 + 0.011 in 1 mg/kg/d
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Fig 3. Finerenone reduces the intimal and medial leukocyte content. Wire-induced femoral artery
dilation was performed in 10-week-old C57BL/6 mice. Finerenone or vehicle was daily delivered as oral
gavage. A, Ten days after injury, leukocyte content was assessed by immunfluorescence staining for the pan-
leukocyte marker CD45 (red). Co-immunostaining for CD31 (green) and staining of nuclei with DAPI (blue)
was performed to assess the endothelial lining and the overall cell number for better morphological orientation
and to allow quantification. B, The amount of leukocytes was determined as the total number of CD45™ cells
(n=86, *P<0.05, **P<0.01 by ordinary 1way ANOVA followed by multiple comparisons using the Tukey
method).

https://doi.org/10.1371/journal.pone.0184888.g003

finerenone-treated mice vs. 0.032 + 0.002 in 10 mg/kg/d finerenone-treated mice, **P<0.01,
***P<0.001, n = 6, Fig 4). Conclusively, formation of a neointimal lesion was significantly
impaired in mice treated with 1 mg/kg/d finerenone 21 days after injury. This effect could be
further augmented by application of 10 mg/kg/d finerenone (luminal stenosis 90.84 + 0.922%
in vehicle-treated mice vs. 57.02 + 6.630% in 1 mg/kg/d finerenone-treated mice vs.

35.50 + 6.340% in 10 mg/kg/d finerenone-treated mice, *P<0.05, **P<0.01, ****P<0.0001,

n =6, Fig 5).
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Fig 4. Finerenone prevents medial and intimal cell proliferation. Wire-induced femoral artery dilation was
performed in 10-week-old C57BL/6 mice. Finerenone or vehicle was daily delivered as oral gavage. A, Ten
days after injury, cell proliferation was assessed by immunfluorescence staining for DAPI (blue), a-smooth
muscle actin (a-SMA, red), and Ki-67 (green). B, The amount of proliferating cells was determined as Ki-67*
cells/DAPI* cells (n = 6, **P<0.01, ***P<0.001 by ordinary 1way ANOVA followed by multiple comparisons
using the Tukey method).

https://doi.org/10.1371/journal.pone.0184888.g004

Peripheral blood samples 10 and 21 days after injury did not indicate any significant differ-
ence between the vehicle-treated group and the finerenone-treated group in regard to electro-
lyte metabolism, liver- or kidney function (Table 1). Most importantly, there was no increase
in plasma potassium with the use of finerenone, in fact, there was rather a trend for a decrease
in plasma potassium especially with the lower finerenone dose.
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Fig 5. Finerenone attenuates neointima lesion formation. Wire-induced femoral artery dilation was
performed in 10-week-old C57BL/6 mice. Finerenone or vehicle was daily delivered as oral gavage. A, 21
days after injury, neointimal lesion formation was assessed by van Gieson staining. B, Luminal stenosis was
calculated as percent stenosis = [1 = (A /Ay)] x 100, A_ = luminal area, and Ay = area of the normal artery
defined as the area surrounded by internal elastic lamina (n = 6, * P<0.05, **P<0.01, ****P<0.0001 by
ordinary 1way ANOVA followed by multiple comparisons using the Tukey method).

https://doi.org/10.1371/journal.pone.0184888.g005

Discussion

Atherosclerotic vascular disease is the leading cause for heart failure. Thus, the impact of
(novel) therapeutics for the treatment of heart failure on vascular remodeling processes is of
fundamental interest. Inhibitors of the renin-angiotensin-aldosterone system (RAAS) have
been shown to be not only cardio protective but in addition exhibit particular nephro protec-
tive effects in patients with diabetic kidney disease [5, 7]. Whereas certain evidence exists on
favorable vascular effects of inhibitors of the angiotensin-converting enzyme (ACE) [23], find-
ings on the influence of steroidal MRAs on vascular remodeling processes are inconsistent.

Here, we provide evidence that the highly specific novel non-steroidal MRA finerenone
prevents aldosterone-induced SMC proliferation and EC apoptosis in vitro. In vivo, oral appli-
cation of finerenone significantly accelerates the re-endothelialization process and thus limits
leukocyte recruitment at the site of injury, and reduces the proliferation of SMC and neointi-
mal lesion formation in mice.

Very recently, results from the ARTS-HF study verified beneficial effects of finerenone in
the treatment of patients with chronic heart failure who also have diabetes mellitus and/or
chronic kidney disease. In this high-risk population, finerenone exerted a good safety profile
comparable with that of eplerenone but, in contrast, significantly reduced the composite end
point of death from any cause, cardiovascular hospitalizations, or emergency presentations for
worsening heart failure [12]. Moreover, the MR has been shown to be crucially involved in
early myocardial healing processes after coronary artery ligation in mice [24], and treatment
with finerenone resulted in improved left ventricular compliance as well as reduced interstitial

Table 1. Blood values in mice treated with vehicle or finerenone.

ref. values [22] vehicle finerenone Pvalue finerenone Pvalue
1 mg/kg/d 10 mg/kg/d
Potassium [mmol/l] 3.1-6.1 5.1£0 4.33+0.16 n.s. 4.61+0.2 n.s.
Sodium [mmol/l] 149-165 1632 163.00+2.00 n.s. 164+0.00 n.s.
Chlorid [mmol/1] n/a 10412 107.33+1.11 n.s. 10243 n.s.
creatinine [umol/l] 28-11 8.5+2.5 6.67+0.44 n.s. 12+0.00 n.s.
Urea [mmol/I] 3.2-13.2 11.410.7 11.871.42 n.s. 10.65+0.65 n.s.

https://doi.org/10.1371/journal.pone.0184888.t001
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fibrosis compared with control mice following myocardial infarction [25]. Our study now
shows for the first time that finerenone may not only be beneficial in sufficiently treating heart
failure or improving myocardial healing, but also in preventing vascular remodeling processes.

The underlying molecular signaling mechanisms responsible for the distinct effects of finer-
enone in vascular cells remain not well defined. However, the relative instability of the MR in
vitro—as soon as vascular cells are removed from their native surrounding—has challenged
previous attempts to further elucidate the underlying MR-dependent mechanisms [26]. More-
over, recent evidence for profound paracrine effects, which are dependent on intact MR-sig-
naling, underlines the importance to study the impact of MRAs in intact organisms and tissues
in vivo [27].

Mechanistically, well-conducted in vivo studies in animals with tissue-specific MR knockout
indicated several possible underlying molecular processes: Vascular SMC-specific MR knock-
out decreased SMC proliferation and prevented pathological vascular remodeling in a wire-
induced carotid injury model through a placental growth factor/type 1 vascular endothelial
growth factor receptor pathway [13]. Notably, this conditional knockout also reduced oxidative
stress in EC in a paracrine manner [25]. EC-specific MR knockout improved endothelial cell
function in a mouse-model of western diet-induced endothelial dysfunction due to reduced
oxidative stress and an increased anti-inflammatory polarization of macrophages [28]. Finally,
selective deletion of the MR in myeloid cells has very recently been shown to limit macrophage
accumulation and vascular inflammation following vascular injury through impaired nuclear
factor-kB (NF-«B) signaling, thus preventing neointimal hyperplasia [29]. Given the distribu-
tion to the vascular space as well as well perfused organs and considering the MR selectivity of
finerenone, finerenone-mediated vascular effects may predominantly involve these signaling
pathways validated in genetically modified mouse models [25].

The high MR potency and selectivity combined with its physicochemical properties which
lead to its unique tissue distribution profile may also be the reason for the clear and robust pos-
itive effect of finerenone on EC- and SMC function and neointima formation in vivo observed
in this study [30]. In contrast, only inconsistent effects of spironolactone or eplerenone on vas-
cular function were reported. Further studies will have to clarify the possibly distinct effects of
the different classes of clinically available MRAs on vascular cell functions. Moreover, large
animal studies or further clinical observations will be needed to confirm the positive effects of
finerenone on vascular remodeling processes that were observed in this study.

Conclusions

The novel selective non-steroidal MRA finerenone promotes endothelial healing and inhibits
neointimal lesion formation following vascular injury. Thus, in addition to its beneficial effects
in heart failure therapy, finerenone might provide favorable vascular effects through restoring
vascular integrity and preventing adverse vascular remodeling following percutaneous coro-
nary interventions. This might be particularly important for the treatment of patients with
ischemic cardiomyopathy due to coronary artery disease.

Supporting information

S1 File. ARRIVE guidelines checklist. A completed copy of the ARRIVE guidelines checKklist,
a document that aims to improve experimental reporting and reproducibility of animal studies
for purposes of post-publication data analysis and reproducibility, is provided as supporting
information.
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