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Coronavirus disease 2019 (COVID-19) has gained prominence as a global pandemic. Studies have suggested that systemic
alterations persist in a considerable proportion of COVID-19 patients after hospital discharge. We used proteomic and metabolomic
approaches to analyze plasma samples obtained from 30 healthy subjects and 54 COVID-19 survivors 6 months after discharge
from the hospital, including 30 non-severe and 24 severe patients. Through this analysis, we identified 1019 proteins and 1091
metabolites. The differentially expressed proteins and metabolites were then subjected to Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes pathway enrichment analysis. Among the patients evaluated, 41% of COVID-19 survivors reported at least
one clinical symptom and 26.5% showed lung imaging abnormalities at 6 months after discharge. Plasma proteomics and
metabolomics analysis showed that COVID-19 survivors differed from healthy control subjects in terms of the extracellular matrix,
immune response, and hemostasis pathways. COVID-19 survivors also exhibited abnormal lipid metabolism, disordered immune
response, and changes in pulmonary fibrosis-related proteins. COVID-19 survivors show persistent proteomic and metabolomic
abnormalities 6 months after discharge from the hospital. Hence, the recovery period for COVID-19 survivors may be longer.
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INTRODUCTION
Coronavirus disease 2019 (COVID-19), caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerged as
a global pandemic. The disease has been responsible for more
than 336 million infections and >5.5 million deaths worldwide by
January 19, 2022. Supportive care has been provided for the
treatment of patients with COVID-19 [1]. With quick and focused
research, a variety of antiviral treatments have been clinically
tested and a large-scale COVID-19 vaccination program has been
implemented. Thus, the global response to COVID-19 prevention,
diagnosis, and treatment has made certain progress [2–6].
However, it is important to investigate the long-term effects of
SARS-CoV-2 infection and associated clinical treatments. Patients
who survived the SARS pandemic of 2003 were reported to exhibit
a poor quality of life 12 years after infection; they were susceptible
to lung infections and presented with hyperlipidemia, cardiovas-
cular abnormalities, and other sequelae [7]. Approximately 1 in 10
COVID-19 survivors presented with weakness, palpitation, and
dyspnea 3 months after hospital discharge, with half of them
exhibiting decreased pulmonary diffusion function [8]. A bidirec-
tional cohort study comprising 1733 COVID-19 survivors indicated
that three-quarters of the survivors presented with at least a single
typical symptom associated with SARS-CoV-2 infection, such as
sleep disorders and psychological problems, in addition to fatigue

or muscle weakness, 6 months after hospital discharge [9]. A study
of more than 87,000 patients with COVID-19 and nearly 5 million
healthy controls showed that the risk of death of COVID-19
survivors in the following 6 months is increased by nearly 60% in
addition to the presence of long-term effects affecting almost
every system such as the respiratory system, nervous system,
mental health, metabolism, cardiovascular system, gastrointestinal
system, kidney, blood coagulation regulation, and musculoskeletal
system [10]. These studies strongly suggested that systemic
alterations continued in a considerable proportion of patients with
COVID-19 after hospital discharge. It is thus essential to determine
the molecular mechanisms underlying these alterations. Omics
technologies, including proteomics and metabolomics, can
provide a powerful platform for the study of disease-associated
changes in proteins and metabolites in human tissues and fluids,
including plasma and urine [11]. Proteomics and metabolomics
have important applications in the study of viral infections and
communicable diseases [11–13]. The use of proteomics and
metabonomic technology can help reveal the pathogenesis of
viral infections and provide new targets for the development of
treatment strategies and biomarkers. Using these quantitative
omics tools, researchers have successfully explored many lesser-
known aspects of COVID-19 [14–16]. Tian et al. revealed
the occurrence of immunosuppression in patients shortly after
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SARS-CoV-2 infection, followed by immune overactivation, which
contributed to multiple organ damage, especially in patients with
severe COVID-19 [17]. The plasma metabolomics of survivors with
abnormal pulmonary function derived from COVID-19 is signifi-
cantly different from that of healthy controls or those with normal
pulmonary function after 3 months of discharge [18].
In this study, we used a quantitative proteomic and metabo-

lomic approach to analyze plasma samples obtained from healthy
subjects and COVID-19 survivors 6 months after discharge.
Proteomic analysis results revealed that the extracellular matrix,
immunity, and homeostasis showed abnormalities in COVID-19
survivors compared with healthy subjects. Moreover, metabolo-
mics analysis results indicated the existence of altered lipid
metabolism in COVID-19 survivors. These results suggested that
long-term recovery might occur in COVID-19 survivors.

RESULTS
Demographic and clinical features of COVID-19 survivors
6 months after discharge
We collected the information on 54 COVID-19 survivors 6 months
after discharge, including 30 non-severe and 24 severe patients
(Fig. 1A). We observed that the mean age of patients with COVID-
19 was 48 ± 15.88 years; 31 patients (57%) were men and 23
patients (43%) were women. The main comorbidity was hyperten-
sion (20%), followed by diabetes (13%) and coronary heart disease
(9%).
At follow-up examination 6 months after discharge, we found

that 22 patients with COVID-19 continued to exhibit at least a
single clinical symptom (41%), including 13 severe patients (54%)
and 9 non-severe patients (30%). The main symptoms among the
patients were fatigue (22%), exertional dyspnea (20%), muscular
soreness (17%), and smell and taste dysfunction (9%). Other
symptoms included cough (7%), loss of appetite (7%), sore throat

(6%), nausea (6%), and abdominal pain and diarrhea (6%). Seven
COVID-19 survivors at 6 months after discharge showed an mMRC
score of ≥1 (13%), including 1 non-severe (3%) and 6 severe
patients (25%). Fourteen COVID-19 survivors at 6 months after
discharge showed a Borg score [19] of ≥1 (26%), including 4 non-
severe (13%) and 10 severe patients (42%).
In terms of treatment, the proportions of antibiotics and

hormones used in severe patients (96%, 42%, respectively), were
higher than that in non-severe patients (43%, 7%, respectively).
We also matched 30 healthy subjects with similar demographic

characteristics for establishment of the healthy control group. The
demographic characteristics and clinical symptoms of the 54
patients and 30 healthy controls have been summarized in Table 1.
Thirteen COVID-19 patients (26.5%) still had chest high-resolution
computed tomography abnormalities at 6 months after discharge,
including 1 non-severe patient (3.6%) and 12 severe patients
(57.1%). The difference between the two groups was significant
(Table 2).

Plasma proteomic and metabolomic profiling of COVID-19
survivors 6 months after discharge
We used the data-independent acquisition (DIA) proteomics
strategy and targeted metabolomics approach to analyze
undepleted plasma from 84 individuals (Fig. 1B). Overall, 1019
proteins were quantified and 1091 metabolites were identified
through a compound library search. The coefficient of variation
(CV) values of 92% of proteins were demonstrated to be <30%
(Fig. S1A) in QC samples and meanwhile, the CV values of 82 and
95% metabolites were <20 and 30%, respectively (Fig. S1B). The
median CVs for the proteomic and metabolomic data were 12 and
10%, respectively (Fig. S1C). These results indicate that the MS
data were highly consistent and reproducible. PCA of quantified
proteins revealed that there were significant alterations in the
COVID-19 survivors’ group (including severe and non-severe

Fig. 1 Overview of the study design. A Flow chart of inclusion and exclusion for COVID-19 patients enrolled in this study. B Schematic
summary of the study design and patient cohort. C PCA plot of the proteomics data from the plasma samples. Each dot represents one
plasma sample, color-coded for the different groups. Green, yellow, and red data points are healthy control subjects and non-severe and
severe COVID-19 survivors at 6 months after discharge, respectively. D PCA plot of the metabolomics data from the plasma samples. Each dot
represents one plasma sample, color-coded for the different groups as described for panel (C).
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group) compared to the healthy controls (Fig. 1C). However, the
distinction between severe survivors and non-severe survivors
among COVID-19 patients was not significant. Metabolome
analysis also showed that the COVID-19 survivor and healthy
groups were obviously distinct, and the difference between the
non-severe and severe groups was relatively small (Fig. 1D).
A total of 272 differentially expressed proteins (DEPs) were

identified between the COVID-19 survivors (including severe and
non-severe) and healthy control group, of which 35 were up-
regulated and 137 were down-regulated (Fig. S2A). The result of
PCA analysis indicated that the DEPs generated by the compar-
isons could effectively distinguish between the COVID-19 survivors
and the healthy controls (Fig. S2B). In the COVID-19 survivors, the
heterogeneity of patients is large, and it is difficult to distinguish

between severe and non-severe patients. To further understand
the function of DEPs and their involvement in biological
processes, GO biological processes (BP) and Reactome gene sets
were applied using Metascape (Fig. S3 and Table S4). The top 20
enrichment function terms showed that the DEPs in COVID-19
survivors compared to in healthy controls were mainly involved in
biological processes associated with the extracellular matrix (ECM),
immunological response, and hemostasis (Fig. S3A). The ECM
pathway includes extracellular structure organization, collagen
metabolic process, and regulated exocytosis. Immunological
responses include humoral immune response, leukocyte migra-
tion, acute-phase response, and initial triggering of complement.
Hemostasis includes the formation of a fibrin clot (clotting
cascade) and complement and coagulation cascades. The network
result of enriched function terms showed that the functions of
hemostasis, immunological responses, and ECM are closely related
(Fig. S3B), and some key proteins are involved in these processes.
Heatmap visualization of the DEPs revealed that three main
pathways were enriched (Fig. 2A).
In COVID-19 survivors compared with healthy controls, 453

metabolites with VIP values >1 accounted for 41.52% of all
metabolites detected. Then, according to the screening criteria for
significantly differential metabolites (DEMs) discussed in the
Methods section, a total of 135 significant DEMs were detected

Table 1. Demographics and Clinical Characteristics of COVID-19 Patients 6 months after discharge and Healthy Control.

Characteristics Healthy
Control (n= 30)

COVID-19

Total
(n= 54)

Non-sever (n= 30) Severe
(n= 24)

Sex - no. (%)

Male 17 (57%) 31 (57%) 17 (57%) 14 (58%)

Female 13 (43%) 23 (43%) 13 (43%) 10 (42%)

Age - year

Mean ± SD. 46 ± 6.47 48 ± 15.88 43 ± 15.18 55 ± 14.28

Range 36–59 19–89 19–89 28–79

Smoke - no. (%) 5 (9%) 2 (7%) 3 (13%)

Alcohol - no. (%) 5 (9%) 2 (7%) 3 (13%)

Comorbidity - no. (%) 18 (33%) 6 (20%) 12 (50%)

Hypertension 11 (20%) 5 (17%) 6 (25%)

Diabetes 7 (13%) 1 (3%) 6 (25%)

Coronary heart disease 5 (9%) 0 (0%) 5 (21%)

Symptoms - no. (%) 22 (41%) 9 (30%) 13 (54%)

Fatigue 12 (22%) 5 (17%) 7 (29%)

Exertional dyspnea 11 (20%) 4 (13%) 7 (29%)

Muscular soreness 9 (17%) 4 (13%) 5 (21%)

Smell and taste dysfunction 5 (9%) 1 (3%) 4 (17%)

Cough 4 (7%) 2 (7%) 2 (8%)

Loss of appetite 4 (7%) 0 (0%) 4 (17%)

Sore throat 3 (6%) 3 (10%) 0 (0%)

Nausea 3 (6%) 1 (3%) 2 (8%)

Abdominal pain and diarrhea 3 (6%) 1 (3%) 2 (8%)

mMRC score

0 47 (87%) 29 (97%) 18 (75%)

≥1 7 (13%) 1 (3%) 6 (25%)

Borg score

0 40 (74%) 26 (87%) 14 (58%)

≥1 14 (26%) 4 (13%) 10 (42%)

Treatment - no. (%)

Antibiotics 36 (67%) 13 (43%) 23 (96%)

Antiviral drug 53 (98%) 29 (97%) 24 (100%)

Chinese medicine 53 (98%) 30 (100%) 23 (96%)

Hormone 12 (22%) 2 (7%) 10 (42%)

Table 2. Comparison of Chest HRCT between Non-severe and Severe
Groups 6 months after discharge.

Chest HRCT Non-severe
(N= 28) (%)

Severe
(N= 21) (%)

p value

Abnormal 1 (3.6%) 12 (57.1%) 2.63
E-05
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Fig. 2 Proteomic profiling of plasma samples obtained from COVID-19 survivors 6 months after discharge and healthy control subjects.
A Heatmap visualization of significantly differentially expressed proteins (DEPs) whose regulation concentrated on three enriched pathways. The
graphs show the relative intensity of DEPs. Proteins included in the heatmap meet the requirement that fold-change >1.5 or <0.67 and p value (t
test) of <0.05. p values were then adjusted using the Benjamini-Hochberg correction (false discovery rate, <0.05). The color bar represents the
relative intensity of identified proteins from −6 to 6. B The boxplots show six proteins, which are significantly different between COVID-19 survivors
6 months after discharge and healthy control subjects. Healthy group, n= 30; non-severe group, n= 30; severe group, n= 24. APOD apolipoprotein
D; APOM apolipoprotein M; C3 complement 3; FN1 fibronectin 1; NRP1 Neuropilin-1; TGFβ1 transforming growth factor beta 1.
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between COVID-19 survivors and healthy controls, of which 118
were up-regulated and 17 were down-regulated (Fig. S4A). The
results of PCA were similar to those of plasma proteomics, and the
DEMs generated by the comparisons effectively distinguished
between COVID-19 survivors and healthy controls (Fig. S4B). These
DEMs included glycerides (76.30%), oxidized lipids (11.85%),
glycerophospholipids (GP, 4.44%), and amino acids and their
metabolites (3.70%) (Fig. S4C, Table 3). The results of the top 20
metabolites with high VIP values are shown in Fig. S4D. Heatmap
visualization of the DEMs showed the altered metabolites (Fig. 3A).

Altered lipid metabolism and disordered immune responses
Previous research showed that immunological responses and
hemostasis were associated with pathological processes in
patients with COVID-19 [20–24]. Our results suggested that
abnormalities in those pathways or processes persisted in
COVID-19 survivors 6 months after discharge and were thus
considered to be responsible for the occurrence of persistent
symptoms or increased risk associated with the symptoms
reported in those patients after recovery [9, 25]. As an important
constituent of humoral immunity, the complement system is
known to play a crucial role in COVID-19 infection. The present
study highlighted a decrease in the levels of complement C3 in
COVID-19 survivors 6 months after discharge (Fig. 2B). Interest-
ingly, a retrospective cohort study showed that reduced levels of
complement C3 were associated with poor prognosis in patients
with COVID-19 [26]. Neuropilin-1 (NRP1) is a host factor involved in
the establishment of SARS-CoV-2 infection and has been reported
to promote SARS-CoV-2 cell entry and increased infectivity
[27, 28]. Our study found that the levels of NRP1 were higher in
COVID-19 survivors compared with those in healthy controls
(Fig. 2B). Both leukotriene B4 (LTB4) and prostaglandin E2 (PGE2)
are derived from arachidonic acid and have been demonstrated to
affect the antiviral immune response [29]. Our analysis revealed
the downregulation of LTB4 expression and upregulation of PGE2
expression in COVID-19 survivors (Fig. 3B).
Levels of a variety of polyunsaturated fatty acid metabolites,

including 5-hydroxyeicosatetraenoic acid (5-HETE), 12-hydroxyeicos
atetraenoic acid (12-HETE), and 15-oxoeicosatetraenoic acid (15-
oxoETE), were downregulated in COVID-19 survivors (Fig. 3B).
Particularly, 5-HETE, which is the major metabolite produced by 5-
lipoxygenase, is involved in the biosynthesis of human leukocytes
[30, 31]. Furthermore, 12-HETE has been shown to exert anti-
inflammatory activity and to block the TNF-α induced secretion of IL-
6 by macrophages [32, 33]. Changes in the levels of 12-HETE have
also been observed in animal models of influenza A virus infection
[34]. 12-HETE may be involved in the inflammatory reaction process
after viral infection. Additionally, 15-oxoETE has been reported to
inhibit the proliferation of endothelial cells [35] and to mediate the
adhesion of monocytes to endothelial cells [36].
Patients with COVID-19 6 months after discharge exhibited

significantly higher levels of triglycerides (TG) than healthy
controls (Fig. 3B). Metabonomic studies of patients with acute
COVID-19 infection have also reported the existence of abnormal
levels of TG [16, 37]. We also found abnormalities in apolipopro-
tein levels in COVID-19 survivors 6 months after discharge;

specifically, apolipoprotein D (APOD) and apolipoprotein M
(APOM) levels were demonstrated to be reduced (Fig. 2B). The
decrease in the levels of these two types of apolipoproteins was
also found in the proteomic analysis of patients with acute COVID-
19 infection [15]. Further, animal studies have found that APOD
deficiency is associated with elevated levels of triglycerides [38].

Abnormality of pulmonary fibrosis-related protein levels
Both transforming growth factor beta 1 (TGFβ1) and fibronectin 1
(FN1) are known to be drivers of pulmonary fibrosis [39]. TGFβ1
expression was downregulated, whereas FN1 expression was
upregulated in COVID-19 survivors 6 months after discharge
(Fig. 2B). Particularly, TGFβ1 has been found to promote the
differentiation of fibroblasts into myofibroblasts that produce
excessive extracellular matrix [40]. Excessive deposition of FN in
the extracellular matrix is known to be a major feature of
pulmonary fibrosis. The upregulation of the FN1 metabolite in
COVID-19 survivors may explain the residual imaging abnormal-
ities observed during the conduction of follow-up of patients with
COVID-19 [41–43].

Distinct profiles of severe and non-severe COVID-19 survivors
The protein and metabolic abundance matrix were processed
using the Mfuzz package to reveal the presence of 6 clusters each.
According to the experimental design, we only selected 2 types of
clusters for analysis. We observed that a single type of clusters
showed continuous and abundant upregulated (proteins: cluster-
up; and metabolite: cluster-up) expression in accordance with the
change in processing conditions (healthy-non-severe-severe)
(containing a total of 131 proteins that were included in the P1
protein set (Fig. 4A) and 152 metabolites that were included in the
M1 metabolite set (Fig. 4C)). We separately subjected proteins in
the P1 protein set to functional and pathway enrichment analyses.
GO and KEGG enrichment analysis results revealed that these
proteins played major roles in exocytosis regulation, response to
wounding, regulation of cell-substrate adhesion, positive regula-
tion of blood coagulation, and other processes (Fig. 4E, Table S5).
Hierarchical clustering results showed evident group differentia-
tion based on multiple components, including glycerides (GL), GP,
saccharolipids (SL), and organic acids and their derivatives,
according to the metabolites in the set with an abundance of
the M1 metabolite (Fig. 4G). We observed that another type of
clusters included those whose expression levels were significantly
downregulated (protein: cluster-down; and metabolite: cluster-
down) (containing a total of 135 proteins that were included in the
P2 protein set (Fig. 4B) and 20 metabolites that were included in
the M2 metabolite set M2 (Fig. 4D)). GO and KEGG enrichment
analysis revealed that these proteins played major roles in wound
healing, regulation of cell adhesion and platelet activation,
signaling, and aggregation (Fig. 4F, Table S6). Moreover, we found
that the expression of metabolites in the M2 metabolite set,
mainly including nucleotide and its metabolites (7 compounds),
GP (5 compounds), carnitine (3 compounds), which were low in
the severe group (Fig. 4H).

DISCUSSION
In this study, we analyzed the changes in plasma proteomics and
metabolomics of COVID-19 survivors 6 months after discharge
from the hospital and found that COVID-19 survivors exhibited
significant differences in the extracellular matrix, immune
response, and hemostasis pathways compared to the healthy
control subjects. COVID-19 survivors presented with abnormal
lipid metabolism, disordered immune responses, and changes in
pulmonary fibrosis-related proteins, 6 months after discharge.
Adults often present with an overexuberant systemic inflammation

in response to SARS-CoV-2 infection [44, 45], especially a severe
SARS-CoV-2 infection, which is dominated by a hyperactivated/

Table 3. The Class of significantly different metabolites.

Class Count Proportion (n= 135)

Glycerides 103 76.3%

Oxidized lipids 16 11.85

Glycerophospholipids 6 4.44%

Amino acid and Its metabolisms 5 3.70%

Organicacid and Its derivatives 2 1.48%

Other 3 2.22%

H. Li et al.
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Fig. 3 Metabolomics profiling of plasma samples obtained from COVID-19 survivors 6 months after discharge and healthy control
subjects. A Heatmap visualization of significantly different altered metabolites (DEMs) in COVID-19 survivors at 6 months after discharge and
in healthy control subjects. Metabolites included in the heatmap showed a fold-change >2 or <0.5 and p value (t test) of <0.05. The color bar
represents the relative intensity of identified proteins from −6 to 6. B Boxplots of six elected metabolites that significantly differed between
COVID-19 survivors at 6 months after discharge and healthy control subjects. For the healthy control group, n= 30; for the non-severe group,
n= 30; for the severe group, n= 24. 5-HETE 5-hydroxyeicosatetraenoic acid; 12-HETE 12-hydroxyeicosatetraenoic acid; LTB4 leukotriene B4; 15-
oxoETE 15-oxoeicosatetraenoic acid; PGE2 prostaglandin E2; TG triglycerides.
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exhausted immune response [20]. Single-cell sequencing was used to
determine the dynamic nature of immune responses during the
progression of COVID-19 [46]. COVID-19 survivors exhibited abnorm-
alities in immune response, complement, and hemostasis 6 months
after discharge, suggesting that the immune abnormalities caused by

SARS-CoV-2 were not resolved in 6 months after discharge.
Arachidonic acid and other unsaturated fatty acids are proinflamma-
tory components of the innate immune response and are known to
inactivate enveloped viruses and inhibit the proliferation of various
microbial organisms [47, 48]. Leukotrienes can enhance the ability of

H. Li et al.
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the immune system to eliminate microorganisms and to produce
antibacterial agents by regulating the innate immune response [49],
and may thus be potential therapeutic targets for COVID-19 [50]. The
production of PGE2 was found to increase in response to COVID-19,
suggesting the existence of a possible direct relationship between
the levels of PGE2 and the severity of the disease [51]. Likewise, the
abnormal arachidonic acid metabolites observed in our study might
have an impact on the prognosis of COVID-19 survivors.
COVID-19 survivors 6 months after discharge exhibited significant

lipid metabolism abnormalities. Studies have found that high levels
of TG might affect the progression and prognosis of COVID-19 [52].
The level of TG in severe and non-survivors of COVID-19 was
significantly higher than that in mild and survivors [53, 54]. Elevated
levels of TG have been reported to reduce the level of
immunoglobulin G that confers protection against COVID-19 [55]. A
decrease in the plasma level of APOM was associated with impaired
endothelial function, while a lack of APOM in mice caused
dysfunctional endothelial barrier function in the lungs [56]. Based
on these findings, lipid metabolism disorders observed in both acute
and survivors of COVID-19 infections warrant extensive investigation.
Residual lung lesions, especially pulmonary fibrosis, in patients

recovered from COVID-19, are noteworthy issues. Several studies
have reported the occurrence of lung injury in patients with acute
COVID-19 infection and early recovery [57]. The autopsy results of
COVID-19 cases have also revealed the presence of alveolar
damage and pulmonary fibrosis [58, 59]. Moreover, TGFβ
expression was shown to be significantly increased in the serum
samples of patients with acute COVID-19 infection, especially in
severe type patients [60]. Furthermore, the concentration of FN
did not significantly increase in the serum of patients with acute
SARS-CoV-2 infection [61]. However, the mRNA and protein levels
of TGFβ1 and FN1 were found to be increased in human epithelial
cells after 24 h of SARS-CoV-2 infection [39]. In the present study,
26.5% of COVID-19 survivors showed lung imaging abnormalities
at 6 months after discharge. While the serum proteomics showed
a decrease in the levels of TGFβ1 and an increase in the levels of
FN1 in COVID-19 survivors 6 months after discharge. This might be
attributable to the fact that after half a year of SARS-CoV2
infection, although the profibrotic effect might have gradually
weakened, the increase in FN1 levels caused by early infection
might require more time to return to normalcy. Therefore, residual
lesions could be observed in the follow-up imaging of patients
6 months after discharge [9]. Hence, the follow-up imaging of
discharged patients with COVID-19 should be conducted for a
longer period.
This study had several limitations. First, due to the limited

number of follow-up patients, the sample size was small. Second,
we did not perform proteomics and metabolomics correlation
analysis in our patients during the phase of acute infection, and
thus we could not exactly evaluate whether there were differences
in proteomics or metabolomics results between these patients
during the acute infection and 6 months after discharge from the
hospital. However, our results show that apolipoprotein D (APOD)
and APOM levels were reduced in COVID-19 survivors 6 months
after discharge. A decrease in the levels of these two types of
apolipoproteins was also found in severe COVID-19 patients
during infection stage [15, 62]. This suggested that triglyceride

metabolism is reduced in COVID-19 survivors until 6 months after
discharge. Compared with the healthy individuals, the level of
TGFβ1 increased in the plasma of COVID-19 patients during acute
infection stage but decreased in COVID-19 survivors 6 months
after discharge [62]. Nonetheless, the high level of FN1 after
discharge indicated that fibrotic progression might still be a
concern. In addition, leukocyte migration, extracellular matrix
organization, and complement and coagulation cascades were all
altered during both the acute infection stage and 6 months after
discharge [14, 15].
In conclusion, findings of the present study suggest that COVID-

19 survivors show persistent proteomic and metabolomic
abnormalities 6 months after discharge from the hospital. Hence,
the recovery period for COVID-19 survivors may be longer.

MATERIALS AND METHODS
Subjects and study design
All participants were from the Haihe Hospital (Tianjin, China). We collected
a total of 84 plasma samples from 30 healthy people, 30 recovered non-
severe patients and 24 recovered severe patients. All the enrolled patients
met the diagnostic criteria, clinical classification, and discharge criteria of
the “Chinese Clinical Guidance for COVID-19 Pneumonia Diagnosis and
Treatment (7th edition)” published by the China National Health
Commission. According to the clinical symptoms, confirmed patients with
COVID-19 can be divided into the following 4 types: mild, moderate,
severe, and critical. Mild type: mild clinical symptoms without signs of
pneumonia on chest imaging; moderate type: fever and respiratory
symptoms, and radiologic signs of pneumonia; severe type: any of the
following four conditions: (1) shortness of breath, RR ≥ 30 times/min; (2)
oxygen saturation ≤93% at rest; (3) alveolar oxygen partial pressure/
fraction of inspiration O2 (PaO2/FiO2) ≤300mmHg (1 mmHg= 0.133 kPa);
(4) radiologic signs of significant progression of lesion ˃50% within
24–48 h; critical type: any of the following conditions: (1) respiratory failure
with a necessity of mechanical ventilation; (2) shock; (3) other organ
failures with a necessity of subjection to ICU monitoring and treatment. In
this study, 22 severe and 2 critical patients were included and categorized
as the severe group, whereas 30 moderate patients were categorized as
the non-severe group. Finally, 30 age-matched medical staff from the
Tianjin Haihe Hospital were recruited as healthy volunteers; subjects in this
group showed negative results in nucleic acid and antibody tests for SARS-
CoV-2 and without lung abnormalities (Fig. 1A).
General participant information, including age, sex, comorbidity, and

clinical treatment, was collected using a standard form. Furthermore, each
patient completed a symptom questionnaire regarding his or her clinical
symptoms at the follow-up examination 6 months after discharge. The
modified Medical Research Council (mMRC) scale and Borg scores were
also collected through a combination of questionnaires, as described
previously [63]. The mMRC scale was used to assess the degree of dyspnea
in a variety of respiratory diseases on a scale from 0 to 4. The Borg scores
showed verbal descriptions of the severity of dyspnea or fatigue, which
corresponded to specific numbers for intensities [19]. High-resolution
computed tomography (HRCT) of the chest was performed for 49 patients,
including 28 patients in the non-severe group and 21 in the severe group
using a Canon 64-slice helical CT scanner (Aquilion Prime 128, Canon
Medical Systems, Otawara, Japan). The acquired chest HRCT images were
interpreted by three radiologists.

Sample collection
All enrolled subjects were strictly fasted for 12 h and were prohibited from
drugs for 48 h before the collection of plasma samples. In the early

Fig. 4 Expression profiles were analyzed according to protein and metabolic abundance between severe and non-severe COVID-
19 survivors 6 months after discharge. A–D The result of cluster analysis in processing conditions (Healthy-Non-severe-Severe) by the Mfuzz
package. The result of continuous up-regulation proteins (A) and continuous down-regulation proteins (B). Results of continuously up-
regulated metabolites (C) and continuously down-regulated metabolites (D). Numbers of proteins and metabolites are indicated for each
cluster. Color bar represents Z score change from −1 to 1. E, F Barplot for function enrichment result (including KEGG and GO) for up-
regulated proteins (E, protein cluster-up) and down-regulated proteins (F, protein cluster-down) (Top20); p value < 0.05 was identified as
significantly changed terms. The X axis shows the p value of each term, and Y axis shows the function terms. G, H Heatmap visualization of up-
regulated metabolites (G, metabolites cluster-up) and down-regulated metabolites (H, metabolites cluster-down) under the processing
conditions (healthy, non-severe, severe).
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morning, 5 mL of venous blood was collected and the plasma was
obtained by centrifugation at 4 °C (2000 rpm, 10min). Each plasma sample
was split into four fractions, two of them for proteome analysis (library
construction and sample assay) and two for metabolome analysis
(hydrophilic and hydrophobic analysis). Then, all plasma samples were
stored in a refrigerator at −80 °C for proteomic and metabolomic analysis
(Fig. 1B).

Sample preparation for proteome analysis
Plasma from each sample was mixed with the reaction solution buffer (1%
sodium deoxycholate, 10 mM tris(2-carboxyethyl) phosphine hydrochlor-
ide, 40mM 2-chloroacetamide). The reaction was carried out at 56 °C for
30min for protein denaturation, disulfide bond reduction, and cysteine SH
alkylation. The protein concentration was determined by Bradford method.
Then, each sample was diluted with an equal volume of H2O, and trypsin
was added at a ratio of 1:50 (enzyme: protein, w/w) and incubated
overnight at 37 °C for digestion. After centrifugation (12,000 × g, 15 min),
the supernatant was subjected to peptide purification using self-made
desalting columns. The peptide eluate was vacuum-dried and stored at
−20 °C until use.

Construction of a COVID-19 plasma proteome spectral library
We constructed a COVID-19 plasma spectral library by pooling an equal
amount of peptide from each sample and re-dissolving them in buffer A
(2% acetonitrile, 0.1% formic acid). To ensure the cleanliness and high
quality of the library, the peptide mixture was desalted again using a
Gemini C18 column (5 μm, 4.6 × 250mm) and was eluted using high-pH
reverse-phase chromatography (LC-20AB liquid phase system). The
gradient elution was carried out at a flow rate of 1 mL/min: 5% mobile
phase B (95% acetonitrile, pH 9.8) for 10min, 5–35% for 40min, 35–95% for
1min, 100% for 3 min, 5% mobile phase B equilibrated for 10min. The
elution peak was monitored at 214 nm and a fraction was collected every
minute. Eluates were concatenated into 54 fractions, with which two or
three fractions every 20 fractions were mixed. For the resulting 20
fractions, each fraction was then analyzed in the data-dependent
acquisition (DDA) mode to construct a COVID-19 plasma spectral library.

Liquid chromatography-mass spectrometry for proteome
analysis
The peptides were redissolved in mobile phase A (2% acetonitrile, 0.1%
formic acid), centrifuged at 20,000 × g for 10 min and the supernatant was
separated using an UltiMate 3000 UHPLC system (Thermo, USA). Briefly,
the peptides entered the trap column for enrichment, then entered the
connected self-packed C18 column (1.8 μm, 150 μm× 350 cm) and were
separated at a flow rate of 500 nL/min. The peptides were eluted using the
following gradient: 0–5min, 5% mobile phase B (98% acetonitrile, 0.1%
formic acid); 5–90min, 5–25% mobile phase B; 90–100min, 25–35%
mobile phase B; 100–108min, 35–80% mobile phase B; 108–113min, 80%
mobile phase B; 113–120min, 5% mobile phase B. The peptides separated
by liquid phase were ionized using a nano ESI source and then connected
to a Q-Exactive HF tandem mass spectrometer (MS) (Thermo, USA).
To construct a COVID-19 plasma proteome spectral library, the

Q-Exactive HF instrument was operated in the DDA mode. The m/z range
of MS1 was 350–1500, the resolution was 120,000, and the maximum ion
injection time (MIT) was 100ms. The top 20 precursors were selected for
the MS/MS experiment by higher-energy collision dissociation (HCD) with a
resolution of 30,000, MIT of 100ms, and dynamic exclusion time of 30 s.
The automatic gain control (AGC) was MS 3e6, MS/MS 1e5.
To analyze the plasma proteome in each subject, the Q Exactive HF

instrument was operated in the data-independent acquisition (DIA) mode
to switch between full-scan MS and MS/MS acquisition. The m/z range of
MS1 was 400–1250, with a resolution of 120,000 and an MIT of 50ms. All
precursor ions were selected for collision cells for fragmentation by HCD.
The MS/MS resolution was set at 30,000, the maximum fill time at
automatic, and the AGC target at 1e6. DIA was performed with a variable
isolation window, with 45 windows in total.
For quality control (QC) of the proteomic analysis, 10 μL of each sample

was pooled as a QC sample. Then, 10 QC samples were randomly
evaluated by calculating the CV of proteins in the QC samples.

Protein identification and quantitation
DDA data were identified using MaxQuant (version 1.5.3.30) [64]. The
reference database sequences were obtained from the UniProt Homo

sapiens proteome database (172,419 sequences). The spectral library was
built using peptide/protein entries that satisfied a false discovery rate
(FDR) ≤ 1%. Carbamidomethyl (C) was set as a fixed modification, and
oxidation (M) and acetyl (protein N-term) were set as variable modifica-
tions. DIA data were processed using Spectronaut software (Biognosys,
https://biognosys.com/shop/spectronaut) [65] against the self-built plasma
spectral library to achieve deeper proteome identification and quantifica-
tion. The FDR was estimated using the mProphet scoring algorithm with
1% FDR control at the peptide-spectrum match, peptide, and protein
levels. Next, the R package Msstats was used for log2 transformation,
normalization, and p value calculation of the data [66]. Differentially
expressed proteins (DEPs; p < 0.05 and fold-change ≥1.5 or p < 0.05 and
fold-change <0.67) were identified for further analysis. The p values were
then adjusted using the Benjamini-Hochberg correction (p adjust <0.05).
The DEPs are listed in Supplementary Table S1.

Extraction of hydrophilic and hydrophobic compounds for
metabolome analysis
To detect the maximum possible metabolites, both the hydrophilic and
hydrophobic metabolites were respectively extracted and analyzed as per
a previously reported method [67]. To extract hydrophilic compounds, the
plasma samples were thawed on ice and vortexed for 10 s. Six volumes of
pure methanol was added to one volume of plasma samples, the mixture
was thoroughly mixed for 3 min and centrifuged (10 min at 12,000 rpm,
4 °C). The supernatant was collected and centrifuged again (5 min at
12,000 rpm, 4 °C). The final supernatant was collected for LC-MS/MS
analysis.
To extract hydrophobic compounds, the plasma samples were thawed

on ice, vortexed for 10 s, and centrifuged (5 min at 3000 rpm, 4 °C). Then,
the plasma samples were thoroughly mixed with 1mL of lipid extract
mixture (methanol, tert-butyl methyl ether, and internal standard mixture)
for 15min. This mixture was added with 200 μL of water, vortexed for
1 min, and centrifuged again (10min at 12,000 rpm, 4 °C). The supernatant
was extracted and concentrated, dissolved in 200 μL mobile phase B
(acetonitrile/isopropanol (10%/90%, v/v) containing 0.04% acetic acid and
5mM ammonium formate) and subjected to LC-MS/MS analysis.

Ultra-performance liquid chromatography-tandem mass
spectrometry (UPLC-MS/MS)
The hydrophilic compounds were injected into a Waters ACQUITY UPLC
HSS T3 column (1.8 µm, 2.1 mm× 100mm). The column temperature, flow
rate, and injection volume were 40 °C, 0.4 mL/min, and 2 μL, respectively.
The mobile phase consisted of water containing 0.1% formic acid (A) and
acetonitrile containing 0.1% formic acid (B). The gradient was as follows:
from 5% B to 90% B in 11min, then held for 1 min, and finally decreased to
5% B for 2 min. Mass spectrometric scans were acquired with a 6500+
QTRAP® LC-MS/MS System equipped with an electrospray ionization (ESI)
Turbo Ion-Spray interface, operating in positive and negative ion mode
and controlled by Analyst 1.6.3 software (Sciex). The ESI source operation
parameters were as follows: source temperature was 500 °C; ion spray
voltage was 5500 V in positive ion mode (or −4500 V in negative ion
mode); ion source gas I, gas II, and curtain gas set at 55, 60, and 25 psi,
respectively; and collision-activated dissociation (CAD) set to high.
Meanwhile, the hydrophobic compounds were injected into a Waters

AccucoreTM C30 column (2.6 µm, 2.1 mm× 100mm). The column tem-
perature, flow rate, and injection volume were 45 °C, 0.35mL/min, and
2 μL, respectively. The mobile phase consisted of acetonitrile/water (60%/
40%, v/v, 0.1% formic acid, 10 mmol/L ammonium formate) (A) and
acetonitrile/isopropanol (10%/90% v/v, 0.1% formic acid, 10 mmol/L
ammonium formate) (B). The gradient was as follows: from 20 to 95% B
in 15.5 min, then held for 2 min, and finally decreased to 20% B for 2.5 min.
Mass spectrometric scans were acquired with a 6500+ QTRAP® LC-MS/MS
System equipped with an ESI Turbo Ion-Spray interface, operating in
positive and negative ion mode and controlled by Analyst 1.6.3 software
(Sciex). The ESI source operation parameters were as follows: source
temperature was 500 °C; ion spray voltage was 5500 V in positive ion mode
(or −4500 V in negative ion mode); ion source gas I, gas II, and curtain gas
set at 45, 55, and 35 psi, respectively; and CAD set to medium.
Instrument tuning and mass calibration were performed with 10 and

100 μmol/L polypropylene glycol solutions in the triple quadrupole (QQQ)
mode. Based on the self-built database and metabolite information in the
public database, the materials were qualitatively analyzed according to the
secondary spectrum information and the isotope signal was removed
during the analysis. QQQ scans were acquired as multiple reaction

H. Li et al.

9

Cell Death and Disease          (2022) 13:235 

https://biognosys.com/shop/spectronaut


monitoring (MRM) experiments with the collision gas (nitrogen) set to 5 psi
[68]. The de-clustering potential (DP) and collision energy (CE) for
individual MRM transitions were obtained with further DP and CE
optimization. The quantification of metabolites was accomplished using
the targeted MRM approach [69]. A specific set of MRM transitions were
monitored for each period according to the metabolites within this period.
Each sample analysis was conducted on both the positive and the negative
modes, and the MRM transitions are listed in Supplementary Table S2.

Metabolite identification and quantitation
The MS data were processed using Software Analyst 1.6.3. The repeatability of
metabolite extraction and detection was evaluated using the total ion current
(TIC) and multiple peaks of MRM. Qualitative analysis of the first-order and
second-order spectra detected by mass spectrometry was carried out on the
basis of a home-made metadata database and existing metabolomic
databases, including MassBank (http://www.massbank.jp/) [70], HMDB
(http://www.hmdb.ca/) [71], LIPID MAPs (www.lipidmaps.org/data/structure/)
[72, 73] and Metlin (http://metlin.scripps.edu/index.php) [74].
For the quality control (QC) of metabolomic analysis, we pipetted 10 μL

of each sample to pool a QC sample. One QC sample was analyzed after
every 10 samples in the LC-MS/MS running sequence. The CV value of the
peak area for each metabolite in QC samples was calculated to evaluate
the stability of the LC-MS/MS analysis. The quantitation of metabolites was
accomplished using MRM triple quadrupole mass spectrometry. The
intensity-based abundances of each metabolite were calculated by e peak
area of each chromatographic peak. After obtaining the mass spectral
analysis data of different samples, the peak areas of all the mass spectral
peaks were integrated, and the mass spectral peaks of the same
metabolites in different samples were integrated and corrected. We
calculated the CV values of the metabolites in the QC sample, and
metabolites whose CV values were larger than 0.5 were excluded.
The supervised multivariate method, PLS-DA, was used to resolve the

metabolome differences among the two groups (Brereton RG et al., 2014).
The relative importance of each metabolite to the PLS-DA model was
checked using the parameter called variable importance in projection (VIP).
Based on the VIP of the PLS-DA model, the p value or fold change of
univariate analysis was applied to further screen the differential
metabolites [75]. The screening criteria were as follows: fold change ≥2
or fold change ≤0.5, p < 0.05, and VIP ≥ 1. If the above three conditions
were satisfied, the metabolite was considered significantly different
between the groups. DEMs are listed in Supplementary Table S3.

Pathway analysis
Using the Gene Ontology (GO, http://geneontology.org/) and the Kyoto
Encyclopedia of Genes and Genomes (KEGG, http://www.genome.jp/kegg/)
databases, we performed GO and KEGG pathway enrichment analysis
based on differential proteins and metabolites to explore the biological
process of the disease [76, 77]. The GO analysis included biological process
(BP), cellular component (CC), and molecular function (MF) as the three
main categories. A p < 0.05 was considered significant. Cluster analysis of
protein expression or metabolite intensity from the different patients was
performed using Mfuzz v.2.46.0 [78], which can identify underlying time-
series patterns of expression profiles and cluster proteins or metabolites
with similar patterns to clarify the dynamic patterns of proteins or
metabolites and their functional linkages.

Statistical analysis
Principal component analysis (PCA) and hierarchical cluster analysis were
performed using the distance matrix calculated using the R statistical
language (v3.6.1; https://CRAN.R-project.org) [79], pheatmap (Version
1.0.12, https://cran.r-project.org/web/packages/pheatmap/index.html),
and ggord (Version 1.1.5). The normality of the data distributions was
assessed using the Kolmogorov-Smirnov test. Normally distributed data
are presented as the mean (± standard deviation), whereas abnormally
distributed data are presented as the median (± interquartile range), and
categorical variables are presented as frequencies (%). Differences
between groups were analyzed using Student’s t test or Mann–Whitney
test (for continuous data) and Fisher’s exact test or chi-squared test (for
categorical data). The statistical significance was calculated for reserved
proteins and metabolites using the unpaired two-sided Student’s t test,
and the adjusted p value was calculated using the Benjamini-Hochberg
correction (adjusted p < 0.05).

DATA AVAILABILITY
The data that support the findings of this study will be available from the
corresponding author upon reasonable request. The MS proteomics and metabo-
lomics data have been deposited to the ProteomeXchange Consortium (http://
proteomecentral.proteomexchange.org) via the iProx partner repository [80] with the
dataset identifier PXD025148 (https://www.iprox.org//page/project.html?
id=IPX0002924000).
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