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Recently, spinal cord researchers have focused on multifaceted approaches for the treatment of spinal cord injury (SCI). However,
as there is no cure for the deficits produced by SCI, various therapeutic strategies have been examined using animal models. Due to
the lack of standardized functional assessment tools for use in such models, it is important to choose a suitable animal model and
precise behavioral test when evaluating the efficacy of potential SCI treatments. In the present review, we discuss recent evidence
regarding functional recovery in various animal models of SCI, summarize the representative models currently used, evaluate
recent cell-based therapeutic approaches, and aim to identify the most precise and appropriate scales for functional assessment
in such research.

1. Introduction

Spinal cord injury (SCI) is definedasdamage toany spinal cord
segment or nerve root. Such injuries often lead to permanent
functional changes, such as paralysis or diminished muscle
strength, movement, or sensation below the injured region.
Thus, the pathological symptoms of SCI can vary depending
on the site of injury and severity of the damage. As the annual
incidence of SCIdue tovehicular accidents or falls continues to
increase worldwide [1, 2], the need to develop novel therapeu-
tic strategies for SCI remains urgent in the field of spinal cord
research. Due to the epidemiology and severity of SCI, various
therapeutic techniques and biomaterials have been proposed
[3, 4]. Most of these potential therapeutic agents are primarily
tested in various animal models of SCI (e.g., rats, cats,
dogs, and nonhuman primates) [5, 6]. In addition to the
inherent advantages of animal models for evaluating the
therapeutic effects of potential treatment strategies, such
models are highly useful in assessing the degree of sensory/
motor impairment following injury.

Among the four regions of the spinal cord (i.e., cervical,
thoracic, lumbar, and sacral), the cervical and thoracic

regions are most frequently studied in animal models of
SCI. Injuries to the cervical spinal cord affect most of the
body, including the arms and legs [1, 7], while those to the
thoracic spinal cord and associated nerves result in trunk
instability and abnormal movement of the lower extremities.
In both rodents and primates, the anatomical locations of
these regions allow for easy induction of SCI, analyses, and
therapeutic manipulation involving cellular or biomaterial-
based grafts. Based on the specific deficits observed, various
behavioral tests have been developed to assess motor
function and recovery following treatment in animal models
of SCI [8–10].

The present review discusses recent evidence regarding
functional testing in various animal models of SCI, the most
suitable animal models for evaluating SCI, and current
therapeutic challenges in SCI treatment. As several studies
have highlighted the need for a well-developed, objective,
and universal rating scale of functional impairments in rat
models of SCI—such as the Basso, Beattie, and Bresnahan
(BBB) scale [8–11]—we focused on suitable scales for
assessing behavior, functional deficits, and therapeutic effects
following a certain period of recovery or treatment.

Hindawi
Stem Cells International
Volume 2017, Article ID 5160261, 12 pages
https://doi.org/10.1155/2017/5160261

https://doi.org/10.1155/2017/5160261


2. Animal Models of Spinal Cord Injury

2.1. Traumatic Lesions. Since SCI frequently occurs following
physical trauma (e.g., vehicular accident and falls), animal
models of SCI are frequently developed using external stimuli
such as dropped weight or clip compression (summarized in
Figure 1). In animal models, traumatic SCIs are typically
induced via contusion, compression, traction, or laceration.
Among these, spinal contusion is most frequently utilized,
as the size and severity of injury can be accurately adjusted

and replicated using a well-defined weight-drop impactor
[12]. The contusion method, which was first used to develop
animal models of thoracic SCI, can cause severe damage and
paralysis, which can be life-threatening when applied to the
cervical region. Thus, hemicontusion is preferred for models
of cervical SCI [13]. In clip compression models, the size and
severity of damage can consistently be controlled by adjust-
ing the time, forces, and angle of compression. Since
compression can result in severe injury without transection,
this method is advantageous for investigating variations in
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Figure 1: Development of animal models of spinal cord injury. (Upper illustration) methods for inducing spinal cord injury via surgical
incision include transection and hemisection, both of which can be accomplished using a surgical knife (left). Hind limb paralysis
following thoracic spinal cord injury in rats (right). (Lower table) animal models categorized by lesion method (left), the resulting primary
pathology (middle), and final result of affected motor neurons (right).

2 Stem Cells International



recovery over time. Tractive SCI can be induced using a
specialized spinal retractor, which allows the experimenter
to control the length and duration of traction [14]. Such
methods not only damage the structure of the spinal cord
but also produce severe reductions in neuronal numbers.
SCI via laceration results in severe irregular axonal damage,
which mimics spinal injury due to a physical accident. Lacer-
ation is induced in animal models of SCI using the oscillating
blade of a novel device known as the Vibraknife, which
allows for precise control of the depth and size of the lesion
without laminectomy [15].

2.2. Surgical Incision. Surgical incision is often utilized to
develop models of SCI following penetrating injuries, such
as knife wounds. Since the ends of the spine can be incised
clearly and accurately using a blade, such models have been
widely utilized in the investigation of neuronal regeneration
and tissue engineering procedures (Figure 1, upper illustra-
tion). Since traumatic injuries do not completely sever the
spinal cord, the transection method is more suitable for
mimicking the symptoms of “complete” SCI, in which
patients exhibit total and permanent loss of function below
the injured site. Thus, the transection SCI model has been
utilized to explore the function of each spinal segment and
to evaluate functional and anatomical regeneration following
complete transection [7, 16, 17]. In addition, partial transec-
tion via unilateral, dorsal, or ventral hemisection is highly
useful in the investigation of therapeutic challenges such as
transplantation. Both functional and anatomical alterations
can be examined more precisely by comparing the ipsilateral
and contralateral regions [18–20].

2.3. Ischemic Lesions. The spinal cord and spinal canal can be
severely injured due to ischemia, which can be induced by
either vascular congestion or aortic occlusion. Recent animal
studies have frequently utilized photochemical ischemia to
induce vascular congestion [21–23]. In this approach, follow-
ing systemic injection of a dye such as Rose Bengal, spinal
cord vessels are focally irradiated with an argon ion laser
(560 nm). The ensuing photochemical reaction leads to
vascular stasis without laminectomy, thereby resulting in
tissue infarction and functional deficits. In contrast, aortic
occlusion can easily be induced using an occlusion catheter
[24], which allows for control of both the duration and
severity of occlusion.

2.4. Drug-Induced Lesions. The primary advantage of a
drug-induced model of SCI is that both tissue damage
and functional deficits can be induced via local injection,
without the need for laminectomy. Since both lesion area
and functional outcomes are highly reproducible, the drug-
induced SCI model has been widely utilized in this field of
research. Local injection of excitotoxic drugs such as quis-
qualic acid, glutamate, N-methyl-D-aspartate, or kainic acid
induces SCI via neuronal loss and subsequent inflammation
[25]. Models of demyelination-induced SCI are also useful
for evaluating the therapeutic effects of remyelination treat-
ments. Drugs such as cuprizone and lysolecithin are fre-
quently used to model multiple sclerosis [9], as these agents

elicit partial demyelination when injected at specific sites
in the spinal cord. In addition, animal models of
demyelination-induced SCI can be developed using Theiler’s
murine encephalomyelitis virus and mouse hepatitis
virus [26], allowing researchers to examine the efficacy of
remyelination or Schwann cell grafting.

3. Therapeutic Approaches and Functional
Recovery in Animal Models of Stem
Cell Injury

As there is currently no cure for deficits induced via SCI,
various therapeutic strategies have been investigated using
animal models. Although the efficacy of cell grafting has been
examined in several trials over the past several decades [4],
the use of multifaceted therapeutic approaches involving
novel biomaterials or cell-encapsulated scaffolds has recently
increased (Figure 2(c)). Interestingly, accumulating evidence
suggests that the integration of several cell types and com-
bined biomaterials promotes regeneration and functional
improvement following SCI [27–30]. A summary of the
relevant findings is provided in Table 1.

3.1. Mesenchymal Stem Cells (MSCs)/Bone Marrow Stromal
Cells (BMSCs). Since MSCs are easily obtained from autolo-
gous bone marrow or other sources, research regarding the
use of MSC grafts or implantation of MSC-encapsulated scaf-
folds—which significantly reduce the immune response—has
increased substantially in recent years. MSCs/BMSCs secrete
significant levels of neurotrophic factors and can be trans-
planted via direct grafts, intravenously, or intrathecally.
Recent evidence has suggested that these neurotrophic factors
support CNS regeneration after injury. For example, direct
infusion of neurotrophic factors such as brain-derived neu-
rotrophic factor (BDNF) enhances neuronal survival and
axonal growth in animal models of SCI [31, 32].

Fibrin, a representative fibrous protein that prevents
blood clotting, is widely used to develop biopolymer scaf-
folds. Itosaka et al. [19] reported that, when BMSCs were
supplied in conjunction with a fibrin matrix, model rats
exhibited significant improvements in the recovery of neuro-
logical function, compared to when BMSCs were injected
alone. In particular, remarkable improvements in motor
function were observed (motor function test scale, BBB
score= 15). The BBB scale is used to assess motor function,
and BBB scores of 21 indicate complete recovery of motor
function following injury. Additional studies have demon-
strated that MSCs encapsulated with synthetic polymers
(e.g., poly(lactic-co-glycolic acid) (PLGA) or N-(2-hydroxy-
propyl)-methacrylamide) attached to amino acid hydrogels
(Arg-Gly-Asp (HPMA-RGD) hydrogels) can be implanted
into the injured spinal cord cavity, resulting in increased tis-
sue regeneration as well as significant improvements in func-
tional recovery (BBB score= 10) [27, 33, 34]. During the first
1–6 months of recovery, structural scaffolds or hydrogels
may promote tissue regeneration and functional improve-
ment by assisting in the spread of healing factors within the
damaged spinal cavity. Taken together, these results indicate
that combined treatment involving cellular transplantation
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and biomaterial implants accelerates recovery from SCI,
relative to the use of either treatment alone.

3.2. Neural Stem/Progenitor Cells (NSPCs). Various studies
have investigated the role of NSPCs—which can differentiate
into neurons, astrocytes, or oligodendrocytes—in neuronal
regeneration following SCI [35]. Research has indicated that
transplanted NSPCs may promote functional recovery via
neuroregenerative processes (e.g., remyelination) [28]. In
2002, Teng and colleagues [29] reported that neural stem
cells (NSCs) implanted into the injured thoracic spinal cord
using a PLGA scaffold (NSC-PLGA) produced increases
in the number of corticospinal tract fibers passing through
the injury epicenter and significantly improved motor
function 10 weeks after implantation (BBB score = 10).

Theses finding are in accordance with those of Du and
colleagues [30], who also demonstrated the therapeutic
effects of NSC-PLGA on tissue regeneration and motor
function (BBB score= 4). Surprisingly, therapeutic effects
increased by over twofold (BBB score = 8.8) when levels
of neurotrophin-3 and tyrosine receptor kinase C expres-
sion were increased in NSCs. Researchers have consistently
demonstrated the therapeutic effects of NSC-PLGA in
both rat and primate models of SCI. Pritchard and
colleagues [31] reported similar levels of recovery follow-
ing NSC-PLGA implantation in African green monkeys
(Babu score = 15). The Babu scale is used to evaluate func-
tion in primates, and the maximum score of 67 points is
considered an indicative of complete recovery. However,
the use of NSCs does not guarantee improvements in
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Figure 2: Multifaceted strategies for cell-based treatment. (a) List of cell types utilized in cell-based therapy for spinal cord injury. (b–k) Stem
cell manipulation in various cell-based therapies. Induced pluripotent stem cells (iPSCs) can be generated from human somatic cells (b). Stem
cells beginning to form embryoid body (c). Neural progenitors were isolated based on the neural rosette pattern and expanded in a culture
dish (d, e). Following treatment with morphogenic agents, neural progenitors differentiate into many motor neurons (f, g). When motor
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biomaterials have developed for use in cell-based therapies. At a certain stage, stem cells can be transplanted alone or encapsulated in
various scaffolds. PHEMA-co-MMA: poly(2-hydroxyethyl methacrylate-co-methyl methacrylate); PLA: polylactic acid; PLGA: poly(lactic-
co-glycolic acid); PCL: polycaprolactone.
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therapeutic outcomes. Although application of a chitosan
or fibrin channel filled with NSPCs to the SCI cavity pro-
motes the survival of NSCs, such animals exhibit no
improvements in functional deficits [32, 36, 37]. These
results indicate that therapeutic effects are only maximized
when NSCs are administered in conjunction with certain
biomaterials and structural scaffolds, such as the NSC-
PLGA scaffold.

3.3. Induced Pluripotent Stem Cells (iPSCs). Since iPSCs
can be derived from somatic cells using reprogramming

techniques, researchers have evaluated the utility of iPSCs
in the treatment of various diseases. The use of iPSCs is
advantageous in that these cells can be directed to develop
into various cell types by modifying the differentiation proto-
col. NSCs can be induced via conversion from iPSCs (iPSC-
NSCs) or via direct conversion of somatic cells (iNSCs).
The embryoid body (EB) formation process can be used to
generate NSCs from iPSCs (Figures 2(b) and 2(c)), following
which therapeutic application of iPSC-NSCs is accomplished
in a manner similar to that use for embryonic or adult NSCs,
as described above (Figures 2(d) and 2(e)). Several reports

Table 1: Animal models of stem cell injury (SCI) and multifaceted approaches to cellular therapies.

Reference SCI animal model
Materials for

scaffold
Applied cells

Recovery
time

Tests for motor
function

Functional
outcome

BBB score

ltosaka et al., 2009

Rat

T8 Hemisection Fibrin fibers
BMSC

4 weeks BBB Improved 15

Okuda, 2017 T8 Transection Cell sheet 4 weeks BBB Improved 5

Kang et al., 2011 T8-9 Transection PLGA scaffold

MSC

4 weeks BBB Improved 10

Yang, 2017 T9-10 Transection PLGA scaffold 4 weeks BBB Improved 7

Hejcl et al., 2010 T8-9 Compression
HPMA-RGD
hydrogel

35 weeks
BBB, plantar

test
Improved 10

Hatami et al., 2009 T10 Hemisection
Type1 collagen

droplet

NSC

5 weeks BBB Improved 19

Nomura et al., 2008 T8 Transection Chitosan
channels

12 weeks BBB No effect 9

Bozkurt et al., 2010 T8 Compression 9 weeks BBB No effect 11

Teng et al., 2002 T9-10 Hemisection
PLGA scaffold

10 weeks BBB Improved 10

Du et al., 2011 T9-10 Transection 8 weeks
BBB, Incline

test
Improved 9

Johnson et al., 2010 T9 Hemisection Fibrin scaffold 8 weeks BBB, Grid walk No effect
Data not
shown

Ye, 2016 T10 Contrusion
Self-assembling

peptide
nanofiber

5 weeks BBB Improved 12

Mothes, 2013 T2 Compression
Hyaluronan-

methy cellulose
gel

9 weeks BBB No effect 12

Liu et al., 2015 T10 Transection
PLGA scaffold

iNSC
10 weeks BBB Improved 14

PLGA-PEG
scaffold

10 weeks BBB Improved 17

Olson et al., 2009 T8-9 Transection PLGA scaffold

SC

4 weeks BBB No effect 1

Wang et al., 2011 T10 Transection Gelform 8 weeks
BBB, incline

test
Improved 8

Hurtado et al., 2006 T9-10 Transection
PDL tubular
scaffold

6 weeks BBB No effect 7

Joosten et al., 2004 T7-9 Transection Collagen gel Astrocyte 4 weeks
BBB, grid,
catwalk

No effect 13

Rochkind
et al., 2006

T7–8 Transection
Dextran-gelatin

tube
NOM, SCC 12 weeks BBB No effect 10

Zhang et al., 2016 T9 Contrusion
Chitosan
scaffold

hDPSC 4 weeks BBB Improved 12

Pritchard
et al., 2010 Primate

T9 Hemisection PLGA scaffold
NSC

6 weeks Babu scale Improved 15

Nemati, 2013 C5–L1 Contrusion Direct injection 49 weeks Tarlov’s scale Improved 1.75

T: thoracic; C: cervical; L: lumbar; PLGA: poly(lactide-co-glycolide) acid; HPMA-RGD: N-(2-hydroxypropyl)-methacrylamide with attached amino acid
sequences Arg-Gly-Asp; PDL: poly D-lactic acid; PLA: poly L-lactic acid; BMSC: bone marrow stromal cell; MSC: mesenchymal stem cells; NSC: neural stem
cell; iNSC: induced neural stem cell; SC: Schwann cell; NOM: nasal olfactory mucosal cell; SCC: spinal cord cell; BBB: Basso, Beattie, and Bresnahan test scale.
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have indicated that direct transplantation of iPSC-NSCs
elicits therapeutic effects in both rat and primate models of
SCI [35, 38, 39]. Nutt and colleagues [39] demonstrated that
intraspinal grafting of iPSC-NSCs results in successful
integration and neuronal differentiation within the injured
cervical segment. Similarly, the application of iPSC-derived
EBs (Figure 2(c); i.e., the prior status to NSCs) on a 3D
fibrin-based scaffold (or a mixture composed of iPSC-NSCs
and hydrogel) promotes neuronal survival and differentia-
tion. These results indicate that iPSC-NSCs combined with
biomaterials promote repair following SCI [40, 41]. Further
studies have revealed that iNSCs also promote neuronal
and functional recovery in a rat model of SCI, with thera-
peutic effects similar to those of normal NSCs [42, 43].
Notably, the application of iNSCs within a PLGA or PLGA-
polyethylene glycol (PEG) scaffold also promotes tissue
regeneration and functional recovery. However, the thera-
peutic effect of the combined PLGA-PEG scaffold is greater
than that of the PLGA scaffold [44]. Various studies have also
reported that transplantation of Schwann cells [45–47],
astrocytes [48], nasal olfactory mucosal cells [49], dental pulp
stem cells [50], and spinal cord cells [49] in conjunction
with biomaterials significantly enhances repair and recovery
following SCI [51]. Taken together, these results suggest that
the most appropriate combination of cells and biomaterials
should be chosen to maximize tissue regeneration and
promote recovery of functional deficits following SCI.

Despite recent advancements, a number of safety issues
have been associated with the transplantation of nontermin-
ally differentiated cells, as both stem cells and iPSCs may
increase the risk of developing iatrogenic teratomas or
tumors. To address this issue, researchers have investigated
the effects of therapeutic strategies involving the transplanta-
tion of several somatic cell types, such as fully differentiated
astrocytes, Schwann cells, olfactory ensheathing cells, and
spinal cord cells. As the area and severity of damage follow-
ing SCI due to contusion or transection vary, cell-based
therapy is more frequently applied than gene therapy or
treatment with drugs/neurotrophic factors. For cellular ther-
apy to be clinically effective, the grafted cells should enable
the regeneration of axons and functional replacement of lost
cells. Although recent clinical trials have extensively investi-
gated such strategies [52], the inherent risks of cell-based
therapy highlight the need to develop drug- or biomaterial-
based strategies (e.g., methylprednisolone) for promoting
axonal regeneration.

4. Behavioral Test Scales to Evaluate
Motor Function

As previously mentioned, various animal models have been
utilized in SCI research. Animal models can be classified
by species, lesion methods, and injured segments of the
spinal cord. Moreover, there are multifaceted therapeutic
approaches to SCI repair, such as stem cell transplantation,
administration of neurotrophic factors, or cell-encapsulated
scaffold grafting. Given the enormous diversity of factors, it
is difficult to compare and interpret the results of these
studies. Thus, the need for universal, objective indices of

functional impairment/improvement remains critical. More-
over, when evaluating the effects of various therapeutic
strategies, both anatomical and functional recovery must be
considered. Indeed, anatomical recovery defined based on
increases in neuronal number, axonal regeneration, and
reduction of lesion size remains inadequate without con-
comitant functional recovery. Based on this consideration,
we propose that assessments of functional recovery be
based on a unified numerical scoring system for each
model (rodent/primate) and lesion site (cervical/thoracic).
The BBB and Babu scales represent such unified indices
for rats and primates, respectively. Summaries of testing
categories and scoring indices are provided in Tables 2
and 3, respectively.

4.1. Rodent Thoracic Spinal Cord Injury Model

4.1.1. BBB Scale. The BBB scale is a representative functional
test administered following thoracic SCI injury [8, 11]. As
mentioned previously, the development of thoracic SCI
models is relatively easier and far less hazardous than the
development of cervical models. In addition, rat models are
more efficient than primate models due to the ease of opera-
tion and level of maintenance required in the animal facility.
Thus, most SCI studies involve the use of rat models with
injuries to the thoracic spinal cord. The BBB rating scale
has long been utilized to assess thoracic SCI in rats. Thus,
many studies report the BBB score only, which allows for
sufficient estimation of the severity of functional impair-
ments following injury. That is, the BBB scale functions as a
unified index, allowing for straightforward evaluation and
discussion of therapeutic effects. The BBB scale evaluates
impairment based on locomotion in an open field, which
allows researchers to observe voluntary movement, limb
movement, trunk position, stepping patterns, and paw or tail
position. Notably, scores can be evaluated at various stages of
the recovery process: early, intermediate, and late phase after
SCI. In the early phase, limb movements including hip, knee,
ankle, and trunk positions are evaluated (BBB score= 0–8),
followed by paw placement, stepping motion, and limb coor-
dination in the intermediate phase (BBB score = 0–5). In the
late phase, paw position—especially initial contact and lift-off
behaviors—trunk instability, and tail position are used to
evaluate the extent of functional recovery (BBB score = 0–8).
A total maximum score of 21 points indicates normal func-
tion or complete recovery. However, as the BBB scale was
developed to assess rat models of thoracic SCI (T7–T9)
induced via contusion, there are several limitations regarding
its general use in all rat models of SCI. In addition, rats may
adapt to the open field environment, although this issue can
be addressed by limiting testing time during rehabilitation.

4.1.2. Louisville Swimming Scale (LSS). The LSS was designed
by Smith and colleagues [53] in 2006 for the assessment of
hindlimb function during swimming. Although both the
BBB and LSS can be used to assess impairments and recovery
in rats with contusion-induced thoracic (T9) SCI, the LSS
possesses some unique advantages over the BBB scale. As
previously mentioned, adaptation and rehabilitation can vary
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depending on the housing conditions of the injured animals.
Thus, swimming tests can be used to provide a novel envi-
ronment and avoid the influence of retraining effects, allow-
ing for more accurate assessment of locomotor capability.
The LSS evaluates function based on the following five
categories: hindlimb movement (LSS score = 0–4), alterna-
tion (score = 0–3), forelimb dependency (score = 0–4), trunk
instability, and body angle (score = 0–6). A total maximum
score of 17 points indicates normal function. Together with
the BBB scale, the LSS has become widely utilized for evalu-
ating impairments and recovery following thoracic injury in
rats. However, as immobility behaviors can be influenced
by emotional states/depression [54], swimming ability
should be measured within a limited period.

4.1.3. Combined Behavioral Score (CBS). Developed in 1984
by Gale and colleagues [55], the CBS is the oldest rating
scale for the assessment of deficits following contusion-
induced thoracic SCI (T8). Function is assessed based on
the following eight categories: hindlimb movement (CBS
score = 0–45), toe spread and placement (score = 0–10),
withdrawal reflexes following pain or pressure stimulation
(score = 0–15), righting (score = 0–5), and maintenance of
position on an inclined plane during increases in angle

(beginning from 0°) (score = 0–15). In addition, somatosen-
sory function is examined via the hot plate test, in which
the latency to lick the forepaw and each hind paw when
placed on a plate preheated to 50°C is scored (score = 0–5).
Finally, in the swim test, the frequency of using the hindlimbs
to swim and climb (score = 0–5) is recorded. A maximum
CBS score of 100 points indicates severe paralysis in rats.
However, as the range of CBS scores is quite wide, it is diffi-
cult to obtain consistent results from different observes. Due
to these limitations, the ranges of scores in the more recently
developed BBB and LSS are much narrower.

4.2. Rodent Cervical Spinal Cord Injury Model

4.2.1. Martinez’s Scale. Since cervical SCI is potentially life-
threatening, scales for functional assessment following
thoracic SCI are more developed than those for cervical
SCI. Currently, only one such scale has been designed for
use in models of cervical SCI: Martinez’s scale [56]. In
2009, Martinez and colleagues developed this rating scale to
examine functional recovery following cervical (C4) hemi-
section. The scale comprises eight categories that allow
for separate evaluation of the forelimbs and hindlimbs:
articular movement (score = 0–6), weight support pattern,

Table 3: Primate models of spinal cord injury (SCI) and suitable test scales.

Target Thoracic SCI Cervical SCI
Scale Babu Nout

Reference Suresh Babu et al., 2000; bonnet monkey Nout et al., 2012; rhesus monkeys

Category 1 Category II Category III Score Category I Category II Category III Score

Reflex

Grasping 0–3

Locomotion

General

Forward movement 0–2

Hopping

Low speed 0–3 Number of limbs used 0–4

Medium speed 0–3 Number of perches reached 0–4

High speed 0–3 Number of cups reached 0–5

Righting 0–2 Truncal instability 0–2

Extension withdrawal 0–2 Maximum score 17

Pressure withdrawal 0–2

Hind limb

Extent of movements 0–8

Pain withdrawal 0–2 Presence of weight support 0–3

Placing 0–2 Presence of stepping 0–4

Runways

Runways

Wide runway 0–5 Ability and extent of use of the hind limb 0–6

Narrow beam 1 0–5 Maximum score 21

Narrow beam II 0–5

Forelimb

Extent of movements 0–8

Grid runways

4 cm intervals 0–5 Presence of weight support 0–10

5 cm intervals 0–5 Presence of stepping 0–4

6 cm intervals 0–5 Ability and extent of use of the forelimb 0–6

7 cm intervals 0–5 Maximum score 28

ect.

Treadmill test

Low speed 0–5

Hand function

Posture of the animal during object manipulation 0–5

Medium speed
Use of the impaired hand for support and movement

of the object
0–8

High speed Grasping method used 0–2

Inclined plane test

Low degree 0–5 Extent of wrist and digit movements 0–6

Medium degree Maximum score 21

High degree

Maximum score (=normal) 67 Maximum score (=normal) 87
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digit position, and paw placement during stepping (score =
0–10 for all). Limb coordination and tail position are also
evaluated (score = 0–4). A total maximum score of 20 points
indicates full functional recovery. As cervical SCI affects both
the forelimbs and hindlimbs, Martinez’s scale is suitable for
the precise assessment of functional recovery in all affected
limbs. The primary advantage of Martinez’s scale is that this
rating system can be used to assess functional recovery fol-
lowing either thoracic or cervical SCI in rats. As previously
mentioned, although various rating scales have developed,
each possesses a distinct array of limitations. To address such
limitations, other behavioral tests such as the catwalk test
[57], gait analysis [58], grid walk test [59], and incline test
[60] have been used in conjunction with rating scales to
enable more precise evaluation of therapeutic effects. As
cervical SCI can affect both forelimb and hindlimb function,
testing procedures and categories should be divided accord-
ing to the limb in animal models of cervical SCI. As scores
on this scale can also be influenced by retraining effects,
animal movement should be video-recorded during short
sessions, followed by separate assessments of forelimb and
hindlimb function.

4.3. Primate Thoracic Spinal Cord Injury Model

4.3.1. Babu’s Scale. The use of primate models in SCI research
has recently increased. In 2002, Suresh Babu and colleagues
[61] developed a rating scale designed to assess function in
a primate model of thoracic SCI. Based on the CBS for rats,
the modified scale was applied in Bonnet monkeys (Macaca
radiata) following thoracic (T12–L1) hemisection. Babu’s
scale evaluates functional impairments based on the follow-
ing two categories: reflex responses and locomotor behavior.
Grasping, hopping, righting, and withdrawal reflexes due to
extension, pressure, pain, and placement are evaluated
(score = 0–22). In addition, gross locomotion on wide run-
ways, narrow beams (score = 0–15), and grid runways
(score = 0–20) is examined at various intervals. Finally, pri-
mates are subjected to a treadmill test at different speeds
(score = 0–5) and levels of incline (score = 0–5). A total max-
imum score of 67 points on Babu’s is considered an indicative
of complete recovery. Although quite similar to the CBS for
rats, Babu’s scale is more detailed and includes additional
criteria specific to primates.

4.4. Primate Cervical Spinal Cord Injury Model

4.4.1. Nout’s Scale.Nout and colleagues [62] designed a novel
rating scale for the assessment of motor function in a rhesus
monkey model of cervical (C7) SCI. Nout’s scale is grossly
divided into two categories: locomotion and hand function.
Locomotion scores are based on general movement and
trunk instability (score = 0–17), hindlimb movement, pres-
ence of weight support, presence of stepping, and extent of
hindlimb (score = 0–21) and forelimb (score = 0–28) func-
tion. Due to the potential impairments associated with cervi-
cal SCI, hand function is also evaluated during object
manipulation (score = 0–13), grasping, and digit movement
(score = 0–8). A maximum score of 87 points on Nout’s scale
is considered an indicative of complete functional recovery.

Taken together, these findings indicate that accurate and
unified criteria should be used to evaluate motor/sensory
function in both rodent and primate models of SCI, in order
to provide more objective assessments of therapeutic strate-
gies. Such rating scales should be suitable for functional
evaluation of the animal based on species and lesion type.
Consistent use of such scales will lead more well-validated
and effective SCI treatments.

In addition to rat/primate models, several studies have
also evaluated therapeutic strategies in canine models of
SCI [63, 64]. Behavioral assessments for canine models
are based on the Tarlov scale [65], which was initially
designed for use in rodents. This modified Tarlov scale
evaluates motor coordination based on stepping behavior/
regularity [64, 66].

5. Future Directions and Conclusions

In the present review, we summarized current evidence
regarding animalmodels of SCI, cell-based therapeutic strate-
gies, and rating scales used to evaluate motor function follow-
ing SCI. Enhanced precision of SCI methods in recent years
has reduced variations in the damage elicited during injury.
The use of unified functional indices in conjunctionwith these
more precise methods allows for sufficient estimation of the
therapeutic effects of potential SCI treatments, without the
need for additional descriptions. When the appropriate ani-
mal models and rating scales are chosen, our review suggests
that the functional scores described in previous sections repre-
sent universal assessments of the animal’s functional state.
The use of defined animal models and suitable indices may
also aid in identifying the most effective treatments and in
enhancing the reproducibility of SCI research.
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