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Previous studies have identified whole-blood transcriptional risk and disease signatures for tuberculosis; however, several lines of ev-
idence suggest that these signatures primarily reflect bacterial burden, which increases before symptomatic disease. We found that the 
peripheral blood transcriptome of mice with contained Mycobacterium tuberculosis infection (CMTI) has striking similarities to that of 
humans with active tuberculosis and that a signature derived from these mice predicts human disease with accuracy comparable to that of 
signatures derived directly from humans. A set of genes associated with immune defense are up-regulated in mice with CMTI but not in 
humans with active tuberculosis, suggesting that their up-regulation is associated with bacterial containment. A signature comprising these 
genes predicts both protection from tuberculosis disease and successful treatment at early time points where current signatures are not 
predictive. These results suggest that detailed study of the CMTI model may enable identification of biomarkers for human tuberculosis.
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Identification of biomarkers to diagnose stages of Mycobacterium 
tuberculosis infection and disease (active tuberculosis) remains 
an important clinical and public health goal. Pioneering work 
has shown that expression of interferon-inducible genes is 
strongly increased in the peripheral blood of patients with ac-
tive tuberculosis [1]. Additional studies have derived signatures 
correlated with risk of progression to active disease for latently 
infected (latent tuberculosis–positive) individuals in endemic 
areas and household contacts of active tuberculosis cases [1–7]. 
Multiple lines of evidence suggest that these biomarkers re-
flect subclinical immune responses correlated with bacterial 
burden rather than identifying individuals predisposed to in-
effective immune control of tuberculosis [8–11], and correlates 
of protective immunity to tuberculosis thus remain elusive. All 
of these signatures have been derived directly from clinical or 

observational studies of human populations. While human 
studies are essential for proving a biomarker’s clinical utility, 
they are time consuming and expensive. In addition, they offer 
very limited opportunities to experimentally interrogate the 
target population, a significant challenge to deciphering the im-
mune mechanisms that underlie a biomarker.

Several recent studies have identified strong similarities be-
tween the peripheral blood transcriptomes of M. tuberculosis–
infected humans and those of M.  tuberculosis–infected mice 
[8–10]. In particular, it has been demonstrated that whole-
blood transcriptional signatures derived from mice infected 
by aerosol at the “conventional” dose (approximately 50–100 
bacterial colony-forming units [CFUs]) or an “ultra-low” dose 
(ULD; approximately 1–3 CFUs) can predict the outcome of 
M. tuberculosis infection in humans as accurately as signatures 
derived directly from human studies [10]. 

These results suggest that many of the immune mechan-
isms that are activated by M. tuberculosis infection are shared 
between mice and humans. However, it has long been known 
that the course of tuberculosis disease differs significantly be-
tween these species. In humans, the overwhelming majority 
(90%) of M. tuberculosis infections do not progress to clinically 
diagnosable disease [3, 4, 12, 13]. Nonprogressors either clear 
the infection or successfully contain and control replication-
competent bacteria for their lifetimes, often in lymphoid tissue, 
while remaining asymptomatic [14]. In addition, it has been 
well documented that humans who resist progression to clinical 
disease after exposure to M.  tuberculosis have increased pro-
tection against subsequent M.  tuberculosis exposure [15, 16]. 
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In contrast, if detectable infection is established in a mouse, 
the animal will ultimately fail to control the bacteria [17]. It is 
therefore impossible to study the immune impact of contained 
M. tuberculosis infection (CMTI) on the peripheral blood tran-
scriptome in mice after aerosol challenge because the infection 
is never contained. This is a significant limitation of using the 
mouse model for tuberculosis biomarker development as well 
as for mechanistic studies.

The development of a CMTI model [18, 19] has overcome 
many of these limitations. In mice, intradermal inoculation of 
the ear with approximately 10 000 CFUs of M. tuberculosis es-
tablishes an infection in the draining lymph node that is asymp-
tomatic, stable for ≥1 year, and excluded from the lung [18, 19]. 
After the establishment of CMTI, mice are strongly protected 
against subsequent aerosol challenge, mimicking the well-es-
tablished protective effect of prior M. tuberculosis infection in 
humans [19]. 

We hypothesized that CMTI might be a useful model for the 
development of biomarkers that predict outcomes of asymp-
tomatic M.  tuberculosis infection in humans. In concordance 
with studies of the ULD model [10], we found that peripheral 
blood transcriptional responses in mice with CMTI are similar 
to those measured in humans with active tuberculosis and are 
predictive of risk for progression to active disease. We also iden-
tified a set of genes strongly up-regulated in mice with CMTI 
the expression of which is not elevated in humans with active 
tuberculosis. When measured ≥18 months before diagnosis, el-
evated expression of these genes was associated with lower risk 
of progression to disease. In contrast, a previously identified 
correlate of risk (ACS-CoR) score [3] is not predictive of pro-
gression to active disease this early. Furthermore, when meas-
ured at the time of diagnosis, elevated expression of these genes 
was correlated with better treatment outcome.

METHODS

Establishment of CMTI in Mice

Intradermal infections to establish CMTI were performed as 
described elsewhere [18], with the following modifications: 
10 000 CFUs of M. tuberculosis (H37Rv) in logarithmic phase 
growth in 10  μL of phosphate-buffered saline were injected 
intradermally with a 10-μL Hamilton syringe into mice anes-
thetized with ketamine.

CMTI Whole-Blood RNAseq

RNA isolation was performed using TRIzol (Invitrogen) with 2 
sequential chloroform extractions, Glycoblue carrier (Thermo 
Fisher), isopropanol precipitation, and washes with 75% eth-
anol. RNA was quantified with the Bioanalyzer RNA 6000 Pico 
Kit (Agilent). Complementary DNA libraries for alveolar macro-
phages were constructed and amplified using the SMARTer 
Stranded Total RNA-Seq Kit version 2—Pico Input Mammalian 
(Clontech), according to the manufacturer’s instructions. 

Complementary DNA for whole blood was prepared using 
the TruSeq Stranded messenger RNA kit (Illumina). Libraries 
were amplified and then sequenced on an Illumina NextSeq se-
quencer (2 × 75 base pairs; paired-end reads). Stranded paired-
end reads of length 76 were preprocessed. For the Pico Input 
prep, the first 3 nucleotides of R2 (version 2 kit) were removed 
as described in the SMARTer Stranded Total RNA-Seq Kit—
Pico Input Mammalian user manual (version 2: 063017); read 
ends consisting of ≥50 of the same nucleotide were removed. 
The remaining read pairs were aligned to the mouse genome 
(mm10) plus the M.  tuberculosis H37Rv genome, using the 
GSNAP aligner [20] (version 2016-08-24), allowing for novel 
splicing. Concordantly mapping read pairs (average, 10–20 mil-
lion per sample) that aligned uniquely were assigned to exons 
using the subread program (version 1.4.6.p4) [21] and gene 
definitions from Ensembl MusMusculus GRCm38.78 coding 
and noncoding genes. Differential expression was calculated 
using the edgeR [22] package from bioconductor.org [23]. The 
false discovery rate (FDR) was computed with the Benjamini-
Hochberg algorithm. Raw and processed data are deposited 
in the National Center for Biotechnology Information Gene 
Expression Omnibus (GSE126355).

Preparation of Human Tuberculosis Risk and Disease Cohorts

The following data sets containing whole-blood transcriptomic 
measurements of human tuberculosis risk, disease, and treat-
ment cohorts were downloaded from the National Center for 
Biotechnology Information Gene Expression Omnibus: the 
human tuberculosis disease cohorts GSE107991, GSE107992 [1, 
24] and GSE37250 [2]; the Adolescent Cohort Study (ACS) and 
GC6-74 tuberculosis risk cohorts GSE79362 [3] and GSE94438 
[4]; and the Catalysis tuberculosis treatment cohort GSE89403 
[25]. RNA-seq data was normalized and differential expression 
calculated using the edgeR v3.3 package. Similarly, microarray 
data were background subtracted, quantile normalized, and 
log2-transformed and differential expression calculated using 
the R limma package. Signatures were translated across species 
by identification of gene homologues, using the Mouse Genome 
Informatics database ([http://www.informatics.jax.org/down-
loads/reports/HOM_MouseHumanSequence.rpt]).

Calculation of Signature Scores

CMTI signature score genes were selected as genes that were 
consistently highly expressed 28 and 42 days after CMTI estab-
lishment (FDR, <0.001; | log fold change | > 1.5) that were also 
detected as expressed in human data sets (Table 1). For each 
data set, CMTI-derived signature scores were calculated as the 
mean per-sample expression of all signature genes.

The ACS-CoR signature scores were calculated using the 
published pairwise support vector machine (SVM) parameters 
for each junction pair [3]. The signature was adapted for predic-
tion on gene read counts (rather than junction read counts) by 
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substituting the corresponding gene counts for junction counts. 
In addition, instead of using a voting threshold of 0.5 to clas-
sify pair scores into votes, and calculating the average of pair 
votes, the average of pair scores was used as the output. This en-
abled calculation of signature scores on gene-wise RNAseq and 
microarray studies without reparameterization to account for 
differing sequencing depths. For RNAseq, signature predictions 
were made on gene counts, and for microarrays, probe intensity 
values were used. Areas under the receiver operating character-
istic curve (AUCs) and accompanying 95% confidence intervals 
(CIs) were calculated using the R pROC v1.17 package [26].

RESULTS

CMTI in Mice Induces Sustained Blood Transcriptome Changes

To examine the effect of a contained mycobacterial infection on 
the whole-blood transcriptome in mice, we established CMTI, 
as described elsewhere [19]. We performed RNAseq analysis 
of blood obtained immediately before the establishment of 
CMTI (day 0), and 10, 28, and 42 days afterward. Sixty-eight 
genes were strongly differentially expressed for ≥1 time point 
compared with day 0 (| log2(fold change) | > 1.5; FDR, <0.001) 
(Figure 1A–1C). These genes consisted of 2 broad groups: (1) 
a set of 22 genes that were transiently up-regulated at day 10 
and (2) a set of 46 genes that were most strongly up-regulated 
at day 28 and remained highly up-regulated at day 42 (Figure 
1D). We took the latter set of 46 genes to represent the long-
term whole-blood transcriptome associated with low-level 
CMTI in mice.

Predicting Human Tuberculosis Outcomes with a Mouse-Derived CMTI 

Gene Expression Signature

We hypothesized that many of the systemic immune pro-
cesses that are activated by CMTI in mice would be similar 
in humans harboring replicating bacteria and lead to similar 
transcriptional responses in the peripheral blood. Currently, 
there are several publicly available data sets containing 

whole-blood transcriptomic measurements of subjects 
with active tuberculosis (Table 1) (the cohorts reported by 
BCoR et al and Singhania al [1, 24] and by Kaforou et al 2], 
GSE107991, GSE107992 [1, 24]), as well as data sets com-
prising individuals at risk of progression to tuberculosis (the 
ACS and GC6-74 tuberculosis risk cohorts GSE79363 [3], 
GSE94438 [4]), and responding to tuberculosis treatment 
(the Catalysis tuberculosis treatment cohort GSE89403 [25]). 
Therefore, we constructed a gene expression signature from 
the 46 “long-term” genes and tested its ability to predict tu-
berculosis disease in humans. We determined the human 
homologues of each of the 46 long-term genes and retained 
those that were consistently expressed at a detectable level 
in all of the human data sets (23 genes in total; “consistently 
detected” genes in Figure 1D). The signature score for each 
subject, which we termed the CMTI disease score (CMTI-DS) 
was defined as the average expression of these 23 genes.

To test the ability of the CMTI-DS to identify tuberculosis 
disease in humans, we analyzed a set of 3 whole-blood tran-
scriptional profiles from patients with active pulmonary tuber-
culosis, latent tuberculosis, and healthy controls [1, 24] (Table 
1). Despite being derived from a mouse model, the CMTI-DS 
was highly effective (AUC, 0.92 [95% CI, .86–.97]) at discrim-
inating individuals with active disease from those with latent 
tuberculosis and performed equivalently to the ACS-CoR (0.93 
[.88–.99]) [3] (Figure 2A). We also tested the predictive power 
of the CMTI-DS using the data set reported by Kaforou et al [2], 
consisting of whole-blood expression profiles from both human 
immunodeficiency virus (HIV)–infected and HIV-uninfected 
individuals with active or latent tuberculosis in Malawi and 
South Africa (Table 1). Again, the CMTI-DS performed com-
parably to the ACS-CoR in discriminating active disease from 
latent tuberculosis in both HIV-infected and HIV-uninfected 
individuals (Figure 2B and 2C).

One of the most significant recent advances in tubercu-
losis biomarker development was the demonstration that the 
ACS-CoR score can predict the risk of progression to active 

Table 1.  Previously Published RNAseq Whole-Blood Profiles Used in Current Study

Cohort Description Samples Analyzed, No.

Berry et al [1] and Singhania 
et al[24]

Patients with active tuberculosis vs patients with 
latent tuberculosis and healthy controls 

Tuberculosis: 37; latent tuberculosis: 64; healthy controls: 12

Kaforou et al [2] Patients with active tuberculosis vs patients with 
latent tuberculosis, including HIV-infected and 
HIV-uninfected individuals

Malawi: HIV uninfected, 51 with tuberculosis and 35 with latent tubercu-
losis; HIV infected, 51 with tuberculosis and 36 with latent tuberculosis  

South Africa: HIV uninfected, 46 with tuberculosis and 48 with latent tuber-
culosis; HIV infected, 47 with tuberculosis and 48 with latent tuberculosis 

ACS (Zak et al) [3] Longitudinal study (2-y follow-up) of adolescents 
with latent tuberculosis, some of progressing to 
tuberculosis

Progressor samples: 94; control samples (nonprogressors): 245

GC6-74 (Suliman et al) [4] Longitudinal study (2-y follow-up) of household con-
tacts of tuberculosis index case patients, some 
progressing to tuberculosis

Progressor samples: 82; control samples (nonprogressors): 282

Catalysis Treatment Cohort 
(Thompson et al) [25]

Longitudinal study (24 wk) of tuberculosis treat-
ment responses

Definite cures: 78; not cured: 7 (4 time points each: diagnosis, d 7, wk 4, 
and wk 24) 

Abbreviation: HIV, human immunodeficiency virus; ACS: Adolescent Cohort Study.
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tuberculosis up to 18 months before clinical diagnosis. Given 
that the CMTI-DS performed equivalently to the ACS-CoR 
at identifying active disease, we tested whether it also pre-
dicted risk of progression. CMTI-DS is significantly predic-
tive of tuberculosis progression in the ACS cohort (Table 1) 
(AUC, 0.65 [95% CI, .58– .71]), although with reduced per-
formance versus ACS-CoR (0.8 [.74–.85]) (Figure 2D and 
Supplementary Figure 1). This reduced performance com-
pared with ACS-CoR is not surprising, as ACS-CoR was orig-
inally developed and trained on these samples. Importantly, 
we found that this CMTI-DS signature had nearly equivalent 
predictive power compared with the ACS-CoR for predicting 
progression to active disease in the independent GC6-74 
household contact risk cohort (Table 1) (AUCs for CMTI-DS 
vs ACS-CoR, 0.67 [95% CI, .6–.74] vs 0.71 [.64–.78]) (Figure 
2D and Supplementary Figure 1).

Association of CMTI Disease Signature Genes with Bacterial Containment

The CMTI-DS signature was strongly associated with tuber-
culosis disease in humans. However, in mice, CMTI is asymp-
tomatic and does not reduce lifespan [18, 19]. Moreover, mice 
with CMTI are protected against subsequent M.  tuberculosis 
aerosol challenge [19]. Therefore, we hypothesized that in ad-
dition to a component that reflects the presence of replicating 

bacteria, the whole-blood transcriptome of mice with CMTI 
contains a component that reflects immune mechanisms asso-
ciated with successful bacterial containment.

We sought to identify genes that differed in their expression 
pattern between CMTI in mice and active tuberculosis in hu-
mans and then set out to assess their association with improved 
tuberculosis outcomes in independent human tuberculosis risk 
cohorts. The expression profiles of the 23 mouse CMTI-DS 
genes were compared with those of their human homologues in 
healthy individuals or individuals with latent or active tubercu-
losis (Figure 3). We labeled as “concordant” genes significantly 
up-regulated in mice with CMTI versus naive mice and in hu-
mans with tuberculosis versus latent tuberculosis. Genes signif-
icantly up-regulated in mice with CMTI versus naive mice that 
also showed reduced expression in humans with tuberculosis 
versus latent tuberculosis were labeled as “opposite,” and all 
other genes not fitting either of these patterns as “ambiguous.” 

Thus, the CMTI-DS genes were divided into groups whose 
expression profiles are concordant (12 of 23 genes), opposite 
(5 of 23), or ambiguous (6 of 23) between CMTI in mice and 
tuberculosis disease in humans. None of the 5 opposite genes 
(CCR5, TPPP3, ZFYVE9, SH2D1B, and KLRG1) are included 
in the ACS-CoR score, which primarily consists of type I/
II interferon responsive genes that are up-regulated in active 
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Figure 1.   Establishment of mouse contained infection leads to alterations in blood transcriptional state. A–C, Volcano plots of differentially expressed genes com-
paring transcriptional states after contained Mycobacterium tuberculosis infection (CMTI) initiation (days 10 [A], 28 [B], and 42 [C]) to those before CMTI initiation (day 0). 
Abbreviation: FDR, false discovery rate. D, Heat map of significant differential expression changes shown in A–C. Genes showing high expression at days 28–42 and consist-
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tuberculosis. Modular analysis showed that, while concordant 
genes were primarily annotated as members of inflammation, 
interferon, monocyte, and DC modules, none of the opposite 
genes fell into these modules and were instead associated with 
cytotoxic/natural killer (NK) cell and chemokine processes 
(Supplementary Table 1). We hypothesized that elevated ex-
pression of these 5 opposite genes in mice with CMTI was cor-
related with a protective immune response acting to contain 
infecting bacteria and sought to determine whether a signature 
defined by their average expression (CMTI containment or 
CMTI-CT; see Methods) could predict protection from tuber-
culosis disease in humans.

Association of CMTI-CT Signature With Long-Term Disease Containment 

and Effective Treatment in Longitudinal Human Cohorts

While it is not possible to experimentally test protective im-
munity in humans, longitudinal studies of high-risk cohorts 
allowed us to investigate CMTI-CT score variation over time 
in humans exposed to tuberculosis. The performance of the 
ACS-CoR signature has been shown to decline substantially as 
the time to diagnosis increases and it is unable to discriminate 
tuberculosis progressors from nonprogressors ≥18 months be-
fore tuberculosis diagnosis (Figure 4A). In contrast, CMTI-CT 
scores are elevated in nonprogressors compared with tubercu-
losis progressors  ≥18  months from tuberculosis diagnosis in 
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Figure 2.  The contained Mycobacterium tuberculosis infection disease score (CMTI-DS) signature predicts human tuberculosis outcomes. A-C, Receiver operating char-
acteristic (ROC) curves for the CMTI-DS and Adolescent Cohort Study–correlate of risk (ACS-CoR) signatures discriminating active from latent tuberculosis in the cohorts re-
ported by Berry et al [1] (A) and Kaforou et al [2] (B, C). Abbreviation: HIV, human immunodeficiency virus. D, ROC curves for the CMTI-DS and ACS-CoR signatures tuberculosis 
progressors from nonprogressors in the ACS and CG6 cohorts Areas under the ROC curve and accompanying 95% confidence intervals are shown. 

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiab130#supplementary-data


Using a Contained Tuberculosis Model to Predict Human Tuberculosis  •  jid  2022:225  (15 May)  •  1837

the ACS cohort (AUC, 0.78 [95% CI, .59–.97]) (Figure 4A), and 
is significantly up-regulated in tuberculosis nonprogressors in 
the GC6-74 cohort (Supplementary Figure 2). Furthermore, 
CMTI-CT scores and time to diagnosis in ACS and GC6-74 tu-
berculosis progressors are only weakly correlated (ACS r = 0.2; 
P = .09) (Figure 4B and Supplementary Figure 2). In contrast, 
ACS-CoR scores were strongly correlated with time to disease 
diagnosis and showed a sharp increase beginning approximately 
6 months before the onset of symptomatic disease (r = −0.52; 
P < .001) (Figure 4C). Thus, unlike ACS-CoR, CMTI-CT dis-
criminates individuals likely to progress to tuberculosis from 
nonprogressors independent of subclinical disease processes. 
This is consistent with CMTI-CT’s association with a more 
stable long-term phenotype, not a time-dependent response to 
tuberculosis infection.

Similarly, we hypothesized that tuberculosis treatment failure 
may be linked to reduced natural immunity to M. tuberculosis 
and used the data from the Catalysis tuberculosis treatment 
cohort [25] (Table 1) to investigate the relationship between 
CMTI-CT scores and treatment failure. The CMTI-CT score, 
measured at the time of diagnosis and before treatment in-
itiation, is elevated in individuals who successfully respond 
to a 24-week course of treatment compared with controls 
(Supplementary Figure 3A) and is significantly predictive of 
treatment outcome (Figure 4D). In contrast, ACS-CoR is not 
predictive of treatment outcome at diagnosis, although it is sig-
nificantly decreased in treatment successes 24 weeks after treat-
ment initiation (Figure 4D and Supplementary Figure 3). Taken 
together, this points to CMTI-CT having predictive power in-
dependent of underlying bacterial burden in humans, thus con-
sistent with natural immunity to tuberculosis.

DISCUSSION

In the current study, we have used a CMTI model in mice 
to develop a peripheral blood gene expression signature 

that is as predictive of human tuberculosis disease states as 
a signature derived directly from human data. The compa-
rable performance of the CMTI-DS and ACS-CoR signa-
tures supports our 2 core hypotheses: (1) the CMTI mouse 
model mimics at least a portion of the tuberculosis disease 
spectrum in humans, and (2) current peripheral-blood tran-
scriptional signatures that predict tuberculosis disease state 
in humans reflect the immune response to live bacteria. Our 
results are consistent with findings of other studies that have 
uncovered strong similarities between the peripheral blood 
transcriptional response to M. tuberculosis infection in mice 
and humans [8–10]. In particular, the CMTI-DS signature 
is comparable to the recently published ULD signature [10], 
being a mouse-derived tuberculosis phenotype applied to 
human cohorts. While none of the ULD signature genes 
overlap with CMTI-DS, both ULD and CMTI-DS signatures 
contain several genes associated with interferon and inflam-
mation (Supplementary Table 1). However, to our knowledge, 
this is the first study to specifically explore the predictive ac-
curacy of a transcriptional signature derived from the CMTI 
model. This result also suggests that the increased experi-
mental control afforded by a well-defined mouse model off-
sets the uncertainty that is introduced by translating between 
species.

It is generally assumed that M.  tuberculosis infection is a 
spectrum of conditions ranging from asymptomatic exposure 
and sterilizing immunity to highly infectious pulmonary tu-
berculosis, and clinical data suggest that tuberculosis-infected 
individuals may move back and forth across the disease con-
tinuum [27]. Pioneering studies in nonhuman primates using 
positron emission tomography–computed tomography have 
shown that within the same host, some lesions heal while other 
lesions increase in size [28]. Similar processes have been ob-
served in humans [14, 29]. Thus, it appears that within the same 
host, progression and containment can take place simultane-
ously. The expression profile of whole blood is therefore likely 
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to reflect a mixture of immune responses associated with both 
disease progression and containment, and any whole-blood sig-
nature will reflect the composition and activation of multiple 
cell types circulating in the periphery.

Indeed, despite the fact that mice with CMTI are protected 
against aerosol challenge, the CMTI-DS signature, which is 
composed of the most strongly differentially expressed genes 
in CMTI mice compared with controls, is elevated in humans 
with active tuberculosis. However, subsequent comparison 
with a human active tuberculosis cohort revealed that a subset 
of genes up-regulated in CMTI mice but not in human active 
tuberculosis. We combined these genes into a new signature, 
the CMTI-CT score that we could then test for association with 
improved outcomes in human tuberculosis risk and treatment 
cohorts. We confirmed that expression of the CMTI-CT gene 
signature is elevated in M. tuberculosis–infected individuals ca-
pable of controlling the bacteria compared with those who will 
progress to active tuberculosis. Unlike ACS-CoR, CMTI-CT 
significantly discriminated tuberculosis progressors from con-
trols when measured >18  months before disease onset. Thus 

CMTI-CT appears to be correlated with a long-term protection 
or containment phenotype that is not associated with subclin-
ical responses to replicating tuberculosis or bacterial burden.

It is tempting to speculate that the CMTI-CT signature is cor-
related with a natural disposition to tuberculosis control, po-
tentially supporting an effective treatment response. However, 
these results are limited by the relatively small number of tu-
berculosis progressors ≥18 months from diagnosis in the ACS 
cohort (6 total), and the 2-year maximum follow-up time. The 
Vukuzazi study [30], an ongoing, population-based prospec-
tive study of a tuberculosis-endemic region in KwaZulu Natal, 
South Africa, will follow up enrolled individuals for 4 years and 
is powered to both validate and discover long-term correlates of 
tuberculosis immunity independent of short-term tuberculosis 
disease–associated responses.

The CMTI-CT signature includes 2 genes, KLRG1 and CCR5, 
that have been investigated in the context of M.  tuberculosis 
infection. Memory-like NKp46+CD27+KLRG1+ NK cells have 
been observed to be expanded after BCG vaccination and pro-
tective against M.  tuberculosis challenge in a murine model 
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[31]. CCR5 has been associated with control of bacterial mi-
gration to lymph nodes in mice [32]. The other 3 CMTI-CT 
genes (TPPP3, ZFYVE9, and SH2D1B) have not been investi-
gated in the context of tuberculosis, however, they are known 
to play roles in immune and proliferative signaling:, ZFYVE9 
in the transforming growth factor β pathway [33], TPPP3 in 
the AKT-STAT3 pathway [34], and SH2D1B, as a regulator of 
signal transduction in antigen-presenting cells [35]. This is in 
contrast with the ACS-CoR signature, which principally con-
sists of genes associated with type I/II interferon responses.
In conclusion, the findings of the current study, as well as other 
recent work [10] demonstrate that well-defined and experimen-
tally accessible mouse M. tuberculosis infection models can be 
used to generate whole-blood transcriptional signatures that 
are translatable to humans. Because much smaller human co-
horts are required to test a proposed predictive signature than 
are required to discover the same signature, the current findings 
highlights an opportunity for more rapid and cost-effective de-
velopment of biomarkers for tuberculosis disease and disease 
progression.
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