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Abstract

Different types of cells infected with Epstein-Barr virus (EBV) can release exosomes containing

viral components that functionally affect neighboring cells. Previously, we found that EBV was

localized mostly in infiltrating lymphocytes within the stromal layer of cervical lesions. In this

study, we aimed to determine effects of exosome-transferred EBV-encoded RNAs (EBERs)

on keratinocytes expressing human papillomavirus (HPV) 16 E6/E7 (DonorI-HPV16 HFKs).

Lipid transfection of in vitro-transcribed EBER1 molecules (ivt EBER1) into DonorI-HPV16

HFKs caused strong induction of interferon (IFN)-related genes and interleukin 6 (IL-6). To

gain insights into the physiological situation, monocyte-derived dendritic cells (moDCs), low

passage DonorI-HPV16 HFKs and primary keratinocytes were used as recipient cells for inter-

nalization of exosomes from wild-type EBV (wt EBV) or B95-8 EBV-infected lymphoblastoid

cell lines (LCLs). qRT-PCR was used to determine the expression of EBER1, HPV16 E6/E7,

IFN-related genes and IL-6 in recipient cells. The secretion of inflammatory cytokines was

investigated using cytometric bead array. Wt EBV-modified exosomes induced both IFN-

related genes and IL-6 upon uptake into moDCs, while exosomes from B95-8 EBV LCLs

induced only IL-6 in moDCs. Internalization of EBV–modified exosomes was demonstrated in

DonorI-HPV16 HFKs, yielding only EBER1 but not EBER2. However, EBER1 transferred by

exosomes did not induce IFN-related genes or IL-6 expression and inflammatory cytokine

secretion in DonorI-HPV16 HFKs and primary keratinocytes. EBER1 copy numbers in exo-

somes from wt EBV-infected LCLs were 10-fold higher than in exosomes from B95-8 LCLs

(equal cell equivalent), whereas ivt EBER1 was used at approximately 100-fold higher concen-

tration than in exosomes. These results demonstrated that the induction of IFN-related genes

and IL-6 by EBER1 depends on quantity of EBER1 and type of recipient cells. High levels of

EBER1 in cervical cells or infiltrating dendritic cells may play a role in the inflammation-to-
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oncogenesis transition of HPV-associated cervical cancer through modulation of innate

immune signals.

Introduction

Epstein-Barr virus (EBV) is a DNA gammaherpesvirus which can establish latent infection in

host cells. It enters the human host via a mucosal route, infects and induces proliferation of

latently-infected cells. Common tropisms of EBV are B-cells and epithelial cells. Infection of a B-

cell by EBV leads to EBV latent gene expression which drives B-cell proliferation [1]. Down reg-

ulation of EBV gene expression causes infected B-cells to be invisible to the immune response:

thus EBV can persist as a life-long infection in memory B-cells. Infectious virions of EBV are

produced in differentiated plasma B-cells and mucosal epithelial cells. Approximately 90% of the

world’s population are infected with EBV but most of the infections are asymptomatic or pro-

duce nonspecific symptoms [2]. Despite its predominantly benign character, EBV is classified as

a group 1 carcinogen according to the International Agency for Research on Cancer (IARC). It

is causally associated with a wide range of malignancies including Burkitt lymphoma, Hodgkin

lymphoma, nasopharyngeal carcinoma and gastric carcinoma [2].

Cervical cancer is the fourth most common cancer in women worldwide. IARC reported

that there were 528,000 new cervical cancer patients and 266,000 deaths from this cancer in

2012 [3]. Human papillomavirus (HPV) persistent infection is a significant risk, although not

sufficient, to cause cervical carcinogenesis. Approximately 90% of HPV-infected women clear

the infection within a few years [4]. Several cofactors in cervical carcinogenesis have been iden-

tified by epidemiological and experimental studies. These cofactors can be classified into 3

groups; 1) environmental or exogenous cofactors such as oral contraceptives, smoking, multi-

ple full-term pregnancies, and concomitant infection with other pathogens; 2) viral cofactors

such as specific HPV types, viral load, and integration; 3) host cofactors such as hormones,

genetic factors, and immune response status [5].

Our previous study demonstrated that co-occurrence of HPV and EBV DNA in cervical

tissues was more frequent in high-grade lesions and squamous cervical-cell carcinoma (SCC)

when compared to low-grade lesions and tissues without dysplasia. Moreover, a correlation

between EBV infection and high-risk HPV types and HPV episomal form was found. Interest-

ingly, we demonstrated that EBV localized in infiltrating leukocytes adjacent to tumor epithe-

lium and we did not observe EBV infection in epithelial cells [6]. Thus, we hypothesized that

HPV infection, which induces many inflammatory signals [7], recruits EBV-carrying B lym-

phocytes to the infected area. The presence of EBV may provide signals causing the modula-

tion of HPV-infected cells or microenvironment and contributing to tumorigenesis.

EBV proteins, small RNAs and microRNAs (miRNAs) are secreted from EBV- infected

cells via exosomes [8–14]. Exosomes are small extracellular vesicles derived from multivesicu-

lar bodies (MVBs) or late endosomes participating in intercellular communication. Exosomes

range in diameter from 30–100 nm and can be found in many types of body fluids. Epstein-

Barr virus-encoded RNAs (EBERs) are small non-coding RNAs abundantly expressed in EBV-

infected cells and are secreted in exosomes [14]. These transcripts promote innate immunity

modulation and cell growth [15]. Retinoic acid-inducible gene I (RIG-I) and Toll-like receptor

3 (TLR-3) are double-stranded RNA sensors that interact with EBERs and induce downstream

signaling pathways including phosphorylation of interferon regulatory factor 3 (IRF-3) and

release of interleukins 6 and 10 (IL-6, -10) which act as cellular growth factors [16, 17]. EBERs

were also reported to induce type 1 interferons (IFNs), which are antiviral cytokines. Within
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the EBV-infected B-cells, EBERs counteract the effects of IFNs by blocking protein kinase R

(PKR) activity, which is required for the IFN-mediated antiviral effect [18, 19]. EBERs may

enhance efficiency of EBV-driven B-cell transformation [20], but overall their role in oncogen-

esis is poorly understood.

This study aimed to determine the effect of EBERs on keratinocytes expressing HPV16

E6/E7 and monocyte-derived dendritic cells (moDCs), in order to explore potential co-factor

effects in HPV-driven cervical carcinogenesis. We demonstrate that exogenous delivery of

high levels of EBER1 by lipid transfection induces the expression of IFN-related genes and

inflammatory cytokine gene in keratinocytes expressing HPV16 E6/E7, while EBER1 taken in

via exosomes does not. Exosomes from wild-type (wt) EBV-infected lymphoblastoid cell lines

(LCLs) have an effect on IFN-related gene and inflammatory cytokine gene expression in

moDCs. Determination of EBER1 copy numbers revealed that the amount of in vitro-tran-

scribed EBER1 (ivt EBER1) transfected into cells was significantly higher than EBER1 in exo-

somes. The results suggest that the induction of IFN-related genes and inflammatory cytokine

genes by EBER1 depends on the number of copies of EBER1 and the type of recipient cell.

Materials and Methods

Cell lines

EBV-infected LCLs used were RN LCLs, which contain EBV B95-8 strain, and IK140508 LCLs

which contain wt EBV. BJAB cells, which are EBV-negative diffuse large B-cell lymphoma, were

used as negative controls. Human foreskin keratinocytes (HFKs) used in this study as recipient

cells included DonorI-HPV16 HFKs (HFKs transduced with recombinant retrovirus containing

E6/E7 open reading frame, passages 19–32) [21], FK16A cells (HFKs transfected with full-length

HPV16 genome) [22] and primary HFKs. All primary cells were obtained from donors who

have given informed consent approved by the institutional review board of the VU University

Medical Center (VUmc). The institutional review board of the VUmc did not need to specifi-

cally approve this study as we used left-over human materials from circumcisions and volun-

teers blood cell specimens, which is covered by the general “good research practice” regulations

within VUmc. However, this study is one part of our project entitled “Co-infection between

EBV & HPV and mechanisms of cervical carcinogenesis” which was approved by the Khon

Kaen University Ethics Committee in human research (no. HE561264). Foreskins from which

primary keratinocytes were isolated, were obtained and used in an anonymous fashion in accor-

dance with the "Code for Proper Secondary Use of Human Tissues in the Netherlands" as for-

mulated by the Dutch Federation of Medical Scientific Organizations (http://www.fmwv.nl and

www.federa.org). Parents of circumcised boys orally consented to this secondary use (www.

besnijdeniscentrum.nl). This study followed the ethical guidelines of the Institutional Review

Board of the VUmc. LCLs and BJAB cells were cultured in RPMI medium (Lonza, Basel, Swit-

zerland) supplemented with 10% fetal bovine serum (FBS) (HyClone, Utah, USA), 100 U/ml

penicillin G, 100 μg/ml streptomycin sulfate, and 2 mM glutamine (PSG). All keratinocytes

were cultured in Keratinocyte-SFM medium with L-glutamine, epidermal growth factor (EGF)

and Bovine Pituitary Extract (BPE) (Gibco, Massachusetts, USA) with PSG.

Establishment of moDCs

Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood of healthy donors

using Lymphoprep (Stemcell Technologies, British Columbia, Canada) according to the manu-

facturer’s protocol. All donors gave written informed consent for scientific use approved by the

institutional review board of the VUmc. The participant consent was asked from the volunteer

to sign in the informed consent form. This consent procedure was approved by the institutional
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review board of the VUmc. CD14+ monocytes were isolated using CD14 MicroBeads, Human

(Miltenyi Biotec, Bergisch Gladbach, Germany) and cultured in IMDM medium (Lonza, Basel,

Switzerland) with 10% FBS and PSG with 0.01 ng/mL of IL-4 and 1,000 units/mL of GM-CSF

in a cell-culture incubator at 37˚C, 5% CO2 for 5 days.

Cell proliferation assay

Cell proliferation was measured using a cell proliferation kit I (MTT) (Roche, Basel, Switzer-

land) according to the manufacturer’s protocol. One-hundred microliters of cells were plated

in 96-well plates (103 cells/well) and incubated at 37˚C in a cell-culture incubator for 0, 24, 48,

72, 96 and 120 hours. The intensity of color at 550 and 650 nm was measured using an ELISA

reader. The percentage of viable cells was calculated using the following formula: viable cells

(%) = (OD of treated sample/OD of untreated sample) × 100.

Exosome isolation

Exosomes from EBV-infected LCLs and BJAB cells were isolated by differential ultracentrifu-

gation. The cells were washed by centrifugation at 1,100 rpm for 5 minutes and recultured at a

density of 0.5 x 106 cells/mL in RPMI-1640, supplemented with 5% exosome-depleted FBS and

PSG for 48 hours. The viability of cells was checked before supernatant collection and found to

be at least 95%. Percentage of cell death was less than 5%. Cell culture medium containing 100

x 106 cells was centrifuged twice at 500 x g for 10 minutes at 4˚C to remove the cells. After the

second centrifugation, the supernatant was centrifuged twice at 2,000 x g for 15 minutes at 4˚C

to remove cell debris. The supernatant could be stored at -80˚C or used immediately for the

next step. The supernatant was centrifuged again twice at 10,000 x g for 30 minutes with slow

braking at 4˚C. To pellet the exosomes, the supernatant was centrifuged at 70,000 x g for 60

minutes with slow braking at 4˚C. The supernatant was carefully removed from the exosome

pellet and the pellet was pooled together with additional phosphate buffer saline (PBS). The

exosome suspension was centrifuged again at 70,000 x g for 60 minutes with no braking at

4˚C. The supernatant was carefully removed without disturbing the exosome pellet, which was

then resuspended in 200 μL PBS and stored at -80˚C.

Western blotting

CD63 protein was used as an exosomal marker and cytochrome C protein was used as a cellu-

lar marker (14). Primary antibodies used in the studies included purified mouse anti-human

CD63 diluted 1:250 (BD Pharmingen, New Jersey, USA) under non-reducing conditions as

recommended by the manufacturer and purified mouse anti-cytochrome C diluted 1:250 (BD

Pharmingen, New Jersey, USA) under reducing conditions. Equal amounts of exosome suspen-

sion and loading dye were mixed, incubated at 95˚C for 5 minutes and immediately placed on

ice for 5 minutes before loading on a sodium dodecyl sulfate-polyacrylamide gel for electropho-

resis (SDS-PAGE). The protein on the gel was transferred to nitrocellulose blotting membrane

(Amersham Protran, Little Chalfont, UK). Signal detection was performed using Enhanced

Chemiluminescence (ECL) prime Western Blotting Detection Reagent (Amersham, Little Chal-

font, UK) according to the manufacturer’s instruction. The membrane was exposed to X-ray

film for visualization.

Labelling of exosomes with PKH67 green fluorescent linker dye

Exosomes in 1x PBS were labelled with green fluorescent dye using a PKH67 green fluorescent

cell linker mini kit for general cell membrane labeling (Sigma-Aldrich, Missouri, USA) according
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to manufacturer’s protocol. After labeling, the exosome mixture was transferred to an ultracentri-

fuge tube and centrifuged at 70,000 x g for 1 hour with no braking at 4˚C. The supernatant was

carefully removed by pipetting without disturbing the exosome pellet, which was resuspended in

1x PBS and stored at -80˚C.

EBER1 in vitro transcription and transfection

DNA of plasmid pcDNA3 containing full-length EBER1 was cut with XbaI restriction enzyme

(Roche, Basel, Switzerland). The linearized pcDNA3-EBER1 was extracted from a gel using

Qiaex II gel extraction kit (Qiagen, Hilden, Germany), according to the manufacturer’s proto-

col, and eluted in RNase-free water. To perform in vitro transcription, the reaction mixture

contained 1 μg of linearized pcDNA3-EBER1, 1x transcription buffer, 0.5 mM rNTPs, 10 mM

DTT, 24 units RNAsin, 126 units T7 RNA polymerase (Promega, Wisconsin, USA) and

RNase-free water to 120 μL. The reaction mixture was incubated at 37˚C for 3 hours and sub-

jected to DNase treatment using RNase-free DNase (Promega, Wisconsin, USA) according to

the manufacturer’s protocol. The ivt EBER1 was purified using TRIzol1 reagent (Invitrogen,

California, USA) according to manufacturer’s protocol. Ivt EBER1 was transfected into

DonorI-HPV16 HFKs using Lipofectamine 2000 (ThermoFisher Scientific, Massachusetts,

USA). One-hundred nanograms of ivt EBER1 was mixed with 100 μL cell culture medium

without any antibiotics and vortexed for 15 seconds. Lipofectamine 2000 was added (1 μL:

3 μg RNA), vortexed and incubated at room temperature for 30 minutes. Two hundred micro-

liters of cell culture medium without antibiotics was added and the mixture was added to cells

in a 24-well plate. The cells were incubated with the transfection mixture for 4 hours in a cell

culture incubator and refreshed with new medium containing antibiotics.

Detection of EBERs

RNA from cells and exosomes was isolated using TRIzol1 reagent (Invitrogen, California,

USA) according to the manufacturer’s protocol. The RNA pellet was resuspended in 10 μL of

RNase-free water. The amount, quality, and composition of isolated RNA were analyzed using

the NanoDrop 2000c spectrophotometer (ThermoFisher Scientific, Massachusetts, USA).

cDNA was synthesized using TaqMan MicroRNA Reverse Transcription Kit (ThermoFisher

Scientific, Massachusetts, USA) according to the manufacturer’s protocol with 125 nM for

each stem-loop primer. The stem-loop primer sequences are shown in Supporting informa-

tion: S1 Table. qRT-PCR was performed using LightCycler1 480 SYBR green I master (Roche,

Basel, Switzerland) according to the manufacturer’s protocol. The primer sequences and con-

centration used in this study are shown in Supporting information: S2 Table. All samples were

run in duplicate using the LightCycler1 480 Instrument (Roche, Basel, Switzerland).

EBER1 quantification

The RNA pellet extracted by TRIzol1 reagent (Invitrogen, California, USA) was resuspended in

RNase-free water and subjected to DNase treatment with RQ1 RNase-free DNase (Promega,

Wisconsin, USA). To precipitate RNA, the reaction mix (26.5 μL in total) contained 1 μL of 3 M

NaAc pH 5.3, 25 μL of absolute ethanol and 0.5 μL of linear acrylamide. The reaction mix were

added to DNase-treated RNA solution and incubated at -80˚C for 1 hour. Then centrifugation

at 12,000 x g for 30 minutes at 4˚C was performed to precipitate RNA. After removal of the

supernatant, 500 μL of 70% cold ethanol was added and centrifugation repeated at 12,000 x g

for 5 minutes at 4˚C. The supernatant was removed and the pellet was dried at room tempera-

ture. cDNA was synthesized from RNA template using 2 μM of EBER1.1 and RNY1 stem-loop

primer. The primer sequences and concentrations used in this study are shown in Supporting
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information: S3 Table. When determining EBER copy number using quantitative real-time

PCR, pCR-BluntII-TOPO containing full-length EBER1 was used for constructing the standard

curve. All samples were run in duplicate using the LightCycler1 480 Instrument (Roche, Basel,

Switzerland).

Determination of HPV oncogene expression using conventional PCR

RT-PCR was performed using HPV16 E6-specific primers to amplify nucleotides 204–525, which

allows the detection of full-length E6 transcripts and spliced E6�I mRNA [22]. cDNA was synthe-

sized using AMV reverse transcriptase (Promega, Wisconsin, USA), according to the manufactur-

er’s protocol, with 1.25 μM of HPV16E6502as primer and 1.25 μM MP-GAPDH reverse primer.

The 25 μL PCR reaction contained 1x PCR buffer (ThermoFisher Scientific, Massachusetts, USA),

0.1 mM dNTP mix, 0.5 μM forward primer (HPV16E6204s or MP-GAPDH-F), 0.5 μM reverse

primer (HPV16E6502as or MP-GAPDH-R), 0.5 unit of AmpliTaq Gold DNA polymerase (Ther-

moFisher Scientific, Massachusetts, USA), 2 μL of cDNA template and DNase-free water to 25 μL.

Amplification was done with the following parameters; initial denaturing at 95˚C for 4 minutes;

30 cycles comprising of 95˚C for 30 seconds, 60˚C for 1 minutes, 72˚C for 90 seconds; and final

extension at 72˚C for 4 min. PCR products were detected by electrophoresis in a 2% agarose gel

and stained with ethidium bromide. The primer sequences used in this study are shown in Sup-

porting information: S2 Table.

Determination of HPV oncogene expression using TaqMan qRT-PCR

A quantitative RT-PCR for E7 was performed on DNase-treated RNA [23] using RQ1 DNase

(Promega, Wisconsin, USA) according to the manufacturer’s protocol. cDNA synthesis was

performed after DNase treatment using 1.25 μM of specific reverse primers (qE7_rv_6 and

snRNP828R). To control for DNA contamination, a reaction without AMV reverse transcrip-

tase (minus-RT control) was included each time. TaqMan qRT-PCR for HPV16 E7 quantifica-

tion was performed as described previously [23]. Relative expression was calculated using the 2-

ddCt method with small nuclear ribonucleic protein (snRNP) as a calibrator gene. The primer

and probe sequences used in this study are shown in Supporting information: S2 Table.

Determination of IFN-related gene and IL-6 expression

RNA from recipient cells was isolated using TRIzol1 reagent (Invitrogen, California, USA)

according to the manufacturer’s protocol. The RNA pellet was resuspended in 10 μL of RNase-

free water. The amount, quality and composition of the RNA isolated were analyzed using a

NanoDrop 2000c spectrophotometer (ThermoFisher Scientific, Massachusetts, USA). cDNA

was synthesized using the Reverse Transcription System (Promega, Wisconsin, USA) accord-

ing to the manufacturer’s protocol with 1 μg of RNA template. SYBR green qRT-PCR was per-

formed using the LightCycler1 480 SYBR green I master (Roche, Basel, Switzerland). The

primer sequences and concentrations used in this study are shown in Supporting information:

S2 Table. All samples were run in duplicate using the LightCycler1 480 Instrument (Roche,

Basel, Switzerland). Relative expression was calculated using the 2-ddCp method and glyceralde-

hyde 3-phosphate dehydrogenase (GAPDH) as a calibrator gene.

Determination of inflammatory cytokine secretion in cell culture

supernatant

Secretion of inflammatory cytokines was determined using a BD™ CBA Human Inflammatory

Cytokines Kit (BD Biosciences, California, USA) according to the manufacturer’s protocol.
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The kit was used to quantitatively measure IL-1β, IL-6, and tumor necrosis factor (TNF) pro-

tein levels.

Statistical analysis

Relative expression of genes was calculated using the 2- ddCp method and GAPDH or snRNP

as a calibrator gene. Data were analyzed by one-way analysis of variance (ANOVA) with

Tukey tests and presented as means with standard error of the mean (SEM). A value of

P< 0.05 was considered statistically significant.

Results

In vitro transcribed EBER1 induces IFN response in DonorI-HPV16

HFKs

To investigate the effect of EBER1 in HFKs expressing HPV16 E6/E7 (DonorI-HPV16 HFKs),

we generated EBER1 molecules by in vitro transcription [24] and introduced them into

DonorI-HPV16 HFKs by lipid transfection and incubated the cells for 24 hours. IFN-related

mRNA levels were determined using qRT-PCR. Target genes were selected from high-density

microarray data of moDCs incubated with EBV-modified exosomes for 18 hours. The chosen

targets were IFNβ-1, RIG-I, interferon-induced transmembrane protein 1 (IFITM1), 20-50

ligoadenylate synthetase (OAS2), interferon-induced GTP-binding protein Mx1 (Mx1) and

proinflammatory cytokine IL-6 as recently published [24]. The results showed that all five

IFN-related genes and IL-6 were strongly induced by lipid delivery of EBER1 transcripts (Fig

1). This suggests that delivery of EBER1 via lipid transfection could trigger viral sensors in

DonorI-HPV16 HFKs to induce IFN-related gene expression.

Analysis of exosomes secreted from EBV-infected LCLs

To gain insight into the physiological situation, exosomes from cell culture supernatant of EBV-

infected LCLs (EBV-modified exosomes) and BJAB cells were isolated using differential ultra-

centrifugation and subjected to protein extraction. Exosomal protein was used for detection of

the exosomal marker (CD63) and cellular component contamination (cytochrome C) was

examined using western blotting. The exosomal marker, CD63, was found in the purified exo-

somes, but cytochrome C was not found. This result indicated that there was no contamination

from cellular components in the vesicle pellet, as shown in Fig 2A. To investigate whether

EBERs were confined inside the exosomes from EBV-infected LCLs, isolated exosomes from

RN cells were subjected to RNase A treatment (0.4 μL/mL at 37˚C for 1 hour) before RNA

extraction in order to degrade the nucleic acid outside exosomes. The extracted RNA was used

for determination of EBER1 and EBER2 by stem-loop RT-PCR. As shown in Fig 2B, the Cp val-

ues of EBERs were slightly increased when RN exosomes were treated with RNase A, which

indicates a lower level of EBERs in RNase A-treated exosomes. Levels of EBER2 in the exosomal

fraction were lower than those of EBER1 (Fig 2B). The relative expression levels of EBERs were

slightly lower when RN exosomes were treated with RNase A (Fig 2C). EBERs were not found

in exosomes from BJAB cells. The results suggested that the majority of EBERs were protected

within the exosomal membrane and were not susceptible for RNA degradation.

Wt EBV-modified exosomes induce IFN-related genes and IL-6

expression in moDCs

Dendritic cells (DCs) are antigen presenting cells (APCs) which reside in the stromal layer of

tissues and also in squamous epithelia (Langerhans cells). DCs acquire extracellular antigen by
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receptor-mediated endocytosis, macropinocytosis or phagocytosis. Exosomes are a source of

antigen for APCs and are internalized and transferred functional signals into dendritic cells

[10, 24, 25]. To test whether EBER1-containing exosomes influence the expression of IFN-

related genes and IL-6 in DCs, we incubated moDCs from PBMCs with purified exosomes

from EBV-infected LCLs for 24 hours. The results showed that RIG-I, IFITM1, OAS2, Mx1

and IL-6 were induced by IK140508 exosomes whereas RN exosomes had an effect only on the

induction of IL-6 but not IFN-related genes in moDCs (Fig 3A). The different capacities of RN

and IK140508 exosomes to induce IFN-related genes and IL-6 led us to investigate EBER1

copy number transferred via exosomes into recipient cells. qRT-PCR was performed to deter-

mined EBER1 copy numbers using a plasmid containing full-length EBER1 for standard curve

establishment. The results demonstrated that the copy number of EBER1 transferred via exo-

somes from IK140508 cells was 7-fold higher than those transferred from RN exosomes (Fig

3B). This may cause the different induction of target genes in moDCs.

Internalization of EBV-modified exosomes into HPV16 E6/E7 expressing

HFKs and stability of EBER1 transferred via exosomes into the recipient

cells

As shown in Fig 3A, EBV-modified exosomes could induce the expression of EBER1 target

genes in moDCs. This indicated that EBV-modified exosomes, which contained EBER1, were

internalized and the EBER1 could function in the moDCs. Next, to determine whether exo-

somes can be internalized by HFKs (non-APC cells) expressing HPV16 E6/E7, DonorI-HPV16

HFKs were incubated with various quantities of RN exosomes labeled with green fluorescent

dye PKH67 and observed for PKH67 positive cells at 6 and 24 hours post incubation. Increas-

ing time and quantity of exosomes led to more and brighter fluorescent cells (Fig 4A), indicat-

ing specific uptake. The results indicated that EBV-modified exosomes could be internalized

by DonorI-HPV16 HFKs in a dose- and time-dependent manner. To investigate the transfer

of EBERs into DonorI-HPV16 HFKs, stem-loop RT-PCR was performed. After 24 hours of

incubation with RN exosomes, DNA and RNA were extracted from DonorI-HPV16 HFKs.

Quantity of EBER1 increased when increased quantities of exosomes were used (Fig 4B). How-

ever, EBER2 and EBV DNA were not found in recipient cells (data not shown). To investigate

the stability of EBERs transferred via exosomes into the recipient cells. RN exosomes were

incubated with DonorI-HPV16 HFKs. After 24 hours of incubation, cell culture supernatant

was removed and the cells were washed with PBS to remove unbound exosomes. New medium

was added and the cells were cultured for an additional 24 and 48 hours. EBER1 levels were

determined using stem-loop real-time RT-PCR. As shown in Fig 4C, the initial EBER1 level

dramatically decreased by 24 hours after washing the cells and the level remained stable until

48 hours after washing.

EBV-modified exosomes have no effect on HPV oncogene expression or

proliferation of DonorI-HPV16 HFKs

We firstly investigated the effect of EBV-modified exosomes on HPV oncogene expression in

recipient cells using RT-PCR. The purified exosomes from RN or BJAB cells were incubated

with DonorI-HPV16 HFKs for 24 and 48 hours. RT-PCR was performed on cDNA samples

Fig 1. IFN-related gene and IL-6 expression in DonorI-HPV16 HFKs in the presence of lipid delivered ivt EBER1.

One hundred ng of ivt EBER1 was transfected into DonorI-HPV16 HFKs and incubated for 24 hours. Gene expression

levels were determined by qRT-PCR. Untreated (control) cells were transfected with lipofectamine alone. Relative

expression level was corrected with the housekeeping gene GAPDH (2-ddCp). *; P < 0.05, **; P < 0.01, ***; P < 0.001.

doi:10.1371/journal.pone.0169290.g001
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Fig 2. Exosomes isolated from EBV-infected LCLs. (A) CD63 was used as the exosomal marker and cytochrome C was

used to determine cellular contamination. (B) Cp values of EBERs and RNY1 (housekeeping gene) in exosomal fractions

from equal cell equivalents of untreated and RNase A-treated RN and untreated BJAB exosomes, as determined by stem-

loop RT-PCR. (C) Relative expression level of EBERs in untreated RN exosomes compared to RNase A-treated RN

exosomes, corrected with housekeeping gene RNY1 (2-ddCp). BJAB exosomes were used in a negative control. Three

batches of exosomes were used for determination.

doi:10.1371/journal.pone.0169290.g002

Fig 3. Induction of IFN-related genes and IL-6 expression in moDCs. (A) EBV-modified exosomes were added to moDCs and incubated for 24 hours.

The expression levels of IFN-related genes and IL-6 were determined by qRT-PCR. Relative expression level was corrected with the housekeeping gene

GAPDH (2-ddCp). *: P < 0.05; **: P < 0.01. (B) EBER1 copy number in moDCs per 10 cell equivalents. EBER1 copy number in moDCs was determined by

qRT-PCR using a plasmid containing full-length EBER1 for standard curve calibration.

doi:10.1371/journal.pone.0169290.g003
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using HPV16 E6-specific primers, which allows the detection of full-length E6 transcripts and

spliced E6�I mRNA. As shown in Fig 5A, a full length E6 transcript was observed. After 48

hours of incubation, the quantity of this transcript was slightly lower than at 24 hours. The

main product expressed in DonorI-HPV16 HFKs is the E6�I splice variant. BJAB and RN exo-

somes and poly (I:C) seemed to have a slight effect on the splicing of HPV16 E6E7. Therefore,

we confirmed the expression of HPV oncogenes using Taqman quantitative PCR for E7. Nei-

ther treatment with BJAB nor with RN exosomes for 24 hours had an effect on HPV16 onco-

gene expression. Interestingly, treatment with poly (I:C) decreased the expression of HPV16

E7 (Fig 5B). We also confirmed the results in HFK cells transfected with full-length HPV16

(FK16A) containing the real promoter of HPV16 E6/E7: no induction of E6/E7 was observed

(Fig 5C). These results indicated that EBV-modified exosomes had no effect on HPV oncogene

expression. We also confirmed whether EBV-modified exosomes have an effect on cell prolif-

eration of DonorI-HPV16 HFKs using the MTT assay. The volumes of RN exosomes added to

the recipient cells were 1.0, 5.0 and 10.0 μL. BJAB exosomes and PBS were used as negative

controls. Compared to the untreated cells (taken as 100% viable), different quantities of RN

exosomes and PBS did not show any effect on DonorI-HPV16 cell growth (Fig 5D). However,

exposure to 10 μL of BJAB exosomes caused a decrease in cell viability from 100% to 82.9%

(Fig 5D).

EBER1 from EBV-modified exosomes has no effect on IFN and

proinflammatory cytokine responses in HFKs

In order to investigate the influence of EBV-modified exosomes on IFN-related gene and IL-6

expression, DonorI-HPV16 HFKs were incubated with exosomes purified from RN and

IK140508 cell-culture supernatant for 24 hours, and IFN-related and IL-6 mRNA levels were

determined using qRT-PCR. The results showed that EBV-modified exosomes from both RN

and IK140508 cells could not induce the expression of IFN-related genes and IL-6 in Donor-

I-HPV16 HFKs, but these genes were induced by 5 μg poly (I:C), which was used as a positive

control (Fig 6A). The effect of EBV-modified exosomes on HPV-positive HFKs was also investi-

gated in FK16A cells which were HFKs transfected with full-length HPV16. The results were

similar to those in DonorI-HPV16 HFKs (S1 Fig). A recent study has shown that proinflamma-

tory cytokine production in HFKs was suppressed by HPV by augmenting the expression of

interferon-related development regulator 1 (IFRD1) in a manner dependent on an epidermal

growth-factor receptor (EGFR), thus suppressed NFκB activation and resulting in decrease of

immune system-driven cytokine expression [26]. To prove that E6/E7 expression in Donor-

I-HPV16 HFKs suppressed the induction of IFN and a proinflammatory response in the cells

after treatment with EBV-modified exosomes, HPV-negative primary HFKs were used in the

experiments. After incubation with EBV-modified exosomes for 24 hours, IFN-related and IL-6

gene expression of primary HFKs was determined by qRT-PCR. The results showed that the

presence of EBV-modified exosomes did not induce the expression of the genes of interest (S2

Fig). In addition, we also used a cytometric bead array to determine the effects of EBV-modified

exosomes on secretion of proinflammatory cytokines (IL-6, TNF and IL-1β) by DonorI-HPV16

Fig 4. Internalization of exosomes into DonorI-HPV16 HFKs. (A) DonorI-HPV16 HFKs were incubated

with exosomes labelled with fluorescent dye PKH67 in 10, 20 and 40 μL of exosome suspension and observed

for PKH67 positive cells at 6 and 24 hours post incubation. (B) Levels of EBER1 in DonorI-HPV16 HFKs after

incubation with 10, 20 or 40 μL of RN exosomes for 24 hours. (C) Stability of EBER1 in DonorI-HPV16 HFKs.

DonorI-HPV16 HFKs were incubated with RN exosomes for 24 hours. The cells were then washed and

cultured for an additional 24 and 48 hours in new medium without RN exosomes. Levels of EBER1 were

measured using stem-loop real-time RT-PCR.

doi:10.1371/journal.pone.0169290.g004
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HFKs. Protein concentration in cell culture supernatant was determined after incubation with

exosomes for 48 hours. Similar to the results in mRNA level, EBV-modified exosomes could

not induce the secretion of proinflammatory cytokines in DonorI-HPV16 HFKs (Fig 6B).

These results demonstrated that, although EBER1 from exosomes could be detected in the

recipient cells, its presence had no effect on the production of IFN-related genes or proinflam-

matory cytokines in HFKs with and without the presence of HPV16 E6/E7 oncogenes.

Quantitative EBER1 levels in EBV-modified exosomes

We wished to determine whether EBER1 copy numbers differ in exosomes from RN or

IK140508 LCLs. RNA was extracted from exosomes from 25x106 LCLs, which was the amount

used for incubation with recipient cells. One hundred nanograms of ivt EBER1 was also used.

Absolute qRT-PCR was performed on DNaseI-treated RNA samples. As shown in Fig 7,

EBER1 copy number in exosomes from IK140508 LCLs was 10-fold higher than in RN exo-

somes. In addition, a huge amount of EBER1 was observed in ivt EBER1 which is approxi-

mately 100-fold higher than from IK140508 exosomes.

Discussion

EBV is one of the most successful viruses, latently persisting in B lymphocytes for the lifetime

of the infected host. Although EBV persistence is generally considered benign, EBV can play

an important role in an increasing number of acute, chronic and malignant diseases [27–29].

In the last years, exosomes, extracellular vesicles released upon fusion of multivesicular bodies

with plasma membrane, have emerged as powerful mediators which can penetrate and change

the behavior of neighboring cells. Several lines of evidence demonstrated that EBV-infected B

lymphocytes actively secrete exosomes and have biological function in recipient cells [10, 13,

30, 31].

Our previous study showed that EBV-HPV co-infections with high-risk HPV were signifi-

cantly more frequent in high-grade squamous intraepithelial lesion (HSIL)/SCC groups. The

co-infection was associated with HPV episomal form. In- situ hybridization staining of EBERs

in cervical tissues showed localization of EBV in the nuclei of infiltrating lymphocytes in stro-

mal layers [6]. Thus, we hypothesized that EBV-infected B lymphocytes infiltrating cervical

tissues may not be just a commensal agent but may play a role in manipulating the microenvi-

ronment and HPV-infected cells to induce the development of cervical cancer by secretion of

their products via exosomes.

EBERs are secreted abundantly in exosomes [14], expressed in all three patterns of EBV

latency and can be detected by pathogen recognition receptors (PRRs) to induce inflammatory

cytokine production in recipient cells [32, 33]. EBERs are recognized by RIG-I which is dsRNA

sensor residing in the cytoplasm. The interaction leads to activation of NFκB and IRF3, which

in turn induce protective cellular genes, including type I IFNs [33]. It is possible that EBERs

activate inflammation via dsRNA sensors, thus contributing to EBV-mediated pathogenesis

both in lymphoproliferative diseases and cancers.

Fig 5. HPV16 E6E7 mRNA expression after incubation with exosomes. (A) E6 FL indicates full length mRNA (321 nucleotides)

and E6*I indicates spliced transcripts (138 nucleotides). GAPDH (140 nucleotides) served as a house-keeping control. (B) Relative

E7 mRNA expression in DonorI-HPV16 HFKs and (C) FK16A. mRNA expression was determined by qRT-PCR after 24 hours of

incubation. Level of expression was normalized relative to the housekeeping gene snRNP. **: P < 0.01. (D) The effect of exosomes

on cell growth of DonorI-HPV16 HFKs. DonorI-HPV16 HFKs were treated with 1.0, 5.0 or 10.0 μL of PBS, RN exosomes and BJAB

exosomes for 120 hours. Cell viability was monitored using the MTT assay.

doi:10.1371/journal.pone.0169290.g005
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In this study, we investigated the function of EBER1 in HFKs expressing HPV16 E6/E7 and

in moDCs, a cell type abundantly present in cervical lesions and actively involved in local

inflammation and antigen presentation (23). First, to investigate the effect of EBER1 in HFKs

expressing HPV16 E6/E7 (DonorI-HPV16 HFKs), we generated EBER1 molecules by in vitro
transcription [24] and introduced them into DonorI-HPV16 HFKs by lipid transfection.

Genes of interest were selected from high-density microarray results after incubation of EBV-

modified exosomes with moDCs for 18 hours [24] and included IFNβ-1, RIG-I, IFITM1,

OAS2, Mx1 and IL-6. Twenty-four hours after transfection, all five IFN-related genes and IL-6

were strongly induced in these cells, indicating that EBER1 delivered by lipid transfection acts

as pathogen-associated molecular pattern (PAMP), triggering double-stranded RNA sensors

in the cytoplasm to induce IFN-related genes and proinflammatory cytokine expression. Sub-

sequently we explored EBER1 effects under more physiologically relevant conditions. We puri-

fied exosomes from two types of EBV-infected (latency III) LCLs, including a wt and B95-8

Fig 6. IFN-related genes and IL-6 expression and the production of proinflammatory cytokines in

DonorI-HPV16 HFKs. (A) EBV-modified exosomes were added to DonorI-HPV16 HFKs and incubated for 24

hours. The expression levels of IFN-related genes were determined by qRT-PCR. Relative expression level

was corrected relative to the housekeeping gene, GAPDH (2-ddCp). (B) Cytokine secretion from DonorI-HPV16

HFKs after incubation with exosomes for 48 hours. Protein concentration in cell culture supernatant was

determined using a cytometric bead array for human inflammatory cytokines. **: P < 0.01.

doi:10.1371/journal.pone.0169290.g006

Fig 7. EBER1 copy numbers in the exosomal fraction from 25x106 cells of RN and IK140508 LCLs and 100

ng ivt EBER1. EBER1 copy numbers were determined by qRT-PCR using pCR-BluntII-TOPO containing full-

length EBER1 for standard curve establishment.

doi:10.1371/journal.pone.0169290.g007
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strain, using differential ultracentrifugation. We showed that EBER1 and low levels of EBER2

could be detected in exosomal fractions of culture supernatant from both LCL types. In EBV-

infected cells, although both EBERs are transcribed at approximately equal rates, EBER1 was

found to be present at 10-fold higher levels when compared to EBER2 [34]. Clarke et al. in

1992 reported that EBER1 had a longer half-life than EBER2. They showed that in the presence

of actinomycin D, the half-lives of EBER1 and EBER2 are 8 to 9 hours and 45 minutes, respec-

tively [35]. Our results suggested that levels of EBERs loaded into exosomes may be related to

levels of EBERs in the cells. Treatment of purified exosomes with RNase A prior to RNA

extraction slightly reduced EBER positivity, indicating that some EBER molecules passively

associate with the surface of exosomes. However, the majority of EBERs in the exosomal frac-

tion are protected from RNase digestion, which is considered as evidence that they are carried

as internal exosomal cargo.

Here we showed that RIG-I, IFITM1, OAS2, Mx1 were upregulated in moDCs upon expo-

sure to IK140508 exosomes (wt EBV) but not to RN exosomes (B95-8 EBV). However, IL-6

expression was upregulated by both types of EBV-modified exosomes. These results are consis-

tent with a recent study which showed that exosomes from latent-EBV infected LCLs triggered

antiviral immunity in dendritic cells through activation of cytosolic sensors [24]. We also

showed that the different capacity of IFN-related gene induction between RN and IK140508

exosomes may due to the different copy numbers of EBER1 transferred into the moDCs.

The binding and internalization of PKH67-labeled EBV-modified exosomes into Donor-

I-HPV16 HFKs was observed by fluorescent imaging to be dose- and time-dependent. It is still

unclear how exactly exosomes contact and enter recipient cells. It has been proposed that an

acidic condition is critical for transfer of exosomes to recipient cells [36, 37]. A recent review

suggested that extracellular vesicles (EVs) require a common viral entry pathway through

receptor-ligand interaction with recipient cells for uptake [38]. Another study demonstrated

that exosomes from type I and type III latency EBV-infected and EBV-uninfected B-cells

could be internalized into uninfected epithelial cells in a similar fashion [39]. Our recent

results confirm that EBV-modified exosomes are internalized by HFKs expressing HPV16 E6/

E7 and the internal staining of PKH67 demonstrated the endocytic uptake. EBER1 was clearly

detected in DonorI-HPV16 HFKs after incubation with EBV-modified exosomes for 24 hours

and, upon PBS washing, remained stable at lower levels for 48 hours, as shown in Fig 4C. This

demonstrated that EBER1 was transferred via exosomes into recipient cells and can persist for

at least 2 days.

The effect of EBV-modified exosomes on DonorI-HPV16 cell proliferation was determined

using the MTT assay. We did not observe any enhanced effect on cell proliferation. To our

knowledge, we are the first group to demonstrate this. These HFKs may have different growth

characteristics from epithelial cell lines used in previous studies. In addition, we also investi-

gated the effects of EBV-modified exosomes on HPV oncogene expression but we did not

observe the induction of these oncogenes either in DonorI-HPV16 or FK16A cells.

In addition to direct growth and oncogenic effects of EBV-modified exosomes, we investi-

gated potential (pro) inflammatory effects of EBER1 transferred via exosomes into Donor-

I-HPV16 HFKs. We found that EBV-modified exosomes, both B95-8 and wt strain, did not

induce the expression of IFN-related genes and IL-6 in DonorI-HPV16 or FK16A cells, but

these genes were induced by 5 μg poly(I:C) which was used as a positive control. Tummers

et al. recently demonstrated that high-risk HPV (hrHPV) upregulated the expression of IFRD1

to deregulate the K310 acetylation of NFκB/RelA in HFKs resulting in impairment of proin-

flammatory cytokine production [26]. EBERs-mediated IFN production is also induced via

NFκB activation: thus it is possible that hrHPV deregulates this signaling pathway and sup-

presses IFN-related gene expression in HFK cells. To prove that E6/E7 expression in
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DonorI-HPV16 HFKs suppressed the induction of IFN response in these cells, HPV-negative

primary HFKs were used in the experiments. Again, EBV-modified exosomes failed to induce

IFN-related gene expression in primary HFKs. These results indicate that EBV-modified exo-

somes, which carry and transfer EBER1 in a physiologically natural condition, have no effect

on the IFN production in HFKs. Considering the far lower levels of EBER1 molecules deliv-

ered into HFK cells via exosomes of RN or IK140508 LCLs, compared to transfection with ivt

EBER1, our results indicate that the induction of IFN-related genes and IL-6 in HFK-hrHPV

cells depends on quantity of EBER1 delivered. In addition, the different effects of EBV-modi-

fied exosomes in HFKs and moDCs demonstrate that induction of IFN-related genes and

proinflammatory cytokines depends on types of recipient cells which have different character-

istics, such as the ability to uptake antigen and viral detection by cytosolic sensors.

Rather than having a direct effect on (early-stage) HPV-transformed epithelial cells, our

finding that EBER1, transferred via exosomes from latent-EBV infected B-cells, induces IFN-

related gene expression in dendritic cells and can thus provide a link to inflammation-medi-

ated tumorigenesis. It has been purposed that an inflammatory microenvironment is an essen-

tial component of tumors. Up to 20% of all tumors are associated with chronic inflammation

[40] and inflammation by viral infection increases risk of cancer development [41]. DCs are

one of the types of immune cells residing in the tumor microenvironment. These cells commu-

nicate with other immune cells or epithelial cells by direct contact or cytokine and chemokine

production, which act in autocrine and paracrine manner. Deregulation of IFN-related gene

expression in dendritic cells by EBER1 transferred via exosomes leads to unbalanced produc-

tion of proinflammatory cytokines that activate transcriptional factors such as NFκB, STAT3

and AP-1 in premalignant cells resulting in stimulation of cell proliferation and survival. How-

ever, further studies are required to clarify the effects on HPV-infected keratinocytes of cyto-

kines from dendritic cells which carry EBV products.

Conclusions

EBV-modified exosomes could be internalized into HFKs expressing HPV16 E6/E7, thus

transferring EBV small RNAs and miRNAs. Although lipid transfection of EBER1 triggered

IFN-related gene expression, EBER1 transferred via exosomes had no effect on these HFKs.

However, exosomes from wt EBV-infected LCLs induced IFN-related genes and IL-6 in

moDCs. We propose that the induction of IFN-related genes and IL-6 by EBER1 depends on

the quantity of EBER1 and the type of recipient cells. High levels of EBER1 in cervical cells

may play a role in the inflammation-to-oncogenesis transition of HPV-associated cervical can-

cer development through the modulation of innate immune signals.
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ative expression level was corrected using the housekeeping gene GAPDH (2-ddCp). ��; P< 0.01.
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S2 Fig. Expression of IFN-related gene and inflammatory cytokine gene in primary HFKs.

EBV-modified exosomes were added to primary HFKs and incubated for 24 hours. The

expression levels of IFN-related genes and inflammatory cytokine gene were determined

by qRT-PCR. Relative expression level was corrected using the housekeeping gene GAPDH
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