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Abstract: Two-dimensional (2D) crystals provides a material platform to explore the physics and
chemistry at the single-atom scale, where surface characterization techniques can be applied straight-
forwardly. Recently there have been emerging interests in engineering materials through structural
deformation or transformation. The strain field offers crucial information of lattice distortion and
phase transformation in the native state or under external perturbation. Example problems with
significance in science and engineering include the role of defects and dislocations in modulating
material behaviors, and the process of fracture, where remarkable strain is built up in a local region,
leading to the breakdown of materials. Strain is well defined in the continuum limit to measure
the deformation, which can be alternatively calculated from the arrangement of atoms in discrete
lattices through methods such as geometrical phase analysis from transmission electron imaging,
bond distortion or virial stress from atomic structures obtained from molecular simulations. In this
paper, we assess the accuracy of these methods in quantifying the strain field in 2D crystals through
a number of examples, with a focus on their localized features at material imperfections. The sources
of errors are discussed, providing a reference for reliable strain mapping.

Keywords: 2D crystals; strain field; geometrical phase analysis; bond distortion; virial stress; atom-
istic simulations

1. Introduction

To understand mechanical processes such as structural distortion, phase transfor-
mation, fracture in two-dimensional (2D) crystals, and explore their strain-engineering
applications, characterization of inhomogeneous strain distribution is crucial. For example,
lattice distortion around imperfections such as point defects and dislocations in graphene
were measured, which can be used to validate the continuum theory of elasticity [1–3].
The process of fracture in 2D crystals were analyzed through the strain distribution at
crack fronts, where bond breaking and healing events are visualized [4,5]. Structures and
dynamics of strained inclusion phases were characterized and discussed, revealing the
microscopic mechanisms of phase transformation [6]. On the other hand, strain and phase
engineering has been widely envisaged as new approaches to expand the performance
spectra of 2D materials [7,8]. For example, strain gradient in graphene generates out-of-
plane pseudo magnetic fields due to negligible Berry curvatures around the gapped bands
at the K and K′ points [9,10]. In the continuum field theory, strain at a material point
can be defined and calculated from the dimensional change of volume elements. This ap-
proach applies to the lattice representation of crystals as the Cauchy–Born approximation
is valid [11]. However, quantifying inhomogeneous strain at imperfections are challenging
due to the loss of lattice symmetry, as well as its localized and irregular nature.

Experimentally, atomic arrangement in 2D crystals can be visualized by transmis-
sion electron microscopy (TEM) through the contrast in imaging. The geometrical phase
analysis (GPA) is a technique developed to analyze the distribution of lattice strain and
rotation through the Fourier transformation of the contrast map [12], which was widely
applied in the studies of quantum dots [13], nanowires [14], interfaces [15], defects [16],
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micro-cracks [17] and dislocations [18–21]. The idea is to identify the image-contrast max-
ima as lattice sites, and to calculate the local deviation from a reference lattice. The GPA
relies on the assumption that the image-intensity peaks directly correspond to the positions
of atomic columns in a given projection, and is especially suitable for 2D crystals with a
good quality of imaging. The basic assumption of GPA is that the tangent planes to the
phase images correctly approximate the geometrical phases over a small region, which is
valid for slowly-varying phases [22]. The limitations of GPA beyond the basic assumption
were reviewed in the literature. Error in the strain characterization arises while processing
compounds [23], amorphous regions or discontinuities at material interfaces [22], lattice
with a strain gradient [24] and structures with modified lattice constants from those in
the available references (by substrate coupling, alloying, phase transformation, for exam-
ple) [25,26]. The accuracy of GPA depends on the choice of g-vectors and the process of
Fourier filtering (e.g., the mask size) [22], the size of reference area [27], the defocus value
and the diffracted beams that determine the fringe contrast [24,28].

In theoretical studies through molecular simulations, atomic positions in 2D crystals
are known by construction or evolution following the equations of motion. Strain analysis
can be proceeded by measuring the distortion of inter-atomic bonds by numerical fitting
an affine-transformation matrix J from the changes in relative positions of neighboring
atoms. This approach requires the coordination of lattice sites remains unchanged during
the deformation. Alternatively, strain can also be calculated from the atomistic stress
with known elastic constants in the linear-response regime. This approach relies on the
definition of viral stress, which remains vague [29], as well as the constitutive relations
that map the strain from stress. Moreover, beyond the linear elastic limit, nonlinearity and
anisotropy developed at large strain should be included in the constitutive relations [30].

The current work is focused on the validity and accuracy of the methods of strain
characterization in 2D crystals. Following a brief introduction of the methodological details,
strain distribution in a honeycomb lattice (i.e., the lattice of graphene, hexagonal boron
nitride and transition metal dichalcogenides) with a few types of material imperfections
are considered, including holes, cracks and dislocations. The strain fields obtained by
GPA, bond distortion and derivation from virial stress are analyzed and compared to those
predicted from continuum mechanics. We find that for some of the problems with strong
strain localization, the implementation of current methods in strain analysis should be well
justified before application.

2. Methods
2.1. Molecular Simulations

To obtain the equilibrium and distorted structures of graphene as an example of 2D
crystals with the honeycomb lattice, molecular dynamics (MD) simulations were performed
using the large-scale atomic/molecular massively parallel simulator (LAMMPS) [31]. The
second-generation reactive empirical bond order (AIREBO) potential is used to describe
the inter-atomic interaction [32]. Structural relaxation is carried out using the conjugate
gradient (CG) algorithm with energy and force tolerance of 10−4 eV and 10−6 eV/Å,
respectively. To simulate uni-axial tensile tests, the simulation box is deformed in the
tensile direction, while other dimensions are free to change. Positions of atoms within
the box are changed under an affine transformation, followed by structural relaxation
using CG.

2.2. Geometrical Phase Analysis

GPA is a technique that extracts displacement information from high-resolution TEM
(HRTEM) images (Figure 1a). The image intensity I obtained at location r for a lattice
can be expanded through the Fourier series expressed in the reciprocal lattice vector g as
(Bragg reflections)

I(r) = ∑
g

Hgexp(2πig · r) = ∑
g

Agexp
{

2πig · r + iPg
}

, (1)
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where Ag and Pg are the amplitude and phase of the coefficient Hg at g. Inverting the
FFT produces a raw geometrical phase P′g(r). A reduced geometrical phase Pg(r) can be
introduced for the advantage of being rather smooth, and presenting no or only a few
discontinuities, that is

Pg(r) = P′g(r)− 2πg · r, (2)

where the g-vector is refined to an area of homogeneous strain (e.g., the reference lattice in
absence of strain). Lattice distortion, or changes in the reciprocal lattice vector g→ g + ∆g,
will produce a gradient in the phase

∇Pg = 2π∆g. (3)
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Figure 1. Methods of strain characterization based on (a) GPA, (b) bond distortion and (c) virial stress.
The scanning TEM (STEM) image in panel (a) is adapted from [4] under the Creative Commons
Attribution 4.0 International license.

The gradient in the geometric phase map Pg(r) yields the local deviation ∆g. The re-
duced geometrical phase map can be used to calculated the displacement field u in a crystal.
For a lattice under deformation mapping r→ r + u, we have

Pg(r) = 2πg · u. (4)

The displacement field u can be obtained from the phase map by choosing two non-
collinear g-vectors (g1, g2) that are refined by referring to the same unstrained region
through Equations (2) and (3), that is(

ux
uy

)
=

1
2π

(
a1x a2x
a1y a2y

)(
Pg1
Pg2

)
, (5)

where a1 and a2 are the real-space basis, corresponding to the reciprocal lattice defined by g1
and g2, or mathematically, aT

i · gj = δij. The Eulerian distortion tensor eE can be evaluated
by numerical differentiating the displacement field u [33]. In the small-displacement
regime, simplification into the linear part yields

eE =

(
exx exy
exy eyy

)
=

( ∂ux
∂x

∂ux
∂y

∂uy
∂x

∂uy
∂y

)
. (6)
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The Lagrangian representation can be obtained from the relation I + eL = (I− eE)
−1,

and their linearized measures are equal [22]. The strain and rotation tensors are finally
obtained as

ε =
1
2

{
e + eT

}
,

ω =
1
2

{
e− eT

}
.

(7)

This definition can be extended to the finite-displacement regime [22]. In practice
of GPA, masks are used to select Fourier components to produce phase mapping from
Equation (1). In order to reduce the noise, a Gaussian mask exp

[
−(k− gi)

2/2σ2] can be
placed around gi(i = 1, 2 in Equation (5)) in the reciprocal space spanned by k. The radius
of the Gaussian mask is ∼3σ, corresponding to 3/(2πσ) in the direct space. In this paper,
representative radius of small (g/4) and large (g/2) values are used in GPA.

GPA in this work is performed using the Strain++ code [12,23,34]. The images used
in GPA are generated from atomic structures, where atoms are represented in balls with a
radius of 0.06 nm [35], and converted into the 8-bit tagged image file format (TIFF) using
ImageJ [36].

2.3. The Bond Method

For the discrete atomic presentation of 2D crystals, the strain field measures defor-
mation from the difference between reference (initial, undeformed) and current struc-
tures (Figure 1b). Specifically, the relative position between the atom i and its neighbor
j are calculated as dji = x0

j − x0
i and dji = xj − xi at the reference and current configu-

rations, respectively. The affine-transformation matrix J is fitted for the best mapping{
d0

ji

}
→
{

dji
}

[37,38], that is

Ji =

(
∑

j∈Ni

d0T
ji d0

ji

)−1(
∑

j∈Ni

d0T
ji dji

)
, (8)

where Ni is the number of neighbors of atom i (Ni = 3 for the honeycomb lattice). As an
example, for graphene we have ∑j∈Ni=3 d0T

ji d0
ji = 1.5a2

C−CI, where aC−C is the C-C bond
length in graphene, then Ji is written as

Ji =
1

1.5a2
C−C

∑
j∈Ni

d0T
ji dji. (9)

This method also works for problems with no reference structures such as a lattice
with dislocations embedded, as the neighbors are identified and remains unchanged during
deformation. The Lagrangian strain tensor is finally calculated for the atom i as

εi =
1
2

(
JiJT

i − I
)

. (10)

2.4. The Stress Method

The atomistic stress can be calculated following the virial definition [29], from the
instantaneous atomic positions {ri} = r1, ..., rN and their interaction (Figure 1c). For
systems with two-body interaction, the virial contribution is

Wab =
1
2

Np

∑
n=1

(r1aF1b + r2aF2b), where a, b = (x, y, z), (11)

where Np is the number of interacting pairs. F1 and F2 are the forces exerted on atoms
r1 and r2 in the pair. For many-body potentials, the virial is summed over the atoms in
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groups (bond angles, dihedrals, etc.), and then divided evenly among those atoms [29].
The atomistic stress is finally obtained by dividing the virial by the per-atom volume.

The small-displacement strain field is obtained through stress–strain relations under
the plane-stress assumption as εxx

εyy
εxy

 =
1
E

 1 −ν 0
−ν 1 0
0 0 1 + ν

 σxx
σyy
σxy

, (12)

where a linear, isotropic, elastic constitutive model is used, and graphene is considered as
a plate with thickness of 0.34 nm. The Young’s modulus and Poisson’s ratio of graphene
are 960 GPa and 0.35, which are obtained from our MD simulations using the AIREBO
potential. For nonlinear and anisotropic elasticity that are activated at uni-axial strain of
∼5% ad ∼15%, respectively, a constitutive model with higher-order elastic constants is
required [39,40].

3. Results
3.1. Uniform Strain and Uniform Strain Gradient

We first validate the methods of strain characterization for samples with uniform strain
or a uniform strain gradient, by applying uni-axial stretch to rectangular and trapezoidal
graphene monolayers that can be shaped by focused ion beams (FIB) in experiments [41].
In GPA calculations, a deformed structure of graphene is patched to a fully-relaxed one,
which is used as the reference (Figure 2a). The strain is measured using a mask with size
of g/4 or g/2 [22,24]. The results show that using the smaller mask suppresses the noise,
but local features such as the interface between the reference and deformed lattice is less
distinct (Figure 2b). By comparing the strain values characterized at different loading
amplitudes (Figure 2c), we find that GPA and bond methods yield accurate measure.
The difference between Euler and Lagrange strain measured in GPA is noticeable, especially
under large deformation. In contrast, the strain derived from virial stress is accurate only
under small stretch for the linear and isotropic assumption in material responses. Under
large deformation, the deviation is significance, signaling that the nonlinear, anisotropic
constitutive model have to be implemented in the method [30].

For the stretched trapezoidal sample, strain distribution is analyzed along the axis
of mirror symmetry (Figure 2d–f). The tensile strain is expected to increase linearly with
decreasing cross-section area. The strain gradient is a constant across the sample, except for
the localization at the clamping ends due to the effects of boundary constraint. Our results
show that GPA yields almost identical strain fields with that obtained from the bond
or stress method in the central region of the sample. Deviation in the strain values is
identified at the loading boundaries, where the maximum strain occurs at different locations
(Figure 2e,f). The strain field mapped out of the sample region demonstrates the deficiency
of GPA in analyzing non-periodic data. As a result, the boundary of region occupied by
the samples has to be contoured manually. These results (uniform strain or uniform strain
gradient) demonstrate the validity of the strain-characterization methods for 2D crystals
with relatively smooth strain distribution. We will then extend the study to structures with
localized distortion.
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Figure 2. (a) A composite structure by patching an undeformed lattice (left) to a uniformly stretched one (right, strain along
the x direction). (b) Uni-axial strain field calculated from GPA at 4% strain. Strain distribution along x is plotted as the inset
in panel (b) for GPA using mask size of g/4 or g/2. (c) Lagrangian strain estimation from GPA, bond and stress methods
at strain of 4%, 10%, 15%. The Eulerian strain from GPA are plotted the solid lines in the bar representation. (d) Strain
characterization for a stretched trapezoidal sample with a uniform strain gradient. Left and right ends (2 nm width) of
the graphene lattice are displaced to apply a nominal strain of ε = 3.7% along the x direction. (e,f) Uni-axial strain fields
calculated from (e) GPA and (f) bond methods. Strain distribution along the axis of mirror symmetry is plotted as inset in
panel (e) for all the three methods.

3.2. Strain Concentration at Holes

Circular holes is one of the most common defects considered in the discussion of strain
or stress concentration in structures under mechanical loads. We apply uni-axial stretch
(along x with a nominal strain of ε) to a graphene monolayer of 50 nm × 50 nm (Figure 3a).
A single circular hole with a radius of a = 2 nm is created in the center of sample. Periodic
boundary conditions (PBCs) are applied along the x and y directions in the MD simulations.
The strain component εxx around the hole at ε = 3.7% and tensile stress of σ = 34 GPa
is characterized by using the GPA, bond and stress methods (Figure 3c–f). The results
are compared to the prediction from the theory of linear elasticity, which are, in polar
coordinates (r, θ) [42]

σr =
1
2

σ

(
1− a2

r2

)
+

1
2

σ

(
1− 4a2

r2 +
3a4

r4

)
cos(2θ),

σθ =
1
2

σ

(
1 +

a2

r2

)
− 1

2
σ

(
1 +

3a4

r4

)
cos(2θ),

τrθ = −1
2

σ

(
1 +

2a2

r2 −
3a4

r4

)
sim(2θ).

(13)
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Figure 3. Strain characterization for a graphene monolayer with a circular hole. (a) Uni-axial strain is applied along the
x-direction. (b) Distribution of strain component εxx along the 1− 1 cross section annotated in panel (a). (c–f) εxx map
calculated from (c) GPA, (d) bond distortion, (e) the theory of linear elasticity, and (f) virial stress.

The distribution of εxx, obtained from coordinate transformation, shows similar con-
tours of elongation and compress regions for all the methods. In detail, the εxx plotted
along the 1− 1 cross section (Figure 3b) increases rapidly while approaching the hole edge.
The value of εxx calculated from the bond or stress method is 3.7% in the region far from
the hole edge, which is slightly underestimated as 3.4% and 3%± 0.3% by GPA using the
mask with a size of g/4 and g/2, respectively. At the hole edge, significant deviation from
the theoretical prediction is identified for all of the three methods. The strain concentration
factor εmax/ε is measured to be 3, 3.25, 3.76 and 2.74 from the theory of linear elasticity,
GPA, bond and stress methods, respectively. The GPA result is sensitive to the size of
mask. The overestimation of strain from the bond method is due to the presence of open
edges, where strain is localized to several atoms at the edges and that within the sp2

lattice is much smaller. Besides of assumptions in the linearized constitutive model, strain
underestimation in the stress method may also comes from the definition and calculation of
virial stress at the edge. It is also interesting to note that, by comparing the strain calculated
from the bond and stress methods, the atoms bearing the largest stress is not the ones with
largest distortion, which may be attributed to the discrete and incomplete nature of lattice
at the hole edges.

3.3. Strain Fields at the Crack Tip

Knowledge of the strain and stress fields at crack-tips is critical to understand the
fracture of solids, a process of multiscale nature from bond breaking at the atomic scale to
the far field of strain and stress at the continuum level [43]. One advantage of 2D crystals in
the study of fracture mechanics is that all of their constituting atoms are are exposure to the
environment, and can be directly characterized by various forms of probing in experiments.
To characterize the strain field, we introduce a pre-crack in the graphene sample in the
middle of left edge, which has a width of one lattice constant and aligns along zigzag
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direction. In the MD simulations, the PBC is enforced in the direction (y) in perpendicular
to the crack, along which the displacement load is applied by deforming the simulation
box (Figure 4a). Other boundaries are open. In linear elastic fracture mechanics (LEFM),
the solution of displacement field near crack-tip for this Mode-I setup is

ux =
KI

2µ

√
r

2π
cos
(

θ

2

)[
κ − 1 + 2sin2

(
θ

2

)]
,

uy =
KI

2µ

√
r

2π
sin
(

θ

2

)[
κ + 1− 2cos2

(
θ

2

)]
,

(14)

where κ = 3−ν
1−ν for plane-stress problems, and r = (r, θ) is the position measured from

the tip. The stress intensify factor (SIF) is KI = σy
√

πa = 4.38 MPa
√

m, where a = 6.6 nm
and σy = 30.4 GPA are obtained from the model setup and MD simulations under applied
nominal strain of ε = 3.4% [44]. The contours of strain component εyy calculated using
the bond and stress methods show the two-lobe features, in consistency with the LEFM
prediction. GPA, however, shows a rounded contour around the tip (Figure 4c–f), signaling
the failure in extracting the crack-tip strain fields. Moreover, the issue of open boundaries
in GPA is also identified through the unphysical results in the crack region and at the edges
of samples. Plotting εyy from the crack tip and along the x-direction (y = 0) (Figure 4b)
shows that, the far-field values of εyy is 3.4% by using the LEFM theory, and the bond,
stress methods, aligning well with the loading condition. GPA with g/4 and g/2 estimates
3% and 3.5%, respectively, showing the dependence on the mask size.

0 5

5

-5

0

-5
x (nm)

y 
(n

m
)

x

y

0 5

5

-5

0

-5
x (nm)

y 
(n

m
)

0 5

5

-5

0

-5
x (nm)

y 
(n

m
)

0 5

5

-5

0

-5
x (nm)

y 
(n

m
)

10

0

(a) (c) (e)

(b) (d) (f)

0
x (nm)

3

40

0

ε y
y 
(%

)

ε
yy 

(%)

GPA LEFM

bond stress

stress
bond

LEFM

GPA (g/4)
GPA (g/2)

(r, θ)

Figure 4. Strain characterization for a mode-I crack tip. (a) A pre-crack is created at the middle of left edge in the graphene
monolayer. Strain is applied along y (the armchair direction) by deforming the simulation box. (b) εyy plotted along x from
the tip. (c–f) εyy map calculated from (c) GPA, (d) bond distortion, (e) LEFM, and (f) virial stress.

The strain fields at the crack tip calculated using different methods capture the di-
vergent nature as predicted in LEFM. The crack surfaces are defined by the positions of
edge atoms (plus a boundary layer with thickness of 1

2 aC−C) by considering the discrete
nature of lattices. The maximum relative bond elongation in the structure is 40%. In our
calculations, GPA predicts peak strain of 22% and 20% for g/4 and g/2, while the bond
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and stress methods estimates 24.4% (average of 37.4% and 11.4% in the lattice at crack-tip)
and 9.4% (average over 10.8% and 8%), respectively. The difference in strain variation
at the crack tip clearly highlights the loss of accuracy in characterizing strain in atomic
structures with highly localized and inhomogeneous strain fields. Alternatively, the bond
method offers a direct measure of structural deformation in the discrete representation,
which could be a better choice for the use in the study of fracture processes [45].

3.4. Lattice Distortion by Dislocations

Dislocations break the symmetry of translational invariance in crystals, resulting in
localized lattice distortion, as well as stress and strain buildup within the material. The
distortion induced by pentagon-heptagon (5|7) pairs can be considered as the core of in-
plane edge dislocation in the honeycomb lattice. Their arrangement in arrays is then a grain
boundary (GB). Previous studies show that the stress distribution around these topological
defects can be reasonably predicted by the linear elastic theory of dislocations except for
that in the core region [3,46]. It should also be noted that, the out-of-plane distortion of 2D
crystals could further release the in-plane stress or strain. In this work, both the isolated
dislocation and an array of them are analyzed using the strain-characterization methods.
For isolated dislocations, two dislocation cores with opposite Burgers vector are placed
12 nm away from each other. PBCs are enforced in the in-plane dimensions, but only half
of the sample with a single dislocation is used for strain analysis (Figure 5a). The strain
field extracted using GPA with a mask size of g/2 and the stress method are compared
with theoretical predictions [3]. For GPA calculations with as small twist angle φ across the
GB (Figure 5b), the g-vectors of the two domains are close, and the strain field can be well
characterized. Theoretically, the displacement of edge dislocation given by linear, isotropic
elastic theory [20] is

ux =
b

2π

[
tan−1 y

x
+

xy
2(1− ν)(x2 + y2)

]
,

uy = − b
2π

[
1− 2ν

4(1− ν)
ln(x2 + y2) +

x2 − y2

4(1− ν)(x2 + y2)

]
,

(15)

and the displacement given by the Foreman model [20,47] is

ux = − b
2π

[
tan−1 2(1− ν)x

ay
+ (a− 1)

2(1− ν)xy
4(1− ν)2x2 + a2y2)

]
, (16)

where b =
√

3aC−C is the length of the Burgers vector of graphene. a is a fitting param-
eter in the Foreman model, which is reduced to the Peierls–Nabarro (PN) model with
a = 1 [20,48]. From the strain component εxx = ∂ux

∂x measured using GPA, bond, stress and
theories (Figure 5b–f), we find that the distribution from GPA exhibits to be nearly round,
and in good accordance with the Foreman model by choosing a = 3, failing to capture
the butterfly feature shown in the results from the bond and stress methods. Moreover,
from the distribution of εxx along the 1− 1 cross-section, all methods are able to capture the
slop of strain gradient near the dislocation. However, in GPA and theoretical predictions,
strain at the centers of dislocations shows singularity, signaling the nature of continuum
representations. In the bond and stress methods with discrete atomic structures, the maxi-
mum and minimum strain values are finite, which are calculated to be 22%, −9% and 11%,
−11%, respectively.

For GBs with significant misorientation (Figure 5g), the g-vector spots (Bragg beams)
of each domain are well separated in the reciprocal space. The masks applied in GPA
have to cover the peaks corresponding to the g-vectors in neighboring domains. For the
honeycomb lattice, the distance between the two sets of g-vectors is φ · g ∈ [0, 0.5236g]
for φ ∈ [0, 30◦]. To cover two g-vectors chosen in neighboring domains, the size of mask
has to be increased by φ · g at least, if the mask is centered at one of the chosen g-vectors.
The reduced geometrical phase Pg(r) obtained form Equation (2) yields the lattice distortion.
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Masking two g-vectors in the same domain should be avoided, which is not an issue for
domains with a small angle of twist. However, for significant misorientation, the mask
should be centered at the middle point between the two g-vectors. A critical angle of twist
can be estimated as ∼15◦, for example, from φ · g = g/4.
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Figure 5. Strain characterization for isolated dislocations (a–f) and GBs (g–k). (a–f) εxx map calculated from (b) GPA,
(c) the Foreman model with a = 3, (e) bond distortion, (f) virial stress. Panel (d) summaries εxx along the cross section
1− 1 annotated in panel (a), which also includes the theoretical predictions from isotropic linear elasticity and the Peierls–
Nabarro model. (g–k) Strain component εxx and in-plane rotation ϕ in panel (j) map calculated from (h,j) GPA and (i,k)
bond distortion. Results are plotted for GBs with the twist angle between the neighboring domains of φ = 5◦ (h,i) and
φ = 30◦ (j,k).
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For low-angle grained boundaries (LAGBs) with φ = 5◦, the distance between the
g-vectors is small, and the strain distribution is derived from Pg(r). The strain distributions
measured from GPA and the bond, stress methods are almost identical with that obtained
by overlapping strain fields around isolated dislocations (Figure 5h,i). For high-angle GBs
(HAGBs) with φ = 30◦ as another example, the strain and rotation maps are obtained
with a mask with size of g/2, centered at the middle point between two selected g-vectors
(Figure 5j). The results are almost identical with those calculated from the bond and stress
methods, and the patterns of strain localization align well with the locations of (5|7) pairs.
In HAGBs with a high density of dislocations, interaction between them modifies the strain
distribution, which can be shown by comparison with the results of isolated dislocations.
GPA also predicts infinite strain localization due to its continuum nature, while bond and
stress methods yield finite values.

4. Discussion

Digital image correlation (DIC) [49] and Raman spectroscopy [50] are also commonly-
used techniques for strain characterization in materials science. In DIC, strain is measured
by tracking the correlation between displacements of feature speckles on the surface of
samples, such as the immobile contaminants. The accuracy is defined by the number, size
of speckles, and the algorithm to analyze the correlation. Raman spectroscopy measures
strain, in graphene for example, through the shift of G and 2D peaks. The spatial resolution
of Raman mapping is limited by the size of laser spots (∼500 nm), and the extracted values
of strain are averaged over the spot. Consequently, these methods apply only for strain
characterization at the micrometer scale. To resolve the mechanical responses of materials
at imperfections, the spatial resolution of strain characterization has to be elevated.

As the resolution of experimental imaging approaches the atomic scale, strain mea-
sured from the discrete sites of atoms offers the alternative measure of structural distortion.
Our results show that deformation with uniform strain or a uniform strain gradient can
be quantitatively well captured by the methods of GPA, bond and stress. However, local-
ized, inhomogeneous deformation at material imperfections not only signals the failure of
linear-elastic theory [51,52], but also pose challenges to strain characterization.

The GPA method reports continuous strain field from the FFT map of lattices. The in-
trinsic assumption made in GPA requires slowly-varying geometrical phases. At the very
first image-filtering step, the size and shape of masks matters the most. A Gaussian mask
with a radius in the range between g/4 and g/2 is used in this work for comparative
studies. To measure strain in regions with a small gradient, a smaller mask size is more
accurate, while for structures with strain localization, a larger mask size should be used
to capture stronger strain variation. To capture the deformation between domains with
significant misorientation, the size and position of masks should be specified to include
the g-vectors in each domain. GPA also suffers from the difficulty in determining the
geometrical boundaries for finite-size samples, which should be manually determined if
the strain value at the boundary is needed.

With the reference configuration of lattices known for 2D crystals, the bond or stress
method reports strain measures of the lattice. In the bond method, rotation is excluded,
and it required the coordination of lattice sites should remain unchanged during deforma-
tion, which depends on the definition of critical bond lengths. The stress method relies
on the definition of virial stress and constitutive models, which remain challenging for
many-body interactions and nonlinear, anisotropic responses at large strain [40]. The
assignment of many-body contributions into participant atoms remains vague, which is
another source of errors [53]. For lattice distortion that is difficult to be determined by GPA
at high accuracy, one could extract the atomic positions from the high-resolution images of
experimental characterization, and then apply the bond method or the stress method if MD
simulations are performed for the resolved structures with reliable interatomic potentials.
A critical issue to be addressed in this approach is to reduce the impact of noise and faults
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in the imaging process, which could be improved by, for example, the machine learning
techniques [54,55].

All of the three methods assessed in this work exclude the out-of-plane deformation of
2D crystals, which could be significant once the topological defects are introduced [56]. GPA
is based on 2D mapping of the lattices and cannot accommodate information in the extra
dimension. Bond and stress methods can partly include the effect since the bond distortion
and atomistic stress can be modified by the out-of-plane deformation. Adequate measures
should take into account for the local curvature and bending deformation, in addition to
the in-plane strain components.

5. Conclusions

In summary, we assessed the strain-characterization methods in analyzing the strain
distribution in 2D crystals, including GPA, bond-distortion analysis, and derivation from
the virial stress. Example problems including strain localization at holes, crack tip, dis-
locations and grain boundaries are analyzed. Our discussion on the sources of errors
offers guidance for strain characterization for 2D crystals, which play an important role in
elucidating mechanical responses of materials at nanoscale. These strain measures were
also extended recently to the interfaces between 2D crystals, as well as their multilayers
and heterostructures [57,58]. The combination of the above-mentioned methods thus offers
a flexible and powerful approach to understand their mechanical behaviors and design
strain- or phase-engineering applications.
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