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Abstract

It has been empirically established that the cerebral cortical areas defined by Brodmann one hundred years ago solely on
the basis of cellular organization are closely correlated to their function, such as sensation, association, and motion.
Cytoarchitectonically distinct cortical areas have different densities and types of neurons. Thus, signaling patterns may also
vary among cytoarchitectonically unique cortical areas. To examine how neuronal signaling patterns are related to innate
cortical functions, we detected intrinsic features of cortical firing by devising a metric that efficiently isolates non-Poisson
irregular characteristics, independent of spike rate fluctuations that are caused extrinsically by ever-changing behavioral
conditions. Using the new metric, we analyzed spike trains from over 1,000 neurons in 15 cortical areas sampled by eight
independent neurophysiological laboratories. Analysis of firing-pattern dissimilarities across cortical areas revealed a
gradient of firing regularity that corresponded closely to the functional category of the cortical area; neuronal spiking
patterns are regular in motor areas, random in the visual areas, and bursty in the prefrontal area. Thus, signaling patterns
may play an important role in function-specific cerebral cortical computation.
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Introduction

Neurons transmit stereotypical electrical pulses called spikes.

The in vivo spike firing of cortical neurons is often regarded as a

series of simple random events that conveys no information other

than the frequency, or rate, of occurrences. However, it is possible

that neuronal firing patterns differ between brain regions, because

biological, as well as mechanical, signals generally reveal internal

conditions of the signal generator. It has been known for a century

that the cellular organization of the brain is not homogeneous [1],

and areas categorized on cytoarchitectonic bases govern different

functions [2–4]. Therefore, temporal signaling patterns of neurons

may reflect the cellular organization and also effectively control

specific computations [5–12]. In order to examine the relationship

among signals, structure, and function, we analyzed spike trains

sampled from various brain regions.

A number of studies have been devoted to analysis of

interspike interval (ISI) distributions of firing patterns, and

sophisticated analyses have shown that in vivo neuronal firing is

not exactly a random Poisson phenomenon [13–23]. However,

analysis of raw ISIs is vulnerable to fluctuations in the firing

rate that scatter the ISI values; even temporally regular spike

trains tend to be evaluated closer to the faceless Poisson random

sequence. This perturbation, which is extrinsic in origin, can be

removed by rescaling ISIs with the instantaneous firing rate

[24–31].

Previously, we devised a metric of local variation, Lv, which may

straightforwardly isolate instantaneous firing regularity or irregu-

larity. We found that for individual neurons, the degree of firing

irregularities is fairly invariant with time and rate fluctuations

[32,33]. In contrast, it was reported that another metric, IR, which

measures the instantaneous irregularity similar to Lv, varies in time

and with behavioral context [34]. Thus, current analysis methods

are still inadequate for extracting intrinsic firing characteristics in

isolation from extrinsic perturbations.
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Here, we have derived a new metric, LvR, by enhancing the

invariance to firing rate fluctuations, such that signaling

characteristic that are specific to individual neurons can be

detected with greater sensitivity. We analyzed differences in

intrinsic firing characteristics among the cortical areas and found a

systematic gradient of firing regularity that closely corresponded

with the functional category of the cortical area; neuronal firing is

relatively regular in primary and higher-order motor areas,

random in visual areas, and bursty in the prefrontal area. Thus,

intrinsic dynamics are present in cortical areas that may be

relevant to function-specific cortical computations.

Materials and Methods

Spike Data Analysis
Neuronal data for 15 cortical areas were collected from awake,

behaving monkeys in eight laboratories. Four of the 15 areas were

studied in two laboratories, thus 19 data sets were generated in

total. Single electrodes or tetrodes were used to record neuronal

spikes during various task trials and inter-trial intervals. All

procedures for animal care and experimentation were in

accordance with the guidelines of the National Institutes of Health

and approved by the animal experiment committee at the

respective institution where the experiments were performed.

The initial 2,000 ISIs of the recorded spike train for each

neuron were analyzed, which contained task trial periods and

inter-trial intervals, between which the firing rate differs greatly.

Spike trains that contained fewer than 2,000 ISIs, or those with

mean firing rates less than 5 spikes/s, were ignored; 1,307 neurons

were accepted. An irregularity metric was computed for the entire

2,000 ISIs to yield a representative value for each neuron. They

are divided into 20 sequences of 100 ISIs for analyzing fractional

sequences; the variation of a metric for an individual neuron was

estimated by comparing metric values computed for 20 fractional

sequences.

Firing Metrics
Six firing metrics were used to analyze the spike data.

The conventional coefficient of variation Cv [35,36] is defined as

the ratio of the standard deviation of the ISIs DI to the mean I ,

Cv~DI
�

I : ð1Þ

The local variation Lv [32,33] is defined as

Lv~
3

n{1

Xn{1

i~1

Ii{Iiz1

IizIiz1

� �2

, ð2Þ

where Ii and Iiz1 are the i-th and i+1st ISIs, and n is the number

of ISIs. Both Cv and Lv adopt a value of 0 for a sequence of

perfectly regular intervals and are expected to take value of 1 for a

Poisson random series of events with ISIs that are independently

exponentially distributed. Whereas Cv represents the global

variability of an entire ISI sequence and is sensitive to firing rate

fluctuations, Lv detects the instantaneous variability of ISIs: The

term
Ii{Iiz1

IizIiz1

� �2

~1{
4IiIiz1

IizIiz1ð Þ2
represents the cross-correla-

tion between consecutive intervals Ii and Iiz1, each rescaled with

the instantaneous spike rate 2= IizIiz1ð Þ. The metric is superior

to standard correlation analysis because (i) the irregularity is

measured separately from the firing rate; (ii) nonstationarity is

eliminated by rescaling intervals with the momentary rate; and (iii)

the non-Poisson feature is evaluated in the deviation from Lv = 1.

Three more metrics that have been proposed for estimation of

instantaneous ISI variability, SI, the geometric average of the

rescaled cross-correlation of ISIs [37,38], Cv2, the coefficient of

variation for a sequence of two ISIs [39], and IR, the difference of

the log ISIs [34] were also used.

Figure 1 displays three types of spike sequences comprising

identical sets of exponentially distributed ISIs. In terms of the ISI

distributions, all of these are regarded as Poisson processes,

accordingly Cv values are all identical at 1. However, these

sequences clearly differ in how their ISIs are arranged; Lv may be

able to detect these differences.

In comparison with Cv, local metrics, such as Lv, SI, Cv2, and IR,

detect firing irregularities fairly invariantly with firing rate

fluctuations. However, these metrics are still somewhat dependent

on firing rate fluctuations. Assuming that rate dependence is

caused by the refractory period that follows a spike, we can

Figure 1. Spike sequences that have identical sets of inter-
spike intervals. Intervals are aligned (A) in a regular order, (B)
randomly, and (C) alternating between short and long.
doi:10.1371/journal.pcbi.1000433.g001

Author Summary

Neurons, or nerve cells in the brain, communicate with
each other using stereotyped electric pulses, called spikes.
It is believed that neurons convey information mainly
through the frequency of the transmitted spikes, called the
firing rate. In addition, neurons may communicate some
information through the finer temporal patterns of the
spikes. Neuronal firing patterns may depend on cellular
organization, which varies among the regions of the brain,
according to the roles they play, such as sensation,
association, and motion. In order to examine the
relationship among signals, structure, and function, we
devised a metric to detect firing irregularity intrinsic and
specific to individual neurons and analyzed spike sequenc-
es from over 1,000 neurons in 15 different cortical areas.
Here we report two results of this study. First, we found
that neurons exhibit stable firing patterns that can be
characterized as ‘‘regular’’, ‘‘random’’, and ‘‘bursty’’. Sec-
ond, we observed a strong correlation between the type of
signaling pattern exhibited by neurons in a given area and
the function of that area. This suggests that, in addition to
reflecting the cellular organization of the brain, neuronal
signaling patterns may also play a role in specific types of
neuronal computations.

Cortical Firing Patterns
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compensate for refractoriness by subtracting the refractoriness

constant, R, from the ISIs. As a result, the denominator of

Equation 2, IizIiz1ð Þ2 changes to IizIiz1{2Rð Þ2. In order to

avoid the singularity that may occur when IizIiz1ð Þ is equal to or

less than 2R, we performed a series expansion to the first order in

R. The revised local variation LvR is thus defined as

LvR~
3

n{1

Xn{1

i~1

1{
4IiIiz1

IizIiz1ð Þ2

 !
1z

4R

IizIiz1

� �
: ð3Þ

Performance Evaluation of Firing Metrics
We evaluated how the metric performed in discrimination of

individual neuronal firing patterns by the F-test statistic, which

compares the variance of the metric means across 1,307 neurons

to the mean of the metric variances across 20 fractional sequences

of individual neurons. LvR contains the refractoriness constant, R,

which is the parameter to be optimized to maximize character-

ization of firing dynamics of the individual neurons in terms of the

F-value. For a given set of metric values fmijg, each of which is

computed for j-th fragmental ISI sequence (j = 1, 2, …, n ( = 20))

recorded from i-th neuron (i = 1, 2, …, N ( = 1,307)), the F-value is

given by

F~n|

1
N{1

PN
i~1

mi{m
� �2

1
N

PN
i~1

s2
i

, ð4Þ

where mi~
1

n

Xn

j~1

mij and s2
i ~

1

n{1

Xn

j~1

mij{mi

� �2
represent the

mean and variance, respectively, of the metric values of i-th

neuron averaged over n = 20 fragments, and m~
1

N

XN

i~1

mi

represents the average of mi over N = 1,307 neurons.

We estimated the firing rate dependence of the metric as a

covariate with firing rate fluctuations, or the slopes of the

regression lines for the metric estimates.

a~

PN
i~1

Pn
j~1

mij{mi

� �
rij{ri

� �
PN
i~1

Pn
j~1

rij{ri

� �2
, ð5Þ

where rij is the mean rate of j-th fragmental ISI sequence recorded

from i-th neuron.

We also measured the ability of the metric to characterize the

individual neuronal firing dynamics in isolation from the firing

rate dependence (F-value of an analysis of covariance, ANCOVA,

see Reference [40] for details).

The Hellinger Distance
We found that LvR distributions broadly diverge across neuronal

data sets. The (dis)similarity of the LvR distributions between two

neuronal data sets is estimated as the Hellinger distance [41],

H~2

ð
dx

ffiffiffiffiffiffiffiffiffiffiffi
p1(x)

p
{

ffiffiffiffiffiffiffiffiffiffiffi
p2(x)

p� �2

, ð6Þ

where p1(x) and p2(x) represent the normalized distributions of LvR

values for two data sets. We feature the firing irregularity of the

individual neuronal data sets as a set of Hellinger distances for all

combinations of data sets (K(K21)/2, K = 19). Kruskal’s nonmetric

multidimensional scaling (MDS) analysis [42] was used to contract

the multidimensional features down to a two-dimensional map of

firing irregularities. Here, LvR distributions are shown as histograms

with a common bin size 0.25. The results are robustly against the

choice of bin size.

Results

Nineteen neuronal spike data sets from 15 cortical areas were

collected from neuroscience experiments in awake, behaving

monkeys conducted in eight laboratories. The cortical areas

included the primary motor (M1), dorsal and ventral premotor

(PMd and PMv), supplementary motor (SMA, two data sets from

two different laboratories), presupplementary motor (preSMA),

rostral cingulated motor (CMAr), supplementary eye field (SEF),

frontal eye field (FEF), caudal intraparietal (CIP), striate (V1),

extrastriate-dorsal stream (MT and MST, two data sets),

extrastriate-ventral stream (V4 and TE, two data sets), and

prefrontal areas (PF, two data sets) [32,43–52] (Table 1). The

neuronal firing characteristics of 1,307 neurons from the 19 data

sets were analyzed using the six firing metrics, LvR, Lv, IR, Cv2, SI,

and Cv. (cf. Materials and Methods).

Discriminating Firing Patterns across Individual Neurons
Although LvR is primarily designed to strengthen the firing rate

invariance for detection of instantaneous firing irregularities (cf.

Materials and Methods, Equation 3), it may also be superior for

discrimination of individual neuronal firing patterns. We evaluated

metric performance using the F-test statistic, which compares the

variance of the metric means across neurons to the mean of the

metric variances across fractional sequences of individuals (cf.

Materials and Methods, Equation 4); metrics with higher F-values

are better able to distinguish neurons with different spiking

patterns. Figure 2A shows the performance of the six metrics. The

F-value is low (F = 38) for Cv and is greater for Lv, IR, Cv2, and SI

(F = 109, 109, 110, and 100, respectively). LvR is a function of R

and is greatest (F = 129) for R = 5 ms. Thus, we used R = 5 ms to

analyze all of the neuronal data.

In practice, the optimized LvR exhibits the strongest invariance

with the firing rate, as shown for two representative MT neurons

(Figure 2B, red and blue traces). Both neurons responded strongly

to texture motion (black bar under the spike rate plot), the firing

rate increased roughly 10-fold (108611 and 189614 spikes/s)

over baseline (13.065.4 and 12.664.8, respectively). Correspond-

ingly, Cv increases roughly two-fold and is then reduced to half the

baseline. Lv is reduced to roughly two-thirds of the baseline. IR,

Cv2, and SI also exhibit a dependence on the firing rate

comparable to Lv (data not shown). By contrast, LvR maintains

values unique to each of the two neurons throughout the entire

sampling period and is virtually unaffected by large changes in the

firing rate.

Regression analysis to estimate the firing rate dependence as a

covariate of the metric estimates with firing rate fluctuations across

20 fractional ISI sequences for the 1,307 neurons (cf. Materials

and Methods, Equation 5) also confirms that LvR is one order of

magnitude better in invariance (slope and 95% confidence

interval, 0.003360.0012 [sec], cf. also solid blue line in

Figure 2C) than Lv, IR, Cv2, SI, and Cv (20.027360.0012,

20.028760.0012, 20.026160.0012, 20.028960.0012, and

20.025460.0012, respectively, [sec], cf. also dashed lines in

Cortical Firing Patterns
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Figure 2C). The analysis of covariance (ANCOVA) indicates that

LvR performs better (F = 129) than Lv, IR, Cv2, SI, and Cv (F = 115,

115, 116, 106, and 40, respectively) for discrimination of

individual neuronal firing dynamics even allowing for the firing

rate dependence. Therefore, introduction and optimization of the

refractory term in LvR improves characterization of neuronal

firing dynamics more than compensating for the firing rate

dependence.

Overall, LvR with R = 5 ms far outperforms the other five

metrics for characterization of neuronal firing dynamics because it

assigns unique values to individual neurons that are preserved

across extrinsic perturbations such as firing rate fluctuations and

sensory stimulation.

Discriminating Firing Patterns across Cortical Areas
Figure 3A shows the distribution of LvRs for the ISIs of the

entire neuronal ensemble for the 19 data sets sampled from the 15

cortical areas. The distribution is rather broad, peaking around

0.7, and is slightly skewed toward lower values (mean6SD,

0.9260.43). Figure 3B displays the distribution of LvR values for

the 20 fractional sequences of 100 ISIs derived from individual

neurons with a mean LvR (over 20 fractional sequences) exhibiting

0.5, 1.0, and 1.5 (60.05). The fractional sequence of 100 ISIs

derived from individual neurons are narrowly distributed around

the mean. Their SDs are 0.13, 0.16, and 0.18, which are

considerably smaller than that of the entire population (SD: 0.46).

The small variation of LvR for the fractional sequences for each

neuron indicates that LvR successfully captures the firing

characteristics that are specific to an individual neuron.

Sample firing patterns of the three different LvR values

corresponding to the so-called regular, random, and bursty firing

patterns are also shown in Figure 3B. These patterns are

maintained across time, with invariance for large changes in the

firing rate caused by stimulus or behavioral modulation, i.e.,

regular remains regular despite large firing rate modulations (cf.

the original and time-rescaled spike rasters for the mean firing rate

shown at the top and bottom, respectively in Figure 3). Thus, the

broad distribution of LvR across the entire neuronal population is

made up of constituent neurons with a relatively narrow

distribution that peaks across a broad range of LvR, and the

variety of firing patterns that are observed across the entire

neuronal population is constructed of a broad spectrum of

constituent neurons whose firing pattern is rather sharply

constrained either to regular, random, or bursty.

Accordingly, the diverse distribution of LvR for the entire

neuronal population also consists of a spectrum of LvR

distributions for each of the 19 neuronal data sets. These are

shown in Figure 3C in order of ascending average values. It is

notable that the distributions for the individual data sets are

moderately broad, narrower than that of the entire neuronal

population (cf. Figure 3A and 3C) but broader than those of

individual neurons (cf. Figure 3B and 3C).

We represented the firing characteristics of the 19 neuronal data

sets as a set of (dis)similarities (Hellinger distances, cf. Materials

and Methods, Equation 6) of the metric distributions across all

combinations of the 19 neuronal data sets, and contracted the

similarity relationship into a 2-dimensional map with Kruskal’s

nonmetric multidimensional scaling (MDS) analysis [42]. Figure 4

shows the 2D similarity map of the LvRs from the 19 neuronal data

sets. The data sets are widely distributed along the first and second

components, forming several clusters. The cluster (#1) for the

primary motor area (M1) is at the top left, whereas those (#2–9)

belonging to the higher-order motor areas (PMv, PMd, SEF,

CMAr, SMA, FEF, preSMA) are near the top and to the right.

The clusters (#10–15, 18–19) for the visual areas (TE, V1, MST,

Table 1. List of the cortical areas, experimental attributes and references for neuronal spike data (in order of ascending mean LvR).

No. Cortical area Functional category No. of neurons LvR sp/s Reference

Mean SD mean SD

1 M1 Primary motor 26 0.51 0.34 23.2 13.9 [43]

2 SMA Higher-order motor 83 0.57 0.34 20.4 11.0 New

3 PMd Higher-order motor 188 0.69 0.43 20.5 12.5 [43]

4 SEF Higher-order motor 100 0.69 0.32 15.2 6.2 [44]

5 PMv Higher-order motor 30 0.70 0.36 26.6 18.4 [43]

6 CMAr Higher-order motor 27 0.79 0.30 16.1 8.6 [32]

7 FEF Higher-order motor 45 0.83 0.25 19.7 7.8 [45]

8 PreSMA Higher-order motor 119 0.86 0.35 14.9 9.0 [32]

9 SMA Higher-order motor 27 0.88 0.35 20.0 12.7 [32]

10 TE Visual 102 0.88 0.30 13.8 11.6 [46]

11 MST Visual 76 0.96 0.40 17.9 8.6 [47]

12 TE Visual 62 0.97 0.29 13.0 11.6 New

13 V1 Visual 35 1.01 0.30 29.3 12.2 [48]

14 MST Visual 94 1.14 0.37 17.7 9.0 [49]

15 V4 Visual 29 1.15 0.32 16.3 10.6 [50]

16 PF Prefrontal 21 1.19 0.22 28.8 12.9 [32]

17 PF Prefrontal 36 1.26 0.24 14.0 6.1 [51]

18 CIP Visual 150 1.28 0.44 16.7 7.7 [52]

19 MT Visual 57 1.39 0.33 27.7 15.4 [47]

doi:10.1371/journal.pcbi.1000433.t001
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V4, CIP, MT) are further right and toward the bottom, and those

(#16–17) for the prefrontal area (PF) are to the top and rightmost.

The first component almost exclusively represents the mean LvR of

individual data sets. Therefore, there is a gradient of LvR values across

the data sets corresponding to the categories of cortical functions,

implying the existence of a regular-random-bursty gradient that

corresponds to cortical function. The second axis is not linearly

correlated to either the mean or SD of the LvR distribution, but the

data are separated according to dissimilarities between LvR

distributions. In particular, two PF data sets (#16, 17) are mixed

with visual areas in terms of mean LvR, but they are isolated from the

visual areas in the second axis in terms of Hellinger distance, which

detects the dissimilarity of their compact LvR distributions from the

wide LvR distributions of visual areas (cf. Figure 3C). Different data

sets sampled from the same cortical area are arranged in the 2D MDS

map relatively close to each other (cf. #16 and 17, #11 and 14, #10

and 12, and #2 and 9, see also Table 1), even though they were

sampled in different laboratories using different recording methods

under different experimental conditions.

Ability of the Different Metrics to Cluster Functional
Groups

In order to determine whether this functional clustering is

selective to the new metric LvR or can also be achieved with

Figure 2. Performance of LvR and other firing irregularity metrics. (A) Dependence of LvR on the refractoriness constant, R. Ordinate,
performance of LvR estimated as the F-value of ANOVA for the entire 1,307 neurons. (B) Peristimulus spike rasters and histograms for two MT neurons
during a stimulus with textured image motion from 500–700 ms (thick horizontal bar) [47]. The spike rasters were aligned to the onset of a fixation
target (the origin of the abscissa) upon which the monkey was required to fixate. The perievent metrics Cv, Lv and LvR were determined for spike
rasters sampled in time windows of 650 ms around the time of each bin. Error bars indicate the confidence level (p,0.05, t-distribution). (C) Scatter
plots of the six metrics plotted against fluctuation in the firing rate across 20 ISI segments from the 1,307 neurons. The ordinate and abscissa
represent the deviations of the metric and the firing rate from the means, normalized to SD, respectively. Colored lines represent average slopes.
doi:10.1371/journal.pcbi.1000433.g002

Cortical Firing Patterns
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conventional metrics, we also performed the MDS analyses for Lv

and Cv (data not shown) and evaluated the goodness of the

functional grouping in terms of F-test statistics of one-way

ANOVA. F-values of the four functional groups (motor, higher-

order-motor, visual and prefrontal areas) in MDS maps were 17.5,

9.5 and 3.0 for LvR, Lv, and Cv, respectively. A greater F-value for

Lv than Cv indicates that the functional grouping is obtained using

our original local variation, Lv, but the grouping is further

improved using the revised local variation, LvR.

Mean values of Lv, Cv, and firing rate for the 19 data sets with

reference to LvR values are shown in Figure 5. Their correlations

are r = 0.95 (n = 19, p,0.000001), 0.54 (p,0.05), and 0.05

(uncorrelated), respectively. The degree of functional grouping in

terms of these conventional metrics is observed from Figure 5.

Relation with ISI Distributions and Firing Patterns
Sample ISI distributions are shown in Figure 6 to allow for

comparison with previous studies that have addressed similar

questions [13,22,23,53–55]. We sampled neurons from various

cortical areas that exhibited several typical LvR values (close to 0.5,

1.0, and 1.5) with different Cv values (close to 1.0, 1.5, and 2.0),

and plotted their ISI histograms and sample spike trains. The

Figure 3. LvR distributions for the entire population and subpopulations of neurons. (A) The distribution of LvR determined across 2,000
ISI sequences for all 1,307 cortical neurons. (B) Top: Original and rescaled specimen spike sequences of representative neurons with an LvR of 0.5, 1.0,
and 1.5 taken from data sets #2 (SMA), #10 (TE) and #19 (MT). Triangle and horizontal bars for the three original spike sequences indicate the onset
of wrist movement and periods of visual stimulation, respectively. Dashed lines indicate the correspondence between the original and the rescaled
fractions (10 ISIs) for which the time-scale is normalized to the average firing rate of that fraction. Bottom: Metric distributions for fractional
sequences derived from neurons whose representative (mean) LvR values are within the range of 60.05 around 0.5, 1.0, and 1.5 (blue, green and red
bars in A, n = 92, 91 and 60). (C) LvR distributions for the 19 neuronal data sets (Table 1), shown in order of ascending mean LvR. The primary motor,
higher-order motor, visual, and prefrontal areas are indicated as hexagons, pentagons, triangles, and squares, respectively.
doi:10.1371/journal.pcbi.1000433.g003

Cortical Firing Patterns
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sample spike trains demonstrate that the firing patterns are

captured more efficiently by LvR than Cv, and they can be

characterized as regular, random, and bursty. The ISI histograms

reveal that the distribution of short ISIs is correlated with LvR,

such that short ISIs are fewer/richer for smaller/larger LvR

sequences.

Discussion

The major finding of this study is the existence of a regular-

random-bursty gradient of intrinsic firing irregularities of cortical

neurons that closely corresponds to their functional categories:

primary motor, higher-order motor, visual, and prefrontal areas.

Physiological Relevance of the Irregularity Metric
The key technique in the current analysis is a new firing metric,

LvR, a revised form of Lv that strengthens detection of the intrinsic

firing characteristics of individual neurons by introducing a

constant, R, which compensates for the refractoriness effect of a

previous spike. The refractoriness constant is determined by

maximizing the F-value of the one-way ANOVA, which compares

the variance of the metric means across neurons to the mean of the

metric variances (Figure 2A). Refinement of the irregularity metric

based on the ability to discriminate individual neurons improves

functional clustering in the MDS map; the F-value for the four

functional groups (motor, higher-order-motor, visual and prefron-

tal areas) is roughly doubled for LvR relative to Lv.

It is notable that the optimal R value of 5 ms is comparable to

the known refractory period for neuronal firing [56]. Introduction

of refractoriness, R, allows LvR to grasp the intrinsic firing

irregularity of individual neurons with stronger invariance for

firing rate fluctuation (Figure 2B and 2C). The rich variety of firing

characteristics across neurons, which can be detected even after

removing the firing refractory effect, implies that differences in LvR

Figure 4. A MDS map of cortical neuronal firing based on LvR. The map plots the first and second components of Kruskal’s nonmetric
multidimensional scaling (MDS) analysis for the Hellinger distances of the metric distributions for all combinations of 19 neuronal data sets. The
primary motor, higher-order motor, visual, and prefrontal areas are indicated by black hexagons, blue pentagons, red triangles, and green squares,
respectively. The number in brackets next to the notation for each cortical area indicates data sets 1–19 shown in Figure 3C and Table 1.
doi:10.1371/journal.pcbi.1000433.g004

Figure 5. Correlation of various metrics. Mean values of Lv, Cv, and firing rate from the 19 data sets are plotted with reference to the mean LvR.
Correlations are r = 0.95, 0.54, and 0.05, respectively. The black hexagons, blue pentagons, red triangles, and green squares represent the primary
motor, higher-order motor, visual, and prefrontal areas, respectively, as described in Figure 4.
doi:10.1371/journal.pcbi.1000433.g005
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are not solely due to the single neuron properties, but may also be

manifested by the local cortical network.

Alternative Definitions of Firing Irregularity
Our findings indicate the presence of an innate firing regularity

or irregularity with preceding spike dependency that is specific to

each neuron. However, this does not seem consistent with reports

that some neurons can change their firing type [57]. Three

possible reasons for this apparent discrepancy are discussed below.

One possibility is that the neurons that exhibit drastic change in

firing patterns are primarily interneurons. Interneurons represent

a small population, thus modulation of their firing pattern, if it

does occur, would not significantly affect the overall average.

Modulation of firing reliability by changes in attentional

conditions occurs predominantly in interneurons [58] providing

support for this hypothesis.

Alternatively, changes in neuronal firing patterns may be

induced experimentally by the waking to sleep transition or

anaesthesia [59]. Anaesthesia was not used in our study; we

measured neuronal spike sequences in awake monkeys that were

performing various tasks. We did not select a particular subset of

responses, rather we sampled all the available spike data, including

the task periods and inter-trial intervals, between which there are

significant differences in firing rates.

The third possibility is that LvR does not change significantly

even if one class of neurons changes their firing type. Because

there is not a unique definition for firing irregularity, and terms

such as ‘‘bursting’’ and ‘‘regular’’, this is a possibility. Consider for

Figure 6. ISI distributions and sample firing patterns. (A), (B) and (C): Left: Distributions of 2,000 interspike intervals (ISIs) from neurons that
exhibited LvR = 0.5, 1.0, and 1.5, respectively. For LvR values, three neurons are sampled that exhibited different Cv values close to 1.0, 1.5, and 2.0.
Right: Sample firing patterns consisting of 100 consecutive ISIs for each.
doi:10.1371/journal.pcbi.1000433.g006
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simplicity a stationary process in which ISIs are derived

independently from an identical distribution. In this case, it is

possible to grasp the full shape of the ISI distribution by collecting

a large number of ISIs. It is, however, impracticable to

characterize the full shape of the distribution function by a single

or a few numerical values or a few categorical terms. For

convenience, spike sequences are described by the terms

‘‘regular’’, ‘‘random’’, and ‘‘bursty’’, as defined by the values of

a metric. In principle, it is impractical for any firing pattern

categorization to correspond uniquely to the conventional

categories of neuronal firing, such as regular spiking, intrinsic

bursting, fast spiking, or even fast-rhythmic bursting. It will be

interesting to examine whether our metric of local variation, LvR,

varies significantly with changes in firing type that are induced by

current injections, anaesthesia, or sleep.

Possible Relation of Firing Irregularities to Cell Type
In the current study, spike data were selected in a standardized

manner from 19 data sets from physiological experiments with

awake, behaving monkeys, solely based on the criterion that a

sequence of spikes for each neuron contained greater than 2,000

spikes and the mean firing rate was greater than 5 spikes/s.

Because our data do not contain information about neuronal

waveforms, we could not identify the cell types of individual

neurons in this study. In a previous study, we analyzed the

relationship between spike waveform and firing characteristics

using data from anesthetized monkeys (Figure 9 in Reference

[33]). We found that neurons with thin action potentials had lower

Lv values. Because neurons with narrow action potential

waveforms are generally considered interneurons, this suggests

that interneurons contribute to lowering the mean LvR in different

areas. However, pyramidal neurons constitute the majority of

neurons in cerebral cortical tissues [5] and are likely the major

determinant of differences in firing characteristics in different

cortical areas.

Congruence of Spiking Patterns and Modes of Cortical
Computation

In the MDS similarity map of neuronal firing irregularities,

cortical areas are clustered into the categories that closely

correspond to cortical functions (Figure 4). Spiking characteristics

shared common traits within functional areas, even across data

recorded in independent laboratories, thus indicating the presence

of cortical computation–dependent mechanisms that underlie

spike generation; neuronal firing is regular in the primary and

higher-order motor areas, and random and bursty in the visual

and prefrontal areas. Thus, the intrinsic dynamics in each cortical

area may be useful for the computations specific to the functional

category [5–12].

Firing variability measured with the Fano-factor increases as

one moves from retinal ganglion cells, to the thalamic LGN and

then to V1 [60]. Though this does not directly correspond to the

spiking irregularities measured by LvR, it is tempting to assume

that different signaling patterns are used depending on the level of

information processing; firing variability increases as one move

from sensory peripheral organs to higher-order cortical processing

areas, and then decreases in the motor areas.

It seems reasonable to assume that the intrinsic regular firing in

the primary and higher-order motor areas may permit real time

execution of motor commands based on frequency and ensemble

coding in these areas [61]. The highly irregular firing in the

prefrontal and higher-order visual areas may contribute to

attractor dynamics, which have been proposed to maintain

working memory required for executive functions, as well as

solution of ill-posed problems during various cognitive functions

[2–4,62–65].

It is also tempting to relate firing patterns to the properties of

the neuronal inputs, or network parameters: It has been pointed

out that a slow temporal correlation of synaptic input leads to high

variability in firing [66–69], and irregularity of spike trains is

controlled mainly by the strength of the synapses [70]. Firing in

prefrontal cortical neurons is highly variable [55,71,72]. The

present analysis with LvR showed that the prefrontal area is

unique, in that neurons in this area rarely fire regularly, as was

evidenced by the compact LvR distributions of two PFs in

Figure 3C. This implies that there is dominance of correlated

inputs in the prefrontal cortex, which may be related to the

computation mode for executive functions of the prefrontal cortex.

Merit of Analyzing Firing Patterns
Overall, our metric of the local variation of inter-event intervals

provides a useful means for looking into the innate dynamics of

individual neurons, as well as network dynamics, in cortical areas

that may be crucial for cortical computation. We found a relation

between firing patterns and cortical functions, which suggests that

single-unit spike data provide information about the underlying

mechanisms that may possibly include structural cues for

background network connectivity. This type of cue, if further

refined, may support multi-unit data analysis in revealing network

structures. This method of analysis is not limited to neuronal spike

sequences, rather it should be widely applicable to any sequences

of signal occurrences and may help unveil and characterize

mechanisms underlying signal generation.
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