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Abstract: The way organelles are viewed by cell biologists is quickly changing. For many years,
these cellular entities were thought to be unique and singular structures that performed specific
roles. However, in recent decades, researchers have discovered that organelles are dynamic and
form physical contacts. In addition, organelle interactions modulate several vital biological functions,
and the dysregulation of these contacts is involved in cell dysfunction and different pathologies,
including neurodegenerative diseases. Mitochondria–ER contact sites (MERCS) are among the most
extensively studied and understood juxtapositioned interorganelle structures. In this review, we
summarise the major biological and ultrastructural dysfunctions of MERCS in neurodegeneration,
with a particular focus on Alzheimer’s disease as well as Parkinson’s disease, amyotrophic lateral
sclerosis and frontotemporal dementia. We also propose an updated version of the MERCS hypothesis
in Alzheimer’s disease based on new findings. Finally, we discuss the possibility of MERCS being
used as possible drug targets to halt cell death and neurodegeneration.

Keywords: mitochondria–ER contact sites (MERCS); mitochondria–ER associated membrane (MAM);
neurodegeneration; neurodegenerative diseases; Alzheimer’s disease; Parkinson’s disease; amy-
otrophic lateral sclerosis; frontotemporal dementia

1. The Beginning: Cells, Organelles and Organelle Contact Sites

The Earth is 4.5 billion years old, and life on our planet began approximately 3.8 billion
years ago. Since there is no fossil record of the beginning of life on our planet, we can only
speculate about the origin of the first macromolecules and lifeforms. Evolutionary biologists
believe that the first cells originated after a phospholipid membrane encapsulated a self-
replicating RNA [1,2]. With time, this primordial cell evolved, becoming more complex,
and evolving into the ancestors we know as organelles and prokaryotic cells. These first
cells were anaerobic and obtained energy through the breakdown of organic molecules
in the absence of oxygen [2]. Therefore, natural selection favoured cells that produced
the most energy and replicated the fastest. However, bacterial growth is limited by its
geometry. Every time a bacterium grows, its volume/surface area ratio decreases (with
the exact value depending on bacterial shape), resulting in a decrease in its respiratory
efficiency due to an increase in energy demand (volume) relative to energy production
(surface area). Changing shape and folding membranes to create sheets and villi enabled
cells to overcome this reduced respiratory capacity. However, these complex processes
made them extremely fragile with difficulty replicating accurately, and thus, these cells
were not selected [3]. Pre-eukaryotic cells originated between approximately one and two
billion years after the first cells emerged upon the engulfment of a facultative anaerobe,
α-proteobacterium, by an archaebacterium, developing an endosymbiotic relationship
and allowing them to evolve together [2,4]. This symbiosis provided several advantages
over other cells. First, with an energy producer inside the cell, these new eukaryotic
cells could lose their highly impermeable cell wall without losing the chemical gradient
necessary for energy production. This allowed their outer membrane to specialize, with
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functions such as cell signalling, phagocytosis and movement. These pre-eukaryotic
bacteria were also able to grow larger since they could increase their energy efficiency by
merely increasing the number of α-proteobacterium energy producers without affecting
the total volume of the cell. In fact, eukaryotic cells are on average 10,000- to 100,000-fold
larger than bacteria [3]. Around this time, the levels of oxygen on Earth started to increase.
The engulfed α-proteobacterium could convert oxygen into energy, which allowed a
sixfold increase in energy production upon glucose degradation in the new pre-eukaryotic
cell, which conferred a competitive advantage over other organisms [5]. Eventually, this
endosymbiotic relationship led to the precursor of eukaryotic cells as we know them
today, with α-proteobacteria being the precursors of mitochondria. Similar processes
occurred with chloroplasts, which are cellular organelles originating from photosynthetic
bacteria [1]. On the other hand, the nucleus and endoplasmic reticulum (ER) might have
originated from plasma-membrane invaginations [4]. In addition to nuclei, mitochondria
are the only other organelles in animal cells in which DNA can be found—mitochondrial
DNA (mtDNA). However, most of the DNA (approximately 95 to 99.5%) from primordial
mitochondria was transferred to the nuclear genome. In fact, this transfer did not occur at a
single time point, as indicated by the human genome project, which has shown that at least
354 independent DNA-transfer events occurred from mitochondria to nuclei. Interestingly,
different species seem to have maintained the same genes inside of mitochondria, despite
their different evolutionary paths, suggesting that this transfer does not occur randomly.
Several theories have been proposed to explain why the whole mitochondrial genome
has not been integrated into the nuclear genome, including the fact that the former codes
for proteins that are either large or too hydrophobic, or the fact that mtDNA allows a
response to changes in mitochondrial respiration that is faster than that of a retrograde
response. Even today, after billions of years, mitochondria are somewhat independent. For
example, mitochondria and the host cell divide independently, with mitochondria able
to replicate inside of host cells [3]. Other organelles have also been shown to influence
mitochondrial function and ultrastructure. For example, the ER has been shown to mark the
place where mitochondrial division occurs (discussed below). Currently, eukaryotic cells
are complex and contain several organelles. These organelles are believed to be individual
entities delimited by well-defined membranes with unique features designed to allow for
specific cellular functions. However, modern advances in technology, such as electron
microscopy and subcellular fractionation, as well as the discovery of the secretory pathway
and clathrin-coated vesicles, have led researchers to question whether organelles are truly
single and independent cellular entities [6–8]. Currently, we know that organelles form
highly complex networks, and their crosstalk is essential for their normal development and
function, as well as for cell homeostasis.

Although a fairly new area, the field of organelle contact sites has been exploding,
and several organelle contact sites have been identified, including plasma membrane–
mitochondria, ER–Golgi, and mitochondria–peroxisomes [9,10]. Generally, contact sites
are classically defined as membranes of different organelles in close apposition. However,
due to momentum and increasing interest in the field, a more concrete definition of contact
sites has recently been established. The following criteria used to define a contact site have
been proposed: (1) there must be a tether between two bilayer or monolayer membranes,
(2) there must be no fusion between the membranes, (3) there must be a specific function
for this contact site and (4) there must be a defined proteome and/or lipidome [11]. These
organelle contact sites are important for normal cell functioning, and alterations in these
sites have been reported to be associated with several diseases, including cancer, obesity,
diabetes and infection [12–14]. In this review, we explore the roles of one type of organelle
contact site, mitochondria–ER contact sites (MERCS), in neurodegenerative disorders (NDs).
In particular, we provide an updated overview of the relevant molecular composition and
the dysregulated MERCS-related biological pathways in Alzheimer’s disease (AD), with a
brief overview of these factors in Parkinson’s disease (PD) and amyotrophic lateral sclerosis
(ALS)/frontotemporal dementia (FTD).
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2. Mitochondria–ER Contact Sites and Mitochondria-Associated ER Membranes

MERCS were first observed in the 1950s by Bernhard and colleagues [15,16], while
the first biochemical fraction enriched at this juxtaposition was obtained 15 years later [17–
20]. However, it was not until the 1990s that Jean Vance identified the first functional
role of connected ER and mitochondria, showing that phosphatidylserine (PSer), phos-
phatidylethanolamine (PE) and phosphatidylcholine (PC) were synthetized in a subcellular
fraction enriched with mitochondria-associated ER membrane (MAM) [21,22]. The terms
MERCS and MAM are often used interchangeably; however, this usage is in accurate.
While MERCS refers to the ultrastructure and tethering architecture of the contact sites,
MAM refers to the biochemical properties of these contacts, and sometimes, MAM is
also used to refer to the specialized lipid raft-like domain in the ER that interacts with
mitochondria and that is pulled down via subcellular fractionation [22–24]. Currently,
over 100 proteins have been shown to either have a structural or functional/biochemical
role in these contacts, including calcium (Ca2+) shuttling from the ER to mitochondria,
autophagosome formation, reactive oxygen species (ROS) signalling and phospholipid
metabolism. These contacts are thought to cover from approximately 5 to 12–20% of the
mitochondrial surface, depending on the type of cells and their metabolic stage [23–25].
Here, we focus on the tethers and functional roles that have been connected with AD,
PD and ALS/FTD. Therefore, a detailed overview of the ultrastructure of MERCS and
their composition is beyond the scope of this review, but has been presented in different
publications, including those by Prinz et al., Schon et al. and Pailluson et al. [13,26,27].

2.1. Mitochondria

Structurally, mitochondria are composed of two lipid bilayer membranes (the outer
and inner mitochondrial membranes—the OMM and IMM, respectively) and two aqueous
compartments (the intermembrane space (IMS) and matrix). Each structure has a specific
composition and role in maintaining normal mitochondrial and cell functioning [1]. The
OMM delimits a mitochondrion and is the basis of the organelle shape and morphology.
The OMM contains a high number of integral proteins that allow the passage of molecules
as large as 5000 daltons to and from mitochondria. Larger molecules need to be selectively
transported by the translocase of the outer membrane (TOM). IMM is characterized by
enrichment with cardiolipin, a phospholipid with four fatty-acid chains instead of the
standard two fatty-acid chains, making this membrane extremely impermeable. This im-
permeability allows the formation of mitochondrial membrane potential (∆Ψm) since it
sequesters the protons released during oxidative phosphorylation (OXPHOS) into the IMS.
Invaginations of the IMM into the matrix are called cristae, and they harbour complexes
that form the electron-transport chain (ETC). Transport across this membrane is performed
via the translocase of the inner membrane (TIM) or ion transporters and is dependent on
the presence of a ∆Ψm [1,28]. IMS is the aqueous compartment between the OMM and
IMM, and it is known for storing protons released during OXPHOS and for regulating
mitochondrial protein import [1,29]. In the mitochondrial matrix, numerous chemical reac-
tions occur, including the tricarboxylic acid (TCA) cycle, reduction of nicotinamide adenine
dinucleotide (NAD) to NADH and β-oxidation. It is also in the mitochondrial matrix
where mtDNA is harboured and where mitochondrial transcription and translation occur.
Even though mtDNA encodes some mitochondrial proteins, the majority of mitochondrial
proteins are encoded by nuclear DNA in the cytosol or ER and need to be imported via a
signalling peptide [1].

Mitochondria are best known for their role in the production of adenosine triphosphate
(ATP), a biological energy molecule. ATP can be formed in different pathways, with
glycolysis and OXPHOS being the main sources of ATP production during normal cell
functioning. However, glycolysis produces a very small amount of ATP compared to
OXPHOS. During glycolysis, glucose (six carbon molecules) is only partially degraded,
with one covalent bond being broken, forming two molecules of pyruvate (three carbon
molecules). Pyruvate, together with coenzyme A (CoA), forms acetyl-CoA and allows the
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continuation of its degradation inside mitochondria in the TCA cycle. During this process,
large amounts of reduced NADH and flavin adenine dinucleotide (FADH2) are formed.
NADH and FADH2 act as electron carriers, transporting electrons to the ETC where they
will be transferred between different complexes (I to IV). During this electron transfer and
reduction of complexes, protons are transferred to the IMS, where they accumulate and
create the ∆Ψm due to the difference in the electrochemical gradient between IMS and the
matrix. Due to the difference in this gradient and the impermeability of the IMM, protons
can only return to the matrix via complex V (FOF1-ATP synthase), creating kinetic energy
that induces the rotation of this complex and phosphorylation of ADP into ATP [1].

2.2. The Endoplasmic Reticulum

The endoplasmic reticulum is one of the largest organelles, expanding throughout the
whole cell from the nucleus to the plasma membrane. Similar to mitochondria, the ER is
present in whole eukaryotic cells and is composed of a connected phospholipid bilayer
membrane that is shaped like tubules or flattened sacs. This membrane separates the ER
lumen, which is connected to the nucleus, and the cytosol. The major functions of the ER
are lipid (smooth ER–SER) and protein (rough ER–RER) biosynthesis [1,30]. Similar to
mitochondrial proteins, ER-resident proteins need to be directed to the ER. Transmembrane
proteins undergo a cotranslational process here; that is, they are imported into the ER
membrane at the same time that their mRNA is translated by the ribosome, thereby
preventing exposure of hydrophobic regions and misfolding of proteins. This process is
also facilitated by chaperones. Protein-translating ribosomes are attached directly to the ER,
giving the ER the rough appearance observed by transmission electron microscopy (TEM),
from which its name, the rough ER, is derived. Due to the need for ribosomal binding to
the ER membrane to prevent transmembrane protein misfolding, more than 20 proteins
enable their attachment exclusively in the RER, not in the SER [1]. At the SER, ER exit sites
can be found, where transport vesicles carrying synthesized proteins and lipids bud off
and go to their target region/organelle. The SER is also critical for the synthesis of steroid
hormones, detoxification of water-insoluble drugs and storage of Ca2+ (further described
in the next sections) [1].

2.3. The Ultrastructure and Tethering Proteins of MERCS

Although at first glance these two organelles seem to be functionally and structurally
very different, they are physically and biochemically interconnected via MERCS. However,
we still do not know the complete MERCS proteome or how certain proteins affect the
ultrastructure and function of MERCS. To identify these players, researchers started to look
at the protein profiles of subcellular MAM-enriched fractions in different tissues under
normal and stress conditions. In 2013, Poston and colleagues identified 1212 proteins in the
MAM-enriched fraction derived from mouse brain and found that most of these proteins
have been reported to have a role in mitochondrial function and OXPHOS [31]. Other
independent studies have also been performed with rabbit skeletal muscle, in which 459
proteins were identified [32], and with mouse and human testes (2800 proteins), and a
second study was performed with mouse brains (2500 proteins) [33]. Other studies have
used a similar approach to look at variations between proteins in MERCS during viral
infection [34], in diabetes [35] and in mice with caveolin-1 (a pivotal regulator of cholesterol
and component of MERCS) knocked out [36]. Recently, Magalhães Rebelo and colleagues
clustered the common proteins identified in these different studies and showed that approx-
imately 650 proteins in mouse brain tissue were found in three of the other aforementioned
independent studies [31,33,37], but only 18 of these proteins were commonly found in all
the aforementioned studies involving the mouse brain, liver and testis [37], suggesting
that the MERCS proteome might be tissue-specific. They also showed that approximately
1190 proteins were found in two different immortalised human liver cells [31,32,35]. These
studies are relevant to the field since they identified thousands of possible candidates
that may be involved in the regulation of the structure and function of MERCS. Although
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several proteins in MERCS have been identified, and their functions have been reported,
most of these candidates identified by proteomics remain to be validated. Of the previously
validated proteins identified as related to MERCS, some have been reported to act as
scaffold proteins, either tethering or acting as negative regulators of ER and mitochondria
juxtaposition, while others are involved in the regulation of different biological functions,
and some have even been reported to have both structural and functional roles [12,26].
Some relevant examples of the already identified scaffold proteins for this review include
mitofusin 1 (Mfn1), mitofusin 2 (Mfn2), vesicle-associated membrane protein-associated
protein B (VAPB) and protein tyrosine phosphatase-interacting protein 51 (PTPIP51).

Mitofusins were first reported to have a role in MERCS in 2008 by De Brito and
colleagues; in their study, while Mfn1 was found to be present only in the OMM, Mfn2 was
found both in the ER and mitochondria, allowing tethering between the two organelles by
either heterodimers (Mfn1–Mfn2) or homodimers (Mfn2–Mfn2) [38]. For many years, it
was widely accepted that these proteins act as tethering pairs in MERCS, and modulation
of Mfn2 levels has been extensively used as a tool to modulate MERCS [39–41]. However,
this model has been questioned since, more recently, other publications have reported
that Mfn2 acts, in fact, as a negative regulator of MERCS; i.e., knocking out or knocking
down Mfn2 increases the connectivity between the ER and mitochondria and increases
the amount of Ca2+ shuttled from the ER to mitochondria [41–43]. Although the scientific
community has not reached a consensus about the exact role of Mfn2 in MERCS, we can
agree that modulation of Mfn2 levels alters the ultrastructure and function of MERCS.
However, notably, in publications where Mfn2 was cited as a modulator of MERCS, the
ultrastructure and function of the MERCS were not necessarily assessed, leading the authors
to extrapolate changes in MERCS based on previous publications (mostly assuming that
Mfn2 is a tethering protein).

VAPB and PTPIP51 were first shown to be MERCS proteins and to affect mitochondrial
Ca2+ in 2012 by De Vos and colleagues [44]. In contrast to Mfn2, the role of the VAPB
and PTPIP51 pair in MERCS seems to be consistent among different publications, making
the modulation of these proteins a promising way to alter MERCS [45–47]. Recently, the
VAPB and PTPIP51 pair has been found in synapses, and synaptic activity stimulates
their interaction, leading to an increase in MERCS [47]. A recent review was published by
Shirokova and colleagues, who extensively describe the role of MERCS in synapses [48].

Several other proteins have been shown to affect the ultrastructure of MERCS; however,
a discussion of these proteins is not within the scope of this review. Some examples
include PDZD8 [49], transglutaminase type 2 (TG2) [50], phosphofurin acidic cluster sorting
protein 2 (PACS-2) [51], B cell receptor-associated protein 31 (BAP31) and TOM40 [52] and
mitoguardin (Miga) [53].

In recent years, the ultrastructure of MERCS has been widely evaluated by TEM by
assessing when mitochondria and the ER are closer than a specific distance—the cleft
distance. Usually, the cleft distance is set between 10 and 80 nanometres (nm), where
30 nm is commonly set as the largest distance for contacting membranes. However, some
publications have categorized these contacts into close (<30 nm) and long-distance contacts
(>30 nm) [23,54]. Although much information can be obtained on the ultrastructure of
MERCS from an electron micrograph, researchers usually quantify the number of MERCS
observed in addition to measuring the contact distances. A general consensus in the field
suggests that an increased number of or longer MERCS lead to increased connectivity
between the ER and mitochondria and therefore increase the function of MERCS. However,
the distance between the two organelles has been largely neglected and may provide further
information about the nature of MERCS. Recently, Giacomello and Pellegrini suggested
that MERCS can be classified into different groups/types according to their functions, e.g.,
Ca2+-MERCS and autophagy-MERCS, challenging the previous idea that a set of MERCS
performs several biological functions. The authors suggest that a particular set of MERCS
might have a particular proteome and, therefore, a particular cleft distance between the
two organelles in accordance with their function (i.e., Ca2+-MERCS have a closer contact
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distance to allow cation exchange (approximately 15 nm), while autophagy-MERCS have
long-distance contacts to accommodate autophagosome biogenesis (approximately 50
nm)) [23]. Another relevant parameter that the field is trying to address is the duration
of these contacts. MERCS are extremely dynamic and change upon stress or metabolic
demand [23]; therefore, a short but long-period MERCS may be as “strong” as a long but
short-period contact.

Nevertheless, different functions have been suggested to occur at MERCS, with some
of them exclusive to this region. In addition, alterations in the ultrastructure of MERCS
affect their biological functions, including Ca2+ transfer from the ER to mitochondria,
autophagosome formation and the unfolded protein response (UPR).

2.4. Ca2+ Shuttling from the ER to Mitochondria

Ca2+ transfer from the ER to mitochondria is one of the best-characterized functions of
MERCS. Ca2+ is one of the major cellular secondary messengers, and even small variations
in its concentration can lead to drastic alterations in cell homeostasis. Therefore, there
is a need to buffer Ca2+ inside organelles (e.g., ER and mitochondria) to maintain low
levels. This regulated buffering of Ca2+ allows the formation of Ca2+ “hotspots” that,
upon stimulation, lead to a spatial–temporal release of these cations (further details about
Ca2+ as a second messenger and Ca2+ homeostasis can be found in Berridge et al. and
Bravo-Sagua et al. [55,56]). The majority of Ca2+ enters the ER via the sarco/endoplasmic
reticulum Ca2+-ATPase (SERCA) pump and is released by either ryanodine receptors or
inositol 1,4,5-trisphosphate receptors (IP3Rs) [57]. Together with glucose-regulated protein
75 (Grp75) and voltage-dependent anion-selective channel protein 1 (VDAC1), IP3Rs form
a protein complex (IP3Rs-Grp75-VDAC1) that allows the passage of Ca2+ directly from
the ER to the mitochondrial IMS. Although three different isoforms of IP3Rs have been
identified (IP3R1, IP3R2 and IP3R3), the field has widely focused on the role of isoforms
1 (IP3R1) and 3 (IP3R3), probably because these two isoforms were the first described to
be highly enriched in the MAM [58–60]. However, new evidence has recently shown that
IP3R2 also plays a role in shuttling Ca2+ at MERCS [14,61]. Similarly, other isoforms of
VDAC1, such as VDAC2, have recently been reported to be involved in functions related
to MERCS [62]. However, the specificity of these isoforms in different types of MERCS or
tissues remains to be uncovered. A few other proteins have been reported to modulate
IP3Rs-Grp75-VDAC1, including Sigma-1 receptor (Sigma-1R) (which stabilizes IP3R3 in
the MAM, thereby prolonging the Ca2+ signalling between the ER and mitochondria) [63]
and TOM70 (the knockdown of which leads to misplacement of IP3R3 outside MERCS,
and therefore to reduced Ca2+ shuttling from the ER to mitochondria) [64].

Ca2+ cannot diffuse through the impermeable IMM, and therefore, it enters the mi-
tochondrial matrix via the mitochondrial calcium uniporter (MCU) complex. The MCU
complex is formed by several regulatory proteins (mitochondrial calcium-uptake protein 1
(MICU1) and 2 (MICU2), essential MCU regulator (EMRE) and MCU paralogue (MCUb))
and by the MCU channel [65]. Surprisingly, MCU has a very low affinity for Ca2+, which
prevents the uptake of Ca2+ into mitochondria when its level is low in the cytosol, and
therefore, the level is also low in the IMS [66]. This condition limits Ca2+ uptake to only
“hotspot” areas, such as MERCS where higher concentrations of Ca2+ overcome the low
affinity of the MCU complex for Ca2+ [67].

In the matrix, Ca2+ can affect mitochondrial function differentially. Ca2+ can boost
ATP production by activating pyruvate dehydrogenase [68–70], α-ketoglutarate dehydroge-
nase [71] and isocitrate dehydrogenase [72] in the TCA cycle. However, in excess, Ca2+ can
lead to apoptosis by sensitizing mitochondria, lowering the threshold for mitochondrial
permeability transition pore opening and activating the caspase-dependent mitochondrial
pathway (a more detailed and comprehensive explanation of this mechanism can be found
in Bravo-Sagua et al. [73]). In fact, an increase in MERCS and therefore higher Ca2+ flow
into mitochondria have been shown to lead to the apoptosis of RBL-2H3 cells and dopamin-
ergic neurons [74,75]. Therefore, excess Ca2+ needs to be extruded from mitochondria
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via the mitochondrial sodium/Ca2+ exchanger (NCLX) and taken up by the ER through
the SERCA pump [76]. Thus, it is understandable that the levels of Ca2+, including the
level inside mitochondria, must be tightly regulated since their imbalance can have an
antithetical effect.

2.5. Autophagosome Formation

Macroautophagy, commonly known as autophagy, is a cellular process where specific
targeted cargo is engulfed by an autophagosome. This autophagosome then fuses with a
lysosome, forming an autophagolysosome, resulting in the degradation of the cargo and
formation of macromolecule monomers that can be repurposed. Therefore, autophagy is
known as a biological recycling process and is essential for cell homeostasis and devel-
opment. Autophagy is usually activated during stress and is tightly regulated since its
function must be integrated into responses to different insults [77,78].

Autophagosome formation can be marked by three phases: initiation, nucleation and
expansion. One of the best-described pathways that leads to autophagosome formation
is that of the energy sensor adenosine monophosphate (AMP)-activated protein kinase
(AMPK) and mammalian target of rapamycin complex 1 (mTORC1). Under normal con-
ditions, mTORC1 is active and promotes cell growth and anabolic metabolism, blocking
autophagy. During starvation, when the levels of ATP decrease, AMPK is activated and
induces catabolic metabolism by phosphorylating and inhibiting mTORC1. This leads to
activation of the Unc-51-like autophagy-activating kinase 1 (ULK1) complex (which in-
cludes focal adhesion kinase family integrating protein (FIP200)), leading to the formation
of an isolation membrane via the Beclin1–class III phosphatidylinositol 3-kinase (PI3KC3)
complex. Next, maturation of the isolation membrane steps include several autophagy-
related (ATG) proteins, and in the final steps, microtubule-associated protein 1A/1B-light
chain 3 (LC3). LC3 is synthesised in an unprocessed form, cleaved at its C-terminus into
LC3-I and then conjugated to PE, forming LC3-II. LC3-II has been widely used as a proxy
for discerning mature autophagosomes since, in contrast to most other proteins involved in
autophagosome formation, LC3-II does not dissociate from the autophagosomal membrane
before its closure (a more detailed review on autophagosome formation and maturation
was written by Lamb et al. and Grasso et al. [77,78]).

Even though the molecular mechanisms behind autophagosome formation and matu-
ration are largely known, the exact place from which the isolation membrane originates
remains puzzling. Since autophagosomes must form quickly in response to different inputs
and stresses, it is believed that the isolation membrane must originate from organelles
that are able to rapidly mobilize substantial amounts of membrane, such as the Golgi
or ER. In fact, there are data showing that the isolation membrane can originate in the
Golgi [79,80], plasma membrane [81], mitochondria [82] and MERCS [39,83]. MERCS were
first shown to be among the places where the isolation membrane arises in 2013, when
Hamasaki and colleagues showed that upon starvation, ATG5, ATG14 and double FYVE
domain-containing protein 1 (DFCP1) were enriched in subcellular fractions enriched with
MAM in mammalian cells. Furthermore, they showed that upon knockdown of PACS2
and Mfn2, the levels of ATG14 and DFCP1 in the enriched MAM fraction and the levels of
LC3-II decreased, suggesting a diminished autophagosome formation [39]. Importantly,
the ultrastructure of the MERCS was not assessed in this publication, and Mfn2 was
assumed to be a tethering protein and, therefore, Mfn2 knockdown led to decrease in
the connectivity between ER and mitochondria, leading to a decrease of autophagosome
formation. However, as mentioned above, recent publications have suggested that Mfn2
has a negative role in the regulation of these contacts. In fact, it was recently shown that
during starvation, the number of MERCS and the mitochondrial function are upregulated
immediately before autophagosome formation. However, when the levels of LC3-II in-
crease, mitochondria and ER juxtaposition decrease at the same time point, together with a
decrease in mitochondrial function and an increase in the levels of Mfn2 [84]. In addition,
Gomez-Suaga and colleagues showed that knockdown of VAPB or its partner PTPIP51 led



Biomedicines 2021, 9, 227 8 of 35

to a decrease in MERCS and an increase in basal autophagy and autophagic flux. Accord-
ingly, the overexpression of these proteins led to an increase in the juxtaposition between
the ER and mitochondria and a decrease in basal autophagy and autophagic flux. Surpris-
ingly, overexpression of VAPB or PTPIP51 prevented the formation of autophagosomes
after rapamycin and torin-1 (inducers of autophagy) treatment but not starvation [46].
In summary, these data suggest that connectivity between the ER and mitochondria is
negatively correlated with autophagosome formation, even though this negative effect is
dependent on the nature of the autophagy stimulus. One of the possible mechanisms that
explains how an increase in MERCS can lead to a decrease in autophagosome formation
involves Ca2+. Gomez-Suaga and colleagues showed that the aforementioned changes
are associated with Ca2+ shuttling from the ER to mitochondria via IP3Rs since blocking
IP3Rs with Xestospongin C or the MCU complex with ruthenium-360 abrogated the ef-
fect of VAPB and PTPIP51 overexpression on autophagosome formation [46]. However,
Ca2+ signalling has been shown to affect autophagy in both positive and negative ways.
For example, since mitochondrial Ca2+ influences ATP production and because AMPK is
regulated by the AMP:ATP ratio, it is easy to understand that a decrease in Ca2+ in the
mitochondria results in a decrease in ATP and therefore induces activation of AMPK and
autophagy. Hence, it is not surprising that a genetically induced decrease in IP3Rs, such
as by knockdown, or the inhibition of their activity with Xestospongin B treatment led
to activation of autophagy via activation of AMPK under fed conditions [85]. However,
under starvation conditions, treatment with Xestospongin B actually leads to the inhibition
of autophagy [86]. To further complicate our understanding of autophagosome origin, ATP
has also been shown to be upregulated during amino-acid starvation in trypanosomes and
to be essential for certain autophagosome-assembly steps [87]. Further studies are required
to better understand the exact role of Ca2+ in autophagy regulation, but the differences
in results are probably connected with metabolic status and energy availability under fed
versus starved conditions.

2.6. The Unfolded Protein Response in the ER

Due to the major role of the ER and mitochondria in the cell, it is not surprising
that these organelles have developed signalling pathways that ensure their functionality
during stress, such as that caused by an accumulation of misfolded proteins. Protein
homeostasis results in a balance between the accumulation of unfolded proteins and the
folding capacity of the cellular system. The unfolded protein response (UPR) is a conserved
adaptive pathway that allows the recovery of ER (UPRER) and mitochondria (UPRmt)
to their normal functions even upon the accumulation of misfolded proteins in these
organelles. Although these processes can be activated by several pathways, the general
mechanism consists of halting protein synthesis (except for chaperones) to decrease the
burden of protein misfolding. However, sustained and prolonged conditions can also have
negative effects, including apoptosis [88,89].

The UPRER consists of three integrated signalling pathways activated by activat-
ing transcription factor 6 (ATF6), protein kinase RNA-like endoplasmic reticulum kinase
(PERK) or inositol-requiring enzyme 1 (IRE1). These three proteins, under normal con-
ditions, are inhibited by a direct interaction with immunoglobulin heavy-chain-binding
protein (BiP). Upon stress stimulation, such as the accumulation of misfolded proteins, BiP
releases the sensor proteins, thereby inducing the activation of the UPRER. In particular,
when dissociated from BiP, PERK forms stable homodimers via its luminal domains, which
trans-phosphorylate each other’s cytosolic kinase domain. Tetramers of PERK can also
be found and are believed to have an increased state of activation [90]. Activated PERK
will then phosphorylate the α-subunit of eukaryotic initiation factor 2 (eIF2α), resulting in
the activation of the stress-responsive activating transcription factor ATF4. Altogether, the
activation of these two factors leads to the inhibition of ribosomal translation initiation and
a shift to the increased production of stress-responsive proteins. ATF4 can induce the ex-
pression of C/EBP homologous protein (CHOP), which, in turn, induces stress-responsive
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genes such as ER oxidase 1 (ERO1), protein phosphatase 1 (PP1) and PP1 cofactor DNA
damage-inducible protein 34 (GADD34), which dephosphorylate eIF2α, deactivating the
whole pathway. A more detailed review of UPRER was described by Santos et al. and
Rainbolt et al. [88,91].

The possible involvement of MERCS in ER stress arises from the fact that ER stress
can be transmitted to mitochondria via changes in the transfer of metabolites, such as
Ca2+, between the two organelles. In fact, MERCS is increased in the early phases of ER
stress, leading to an increase in Ca2+ inside mitochondria and in ATP levels. This increase
raises the energy levels in the cell, helping it cope with the ER stress response [92]. On the
other hand, chronic exposure to ER stress leads to an overload of Ca2+ in efflux from the
ER. However, as mentioned in Section 2.4, when this overflow of Ca2+ into mitochondria
becomes excessive and overwhelming, this results in apoptosis and programmed cell
death [73,91,92]. The induction of ER stress by tunicamycin was recently shown to decrease
MERCS via disruption of the BAP31–TOM40 tethering complex [52]. In particular, PERK
has also been shown to affect mitochondrial function. Cells deficient in PERK manifest
increased basal and maximal respiration and an increase in ROS, impaired mtDNA biogen-
esis and altered apoptosis [91]. Moreover, PERK has been shown to localize to MERCS and
is required for proper coupling of the ER and mitochondria and for ROS-induced apoptosis.
In addition, depletion of PERK leads to fewer MERCS [93]. PERK activation has also been
reported to facilitate mitochondrial proteostasis by modulating protease Lon during ER
stress, preventing mitochondrial dysfunction during ER stress [91] and by increasing the
levels of the Grp75 protein (also known as heat shock protein (HSP) 70 ATP-dependent
chaperone HSPA9 or mortalin) in MERCS. Overexpression of Grp75 attenuates ROS levels
in models upon glucose deprivation, in which ER stress is activated [94] and attenuates the
cell toxicity induced by the amyloid β-peptide (Aβ) [95,96]. Additionally, dysregulation of
normal mitochondrial function and dynamics by deletion of Mfn2 leads to the activation
of UPRER via PERK, and if PERK is depleted in these cells, mitochondrial dysfunction
is attenuated. Unfortunately, the ultrastructure of the MERCS was not assessed in this
publication. In the same publication, the authors also showed that Mfn2 interacts with
PERK and negatively regulates its function [97]. In addition, knocking down PACS-2, and
therefore alterations in MERCS ultrastructure and Ca2+ function, leads to activation of
BiP and the UPRER [51]. Additionally, IRE1 has been found in MAM and is stabilized by
the Sigma-1R protein in MERCS [98]. In summary, these data suggest a tight relationship
between ER stress, MERCS and mitochondrial ultrastructure and function.

2.7. The Unfolded Protein Response in Mitochondria and Mitochondrial Quality Control

Mitochondria have a series of pathways that evolved to maintain their homeostasis,
called mitochondrial quality control (MQC). MQC can be considered a series of biological
processes that attenuate mitochondrial damage or stress and, when irreversible, lead to
the destruction of the damaged part of the mitochondrial network. Upon protein aggrega-
tion in mitochondria, one of the first responses of the MQC is a mitochondrial integrated
stress response that leads to the activation of the UPRmt by “retrograde signalling” to the
nucleus [99]. Similar to the UPRER, the activation of the UPRmt leads to the attenuation of
protein translation in mitochondria and an increase in the production of nuclear-encoded
chaperones (e.g., Hsp-60 and Grp75 (and its orthologue Hsp-6 in Caenorhabditis elegans—
C. elegans)) and proteases (e.g., ATP-dependent caseinolytic protease proteolytic subunit
(ClpP) and Lon)) [89,100,101]. In C. elegans, activating transcription factor associated with
stress-1 (ATFS-1) has a mitochondrial and nuclear targeting sequence and is essential for the
activation of the UPRmt. Under normal conditions, this protein is imported into mitochon-
dria, where it can be degraded by Lon [89]. During mitochondrial stress, ATFS-1 localizes
to the nucleus, where it acts as a transcription factor and activates the expression of chaper-
ones, proteases and other UPRmt pathways. In addition, during the UPRmt, ATFS-1 can
accumulate in the matrix where it binds to mtDNA, inhibiting transcription [100,101]. Re-
cently, the mammalian orthologue of ATFS-1 was identified: ATF5 [102]. Since “retrograde
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signalling” can be activated by different mechanisms, including changes in AMP/ATP
ratios, ∆Ψm, Ca2+ homeostasis and ROS levels [103], and because all these biological pro-
cesses have been shown to be regulated by MERCS, it is not surprising that MERCS may
have a role in the modulation of MQC and the UPRmt. In fact, one of the few studies that
examined this connection showed that, during mitochondrial stress, eIF2α is phosphory-
lated by general control nonderepressible-2 (GCN-2, one of the eIF2α kinases that is active
during amino-acid starvation) in a ROS-dependent manner, attenuating protein synthesis
and activating the UPRER [104]. A series of other studies showed that PD fly models show
impaired mitochondrial function and increased ER and mitochondrial stress, characterized
by increased levels of BiP and phosphorylated eIF2α, dependent on PERK. These animal
models also showed an increase in MERCS that was restored upon the downregulation
of Drosophila melanogaster (D. melanogaster) mitofusin (dMfn) [105]. Knocking down ATF4
downstream targets serine hydroxymethyltransferase 2 (Shmt2) and mitochondrial NAD-
dependent methylenetetrahydrofolate dehydrogenase-cyclohydrolase (Nmdmc) leads to
mitochondrial fragmentation and loss of ∆Ψm, and suppressing the upregulation of these
targets in the same PD fly models worsened their phenotype, while overexpression of these
targets improved the model phenotype. [106]. Knocking down dMfn led to an increase in
ATF4, Shmt2 and Nmdmc, and the overexpression of Nmdmc recovered the phenotype of
dMFn RNAi-treated flies, decreasing the levels of ATF4 [107]. Interestingly, ATF4 has also
been shown to be activated upon mitochondrial stress induction [108]. Additionally, loss of
Mfn2 has also been shown to activate ER stress [109]. In summary, these data suggest that,
similar to their roles in UPRER, eIF2α and ATF4 seem to play roles during mitochondrial
stress. However, further studies need to be performed to increase the understanding of the
role of MERCS in the UPRmt and of how mitochondria communicate with the ER.

When the UPRmt is overwhelmed, mitochondria employ a second mechanism to cope
with stress. Mitochondria are extremely dynamic organelles and undergo cycles of fusion
and fission to maintain the health and function of their extensive network. These alter-
ations between cycles allow mitochondria to undergo specific functions, e.g., dispose of
damaged mtDNA and/or proteins by segregating the damaged components into daughter
mitochondria via mitochondrial fission. Mitochondrial fusion is regulated by three major
GTPase proteins: optic atrophy 1 (OPA1) in the IMM and Mfn1 and Mfn2 in the OMM.
OPA1 anchors to the IMM via its N-terminus, while the C-terminal GTPase domain faces
the IMS and is believed to be critical for the fusion between two mitochondria [110]. Mfn1
and Mfn2 are structurally similar to each other; although Mfn1 is involved in mitochondrial
docking and fusion, Mfn2 has lower GTPase activity and therefore stabilizes the interac-
tions between two mitochondria [111]. Embryonic ablation of either of these proteins is
lethal [112]. Mitochondrial fission is also regulated by several proteins, with the GTPase
dynamin-related protein 1 (DRP1) being one of the best-characterized. DRP1 is a cytosolic
protein that can be recruited to mitochondria where it oligomerizes into a ring-like struc-
ture, leading to membrane strangling and ultimately to mitochondrial fission. Different
adaptor proteins have been shown to recruit DRP1 into mitochondria and regulate its
GTPase activity according to different cellular responses and energy states [113]. Due to the
particular anatomy of neuronal cells; i.e., with projections that can be extremely long, the
maintenance of mitochondrial dynamics is extremely important to ensure proper cellular
distribution and function of this organelle. In AD and other NDs, it is believed that an
imbalance between fission and fusion leads to increasingly fragmented and progressively
less-functional mitochondria [114,115].

The final MQC mechanism involves the recycling of daughter mitochondria using
the autophagy machinery to undergo mitophagy. Mitophagy ensures the elimination of
impaired mitochondria that have been separated from the mitochondrial network by fission.
Mitochondrial biogenesis can then occur through healthy mitochondria to replace cleared
defective organelles [116,117]. Under normal conditions, phosphatase and tensin homologue-
induced kinase 1 (PINK1) is imported into mitochondria via the TOM and TIM complexes.
In the IMM, PINK1 is cleaved by presenilin-associated rhomboid-like protein (PARL) and
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matrix-processing peptide (MPP) [116–119]. Since mitochondrial import via IMM is ∆Ψm-
dependent, when mitochondria are dysfunctional, ∆Ψm is lost, preventing the import to
or through the IMM [120]. In this situation, PINK1 is not cleaved by PARL and MPP and
will accumulate in the OMM with the TOM complex. PINK1 can phosphorylate different
proteins, including Mfn2, leading to the recruitment of Parkin to depolarized mitochondria.
Parkin is an E3 ubiquitin ligase that ubiquitinates several proteins in the OMM (including
the VDAC1 [121], TOM70 [122], Mfn1 [123] and Mfn2 [124] proteins in MERCS), leading to
the activation of mitophagy. This action involves the recruitment of autophagosome proteins
and results in the engulfment of damaged mitochondria by the mitophagosome. Other
mechanisms have been shown to induce mitophagy [116,117]. Similar to autophagosomes,
MERCS have also been reported to be involved in mitophagosome origination [125,126].

Mitochondrial fission has been shown to facilitate mitophagy [127]. Interestingly, the
ER has been reported to surround mitochondria where the fission site will occur, forming
MERCS. This allows the ER protein inverted formin 2 (INF2) and the mitochondrial protein
actin-nucleating Spire and Arp2/3 complexes to recruit actin–myosin assembles, which,
together with Drp1, induce mitochondrial fission [128–131]. More recently, a study showed
that Drp1 is associated with the ER during the mitochondrial fission process, tubulating the
ER and facilitating its interaction with mitochondria [132]. Moreover, this process seems to
be regulated by mechanisms in the mitochondrial matrix, since actively replicating mtDNA
is present in these ER-associated mitochondrial constriction and division sites, suggesting
coordination between mtDNA synthesis and mitochondrial division [133,134]. However,
it was recently shown that under stress, mitochondrial fragments colocalized with LC3
in Drp1-knockout yeast cells [135], suggesting that other mechanisms are involved in
mitochondrial fission during mitophagy. Furthermore, ablation of Mfn2 in different cell
types has also been reported to impair mitophagy, showing that mitochondrial fusion
is also important during this process, since it helps the interaction between PINK1 and
Parkin [124,136]. Altogether, these data indicate that MERCS can influence mitophagy by
modulating mitochondrial dynamics, in addition to its obvious role in modulating the
formation of the isolation membrane. In fact, it was recently shown that mitochondrial
fusion is regulated at MERCS and that mitochondrial fusion and fission are spatially
coordinated at this subcellular localization [137].

In summary, these data suggest that mitochondria and the ER communicate under
stress conditions and mutually support each other to maintain homeostasis. However,
several of the mechanisms that ensure this communication under stress remain unknown,
as does the exact role of MERCS in this process.

2.8. Other Functions of MERCS

Other functions of MERCS have been described. ROS production and clearance is a
very fine-tuned process in a cell. While ROS are important secondary messengers, high
levels of these unstable molecules can damage DNA and proteins, leading to oxidative
stress in the cell. ROS are mostly produced as by-products of OXPHOS and can be cleared
by antioxidant enzymes, such as superoxide dismutases (SODs). With age and in disease,
this balance is thought to be lost, leading to an increase in ROS [138,139]. Recently, MERCS
have been shown to control ROS nanodomains. During Ca2+ transfer from the ER to
mitochondria, ROS (in the form of H2O2) were immobilized in the space between the
ER and mitochondria, which allowed sustained Ca2+ oscillation [140]. In addition, an
increase in the number of contacts formed between the ER and mitochondria led to an
increase in ROS in ex vivo D. melanogaster [141]. Interestingly, NADPH oxidase 4, one of
the multi-subunit enzymes of the ETC, was shown to localize at MERCS and protect cells
against Ca2+-induced cell death by inhibiting IP3R via phosphorylation [142]. A more
detailed review on the interplay between MERCS and ROS was recently published by Fan
and colleagues [143].

Another widely described biological process at MERCS is phospholipid and choles-
terol formation and metabolism. Phospholipids are polar molecules with long hydrophobic
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tails. Therefore, they cannot be transported through aqueous phases, such as the cytosol,
and need to be transported in vesicles or trafficked directly between phospholipidic layers.
Several proteins involved in lipid and phospholipid metabolism have been described to
be involved in MERCS. A common example of phospholipid metabolism at MERCS is
the conversion of PSer to PE. PSer is transported from the ER to the IMM, where PSer
decarboxylase converts it into PE. PE is then transported back to the ER, where it can be
converted to PC by PE N-methyltransferase. Jean Vance has written two reviews in which
this process is described in greater detail [144,145].

Due to the aforementioned vital roles of MERCS-related biological processes, it is
not surprising that alterations in MERCS, proteins related to MERCS and functions of
MERCS have been associated with several different types of diseases, including ND, cancer,
diabetes, obesity and viral infectivity [12,13]. In the subsequent sections, we focus on the
roles of MERCS in different NDs with a focus on AD.

3. MERCS in Alzheimer’s Disease
3.1. Alzheimer’s Disease and the Mitochondrial Cascade Hypothesis

AD is the most common form of dementia in the world, and it is believed that 25 to
35 million people suffer from this pathology worldwide. AD is a complex multifactorial
disorder in which patients present cognitive decline, loss of memory, behavioural changes
and, in terminal phases, full dependency and the need for full-time caregivers. This disease
is characterized by progressive loss of neuronal cells (mostly cholinergic neurons in the
forebrain and glutamatergic neurons in cortical areas and the hippocampus) and by the
accumulation of intracellular neurofibrillary tangles (NFT, constituted by hyperphospho-
rylated tau protein) and extracellular amyloid plaques (constituted by Aβ) [146,147]. To
date, the accumulation of intracellular Aβ is believed to be the cause of neurodegeneration
in AD [148,149]. AD can be classified into an idiopathic form, sporadic AD (SAD), and
a hereditary form, familial AD (FAD). Even though drugs such as acetylcholinesterase
inhibitors (e.g., memantine) slow cognitive decline, there are still no drugs that halt the
ongoing neurodegeneration [146].

One can argue that one of the major reasons for the dearth of effective drugs in AD is
that the exact molecular and cellular mechanism underlying the aetiology of AD remain
unknown. In fact, several cellular processes have been reported to be altered in AD, in-
cluding oxidative stress, mitochondrial dysfunction, alterations in cholesterol metabolism,
inflammation and activation of the UPRER and UPRmt [150–152]. Due to the pivotal role
of mitochondria in the cell, it is not surprising that alterations in normal mitochondrial
functioning or structure can have a major impact on the cell and lead to different human
pathologies. In fact, increased mitochondrial fragmentation and ROS, as well as decreased
activity of TCA cycle enzymes, OXPHOS and ATP production, have been shown in AD
patients and AD models. Some of these events are evident even before plaque forma-
tion, suggesting that mitochondrial dysfunction precedes activation of the amyloidogenic
pathway [153]. In addition, different groups have shown that Aβ is present in the OMM
and can be imported into mitochondria via the TOM complex and receptor for advanced
glycation end products (RAGE) and therefore is found inside mitochondria in postmortem
AD brains [154–159]. Due to the accumulation and aggregation of Aβ in mitochondria,
as well as impaired mitochondrial function, it is not surprising that the UPRmt was also
found to be upregulated in FAD and SAD [160,161], in cells overexpressing APP and in AD
mouse models [161], as manifested by the increased levels of Hsp-60, Grp75, ClpP and Lon.
C. elegans overexpressing Aβ also showed an increase in the UPRmt and mitophagy, and
ATFS-1 depletion in these worms led to impaired mitochondrial function, a reduction in
the UPRmt, mitophagy and increased accumulation of Aβ and paralysis. However, induc-
tion of the UPRmt by overexpressing ATFS-1, silencing mitochondrial ribosomal protein
mrps-5 or inhibiting mitochondrial translation with doxycycline increased mitochondrial
fitness and decreased Aβ accumulation [161]. Notably, the UPRER has also been shown
to be upregulated in AD. BiP levels and phosphorylated PERK and eIF2α have also been
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shown to be increased in postmortem AD brains and in models with increased Aβ. In fact,
attenuating the increase in the levels of PERK and phosphorylated eIF2α alleviated the
AD-like phenotypes in a transgenic AD model [162,163].

In summary, these data led to the postulation of a mitochondrial cascade in AD,
where mitochondria mediate or even initialize the pathology (a more detailed review of
the mitochondrial cascade hypothesis in AD was recently published by Swerdlow [153]).
However, neither the OMM nor mitochondria themselves possess the biochemical milieu
required for Aβ production (i.e., OMM does not have lipid rafts, and the mitochondria
pH is not acidic), and mitochondrial dysfunction cannot explain some of the dysfunction
observed in AD, e.g., alterations in phospholipid and cholesterol metabolism and general
Ca2+ dysfunction. Only in the past 10 years has it been possible to understand how Aβ

formation can occur in close proximity to mitochondria and why the aforementioned
biological processes are altered due to MERCS, allowing the emergence of the MERCS
hypothesis in Alzheimer’s disease.

3.2. The Role of MERCS in Aβ Production

As mentioned before, Aβ is the major component of amyloid plaques, and one of the
fragments originates from the successive cleavage of amyloid precursor protein (APP) by
β- and γ-secretase [164]. In the amyloidogenic pathway, APP is first cleaved by β-secretase,
forming a soluble APPβ fragment and C99. C99 is further cleaved by γ-secretase, forming
the APP intracellular domain (AICD) and Aβ. γ-secretase is composed of four different
proteins, in which presenilin 1 or 2 (PS1 or PS2) correspond to the catalytic core protein
of this protein complex [165,166]. Mutations in APP, PS1 or PS2 have been shown to
cause FAD [147,167]. Interestingly, APP and γ-secretase have been detected in different
subcellular localizations, including the ER, lipid rafts in the plasma membrane and mito-
chondria [155,168]. Area-Gomez and colleagues showed, for the first time, that PS1, PS2
and APP were enriched and active in a subcellular fraction enriched with MAM [169] and
that this fraction behaved similar to a lipid raft since it was resistant to detergent [54].
Moreover, mouse embryonic fibroblasts (MEFs) lacking PS1 and PS2, as well as fibroblasts
derived from AD patients, showed increased connectivity between the ER and mitochon-
dria [54]. In addition to this study, Schreiner and colleagues showed that Aβ is formed in
this MAM-enriched fraction (but not in fractions enriched with pure mitochondria), and
upon overnight incubation with the γ-secretase inhibitor L-685,458, Aβ production was
significantly decreased, showing that not only is Aβ present in this fraction, but it can also
be formed here [170]. In 2017, Del Prete and colleagues further corroborated these findings
by showing that APP, Aβ, β- and γ-secretase are present and active in the MAM fraction
derived from SH-SY5Y and mouse brains [171].

To further advance the role of MERCS in Aβ production, a few publications have
shown that modulation of MERCS influences Aβ levels and formation. A stable Mfn2-
knockout MEF cell line showed a decrease in the APP fragment AICD and accumulation
of C99, suggesting an impairment of γ-secretase cleavage [54]. These data were further
confirmed since acute knockdown of Mfn2 in HEK293 cells overexpressing APP with the
Swedish mutation (APPSwe)—one of the mutations that causes FAD by leading to increased
levels of Aβ40 and Aβ42 [172]—led to an increase in connectivity between the ER and
mitochondria and a decrease in Aβ production due to impaired γ-secretase maturation
and therefore a decrease in its activity [41]. Altogether, these data show that APP, β- and
γ-secretase are present at MERCS, that Aβ can be formed at this subcellular region and
that modulation of MERCS affects Aβ production. However, it is still unknown exactly
how this process is realized at MERCS, since APP and γ-secretase must mature in the
Golgi apparatus and/or endosomes [173,174]. Therefore, several hypotheses have been
postulated, including that APP and γ-secretase return to MERCS after their respective
maturation. In fact, it has been shown that endosomes are found to contact mitochondria
and that the retrieval receptor Rer1p can transport active γ-secretase from the Golgi to the
ER [175–177]. A new study supporting the production of Aβ in MERCS demonstrated that
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the majority of Aβ is produced by a supercomplex formed by β- and γ-secretase, which
localizes in the perinuclear region of the cell, where the ER and mitochondria are known
to be abundant [178]. However, whether this supercomplex exists at the MERCS remains
unknown. Further work needs to be performed to better understand how mature APP and
γ-secretase return to MERCS and how Aβ production is regulated at MERCS.

3.3. The Effect of Aβ on the Ultrastructure and Function of MERCS

For several years, it was believed that amyloid plaques were critical for the neurode-
generation observed in AD. However, the presence of extracellular plaques does not explain
how they lead to cell degeneration, and the number of plaques does not correlate with the
cognitive decline found in AD patients [148,149]. Recently, oligomeric forms of Aβ; namely,
Aβ42, were shown to be the most toxic forms of Aβ and to correlate with the cognitive
decline found in AD. However, there is still no consensus within the scientific community
regarding the exact mechanisms that lead to cell failure and death [148,149]. In fact, when
Leal and colleagues assessed the ultrastructure of MERCS in brain biopsy samples derived
from patients with idiopathic normal pressure hydrocephalus (iNPH), they observed no
significant differences between biopsies with or without staining for extracellular amyloid
plaque [179]. These data suggest that the accumulation of amyloid plaques does not affect
the ultrastructure of MERCS. However, a positive correlation between the number of
MERCS and the ventricular levels of Aβ42 was found in the same patients, suggesting
that the monomeric and/or oligomeric form of Aβ42 might affect the ultrastructure of
MERCS. These data are further supported by different publications. In 2013, Hedskog
and colleagues showed that incubation of mouse primary cortical neurons with condi-
tioned medium derived from CHO cells overexpressing APP with the Indiana mutation
(APPV717F) (which increases the Aβ42/Aβ40 ratio) led to an increase in the proximity
between the VDAC1 and IP3R3 proteins in MERCS, as measured by proximity ligation
assay (PLA). An increase in Ca2+ shuttling from the ER to mitochondria was also reported
in SH-SY5Y cells upon treatment with this medium under the same conditions [180]. These
data were used as a proxy for an increase in MERCS, and therefore, the authors concluded
that Aβ increases the connectivity between the ER and mitochondria. However, two of
the major drawbacks of this study were the lack of assessment of MERCS by methods in
addition to the PLA of one protein pair specific to MERCS, as well as the fact that the au-
thors did not identify the component in the conditioned medium that led to the alterations
in MERCS (i.e., the type of Aβ and/or whether it was in aggregation form). In 2017, Del
Prete showed that overexpression of APPSwe in SH-SY5Y cells led to an increase in the
connectivity between the ER and mitochondria and an increase in the number of lipid
droplets, which have been shown to interact with MERCS [9,171]. Although the authors
showed that incubation of WT SH-5YSY cells with oligomeric Aβ42 increased the number
of lipid droplets, they did not assess alterations in the ultrastructure of the MERCS. In fact,
the model used overexpressed APP, increasing the levels of not only Aβ but also different
catabolites derived from APP cleavage, including C99, in the same publication [171]. There-
fore, the increase in MERCS observed by the authors cannot be said to be caused exclusively
by Aβ. In fact, in the same year, Pera and colleagues showed that inhibition of γ-secretase
led to an enrichment of C99 in the MAM fraction, resulting in an increase in the connectivity
between the ER and mitochondria, affecting the amount of lipid-droplet formation [181].
Further details on the alterations in cholesterol and phospholipid metabolism in AD can be
found in a recent review published by Agrawal and colleagues [182]. However, a recent
study showed that incubation of rat primary hippocampal neurons with oligomeric Aβ42
led to increased connectivity between the ER and mitochondria, increased Ca2+ transport
from the ER to mitochondria and increased ROS and apoptosis rates [183]. This study
thus supports previous studies that showed that oligomeric Aβ42 promotes the influx of
extracellular Ca2+ by activating Ca2+-permeable channels and forming pores in the plasma
membrane [184,185] and in the ER in an IP3R-dependent manner [186]. Similarly, it was
recently shown that primary cortical neurons derived from the AppNL-F knock-in mouse
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AD model, which presents higher levels of Aβ42 but not other APP fragments since it is
a knock-in model [187], exhibit an increase in ER-mitochondria connections. Moreover,
WT animals treated with synthetic monomeric and oligomeric Aβ42 showed a similar
increase. In addition, when cells were treated with oligomeric Aβ42 and the oligomeric
Aβ-neutralizing antibody fragment scFvA13, the increase in MERCS was abolished, show-
ing that this increase is Aβ42-dependent [84]. In D. melanogaster, overexpression of Aβ42
leads to reduced climbing ability and a decreased lifespan. However, both phenotypes
were recovered upon a genetic increase in MERCS [141], suggesting that the increase in
MERCS observed in different AD models might act as a rescue mechanism to recover
from Aβ stress. However, a recent study using Förster resonance energy transfer (FRET)
live imaging in neurons derived from transgenic rats and overexpressing APP (and thus
increasing Aβ and other APP fragments) showed a decrease in the number of lipid MERCS
(with cleft distance of <10 nm), shorter MERCS and a decrease in mitochondrial respiration.
No changes were observed in contacts with distances of 10–20 nm [188]. However, as
mentioned before, use of overexpressing models or investigating a particular tethering pair
at MERCS might not be ideal for estimating the overall alterations in the ultrastructure of
MERCS in AD.

Recently, Leal and colleagues showed that AppNL-F and AppNL-G-F mice—which, similar
to AppNL-F, have increased levels of Aβ42 but not of other APP fragments [187]—also
showed an increase in MERCS in CA1 (hippocampus) at the age of 10 months, but no
difference was found in the cortex or in any of these brain regions at earlier ages [84]. These
data suggest that although Aβ has an effect in increasing MERCS, this effect might not
occur until later stages of the pathology. These data are further supported by Lau and
colleagues, who showed that the VAPB and PTPIP51 pair as well as IP3R1 in MERCS
are not altered in early Braak stages (III–IV) but are altered in later stages (Braak stage
VI) [189]. In fact, it was also shown that there is a positive correlation between the number
of MERCS and ageing [179], suggesting that MERCS also increase in “healthy” ageing.
In addition, mice overexpressing APP with the Swedish mutation showed alterations in
proteins related to MERCS at three months [190]; however, the ultrastructure of the MERCS
was not assessed.

In summary, several studies in the field suggest that Aβ increases MERCS. Never-
theless, since the aforementioned studies are based on different models and different
methodologies to assess MERCS, it is impossible to compare them and understand the
discrepancy in the data. Further studies will allow us to understand whether these differ-
ences in the different publications arise from the different models and techniques used or
because different types of MERCS were analysed. Additionally, whether these alterations
in the ultrastructure and function of MERCS are caused directly by Aβ or by an indirect
pathway remains unexplored.

3.4. The Effect of Tau on the Ultrastructure and Function of MERCS

In contrast to studies on Aβ, only a few studies regarding MERCS and tau have been
published. In 2009, Perreault and colleagues showed that overexpression of human tau in
mice leads to an increase in the number of contacts between mitochondria and the rough
ER [191]. Recently, Cieri and colleagues showed that overexpression of WT tau (2N4R)
and caspase 3-cleaved truncated tau protein (2N4R∆C20), which induces fibrillation and
seeding of WT tau, led to the localization of these proteins into the IMS and OMM, as well
as a decrease in the steady-state ER Ca2+ content in HeLa cells. They also showed that
overexpression of 2N4R∆C20 in the same cells led to an increase in the short-range distance
(8–10 nm), as measured by split-GFP-based sensors (SPLICSS) of MERCS, while the long-
range (40–50 nm) sensor (SPLICSL) was not altered [192]. However, an ultrastructural
study performed in brain biopsy samples obtained from iNPH patients showed that the
presence of amyloid plaques and NFT was associated with decreased MERCS length
(MERCS was defined as the distance between the ER and mitochondria ≤ 30 nm), while
amyloid plaques did not alter the ultrastructure of MERCS. In addition, there was no
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correlation between the ventricular levels of tau and MERCS [179]. Other studies have
assessed mitochondrial dysfunction in tau models, but MERCS were not assessed, and we
can only postulate that MERCS were altered. For example, the overexpression of human
tau disrupts mitochondrial function and mitochondrial dynamics, leading to organelle
elongation and accumulation in the perinuclear region, whereas explained above, is highly
enriched in the ER. Additionally, the same models show an increase in the levels of Mfn1
and Mfn2, which can have an effect on MERCS [193]. A more recent study showed that tau
inhibits mitochondrial Ca2+ levels by affecting its efflux, but as in other studies, MERCS
were not assessed [194]. Therefore, further studies are required to better understand how
tau can affect the ultrastructure and function (or vice versa) of MERCS, as well as the
mechanisms underlying it.

3.5. Alterations in the Ultrastructure and Function of MERCS in other AD-Related Models

One of the first pieces of evidence showing that MERCS can be altered in AD was
based on the fact that SH-SY5Y cells overexpressing PS2 with the FAD T122R mutation
showed increased Ca2+ transfer from the ER to mitochondria and closer juxtaposition be-
tween the ER and mitochondria compared to the cells overexpressing WT PS2 [195]. Similar
data were obtained from primary cortical neurons derived from PS2 N141I mice [196]. Inter-
estingly, mutations in PS1 have been reported to change [197] and not change MERCS [195].
Similarly, in C. elegans, a FAD-linked mutation in Sel-12 (orthologue of PS) leads to neu-
rodegeneration and elevated mitochondrial Ca2+ content, which stimulates mitochondrial
respiration, resulting in an increase in mitochondrial superoxide production. However, the
ultrastructure of MERCS was not evaluated [198]. More recently, PS2, but not PS1, was
shown to modulate MERCS, but only in the presence of Mfn2. In this study, the authors
also showed that PS2 and Mfn2 physically interact, suggesting that this is the mechanism
by which PS2 modulates MERCS [199]. Further details on the role of PS2 in AD and Ca2+

dysfunction can be found in [200].
Concerning lipid metabolism, the first alterations of MERCS in AD models were shown

when there was an increase in the total levels of cholesterol, free cholesterol, cholesteryl
esters, PSer, PE and lipid droplets in cell lines lacking either PS1, PS2 or both. In addition,
fibroblasts obtained from SAD and FAD patients showed an increase in lipid-droplet
formation. An assessment of the ultrastructure of the MERCS by colocalization and TEM
showed that the aforementioned cell models and fibroblasts derived from AD patients had
an increase in connectivity between the ER and mitochondria compared with the respective
controls [54].

Autophagy was first shown to be impaired in AD by Nixon and colleagues when
they observed the accumulation of APP, C99, Aβ and PS1 in immature autophagosomes,
named autophagic vacuoles (AVs), in postmortem AD brains [201,202]. These results
were believed to be associated with impaired fusion with the lysosome and therefore the
elimination of Aβ. However, starvation of animals with a water-only diet was not enough
to degrade Aβ, even though autophagy was activated in the retrosplenial dysgranular
and cerebellar cortex [203]. Currently, we know that modulation of autophagy affects not
only Aβ degradation, but also its production [202,204] and secretion [205]. Furthermore,
pharmacological activation or inhibition of autophagy in SH-SY5Y neuroblastoma cells led
to an increase in α-, β- and γ-secretase activity and extracellular Aβ42 levels, with higher
levels upon inhibition [204]. In addition, PS1 and PS2 have also been shown to modulate
autophagy [206,207]. Recently, it was reported that TOM70 is present at MERCS and plays
a pivotal role in Ca2+ shuttling from the ER to mitochondria. Although knockdown of
TOM70 did not change the ultrastructure of MERCS, it led to decreased IP3R3 at MERCS
and therefore a decrease in complex IP3R3-Grp75 formation. Moreover, this decrease in
TOM70 levels also led to a decrease in Ca2+ shuttling to the mitochondria, decreased ATP
formation and an increase in autophagy [64]. Recently, TOM70, together with TOM40,
was reported to be essential for autophagosome formation since it recruits ATG2A to
MERCS during autophagosome formation [208]. In summary, these data, together with
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the fact that the isolation membrane can originate in MERCS, suggest that the alterations
in autophagy observed in AD may be connected with changes in MERCS. Curiously,
the MERCS proteins TOM70, Mfn1 and Mfn2 have been shown to be downregulated in
SAD [114,209] and FAD [84]. In fact, Mfn2 seems to have a vital role in neurons. First,
a mutation in this protein causes Charcot-Marie-Tooth Disease Type 2A (CMT2A) [210].
In addition, conditional knockout of Mfn2 in the adult mouse forebrain led to alterations
in mitochondrial dynamics and distribution and to an increased apoptosis rate of in the
hippocampus and neurons [211]. Interestingly, a similar phenotype was observed in
different AD models [147,212].

An illustration of the alterations in MERCS associated with different AD models is
provided in Figure 1. In summary, most of the published data suggest that upregulation of
MERCS is a hallmark of both SAD and FAD. However, some data indicate the opposite
conclusion. Moreover, alterations in Aβ influence the ultrastructure and function of
MERCS, but alterations in MERCS affect Aβ levels. However, whether this increase in
MERCS is a cause or a consequence of an increase in Aβ and whether it is critical for the
neurodegeneration observed in AD remain to be shown.



Biomedicines 2021, 9, 227 18 of 35
Biomedicines 2021, 9, 227 18 of 35 
 

 
Figure 1. MERCS in health and in AD. In healthy controls (upper part of the figure), different functions of MERCS are 
integrated to maintain cell homeostasis. The IP3Rs-Grp75-VDAC1 complex together with the MCU complex allows the 
entry of Ca2+ into mitochondria, where it can boost the TCA cycle, inducing ATP production. This complex, together with 
Mfns and the PTPIP51 and VAPB pair, can modulate the connectivity between the ER and mitochondria. Additionally, 
the formation of the isolation membrane, which is the precursor to the mature autophagosome, originates at MERCS and 
can be modulated by the function or ultrastructure of MERCS. Similarly, Aβ also originates in this subcellular region. In 
AD, the connectivity between the ER and mitochondria is enhanced and Ca2+ inside mitochondria is upregulated, and 
mitochondrial dysfunction, activation of the UPRER and UPRmt, impaired autophagosome maturation and changes in Aβ 
levels are increased, which can ultimately lead to cell death. Different colours correspond to proteins involved in different 
cellular processes and faded colours as well as dashed lines represent the downregulation of the process or protein 
level/function. mPS2 represents PS2 with a FAD mutation. 

4. MERCS in Parkinson’s Disease 
PD is the second most common ND and is associated with tremors, rigidity, brady-

kinesia and, in the more severe stages of the disease, cognitive impairment. PD is charac-
terized by the loss of dopaminergic neurons in the substantia nigra pars compacta in the 
midbrain, and similar to AD, misfolded proteins accumulate, including α-synuclein, 
which forms intracellular Lewy bodies [213]. 

α-Synuclein has been shown to localize to MERCS, and its overexpression leads to 
an increase in MERCS [214]. However, PD-associated A53T and A30P mutations lead to a 

Figure 1. MERCS in health and in AD. In healthy controls (upper part of the figure), different functions of MERCS are
integrated to maintain cell homeostasis. The IP3Rs-Grp75-VDAC1 complex together with the MCU complex allows the
entry of Ca2+ into mitochondria, where it can boost the TCA cycle, inducing ATP production. This complex, together with
Mfns and the PTPIP51 and VAPB pair, can modulate the connectivity between the ER and mitochondria. Additionally,
the formation of the isolation membrane, which is the precursor to the mature autophagosome, originates at MERCS and
can be modulated by the function or ultrastructure of MERCS. Similarly, Aβ also originates in this subcellular region.
In AD, the connectivity between the ER and mitochondria is enhanced and Ca2+ inside mitochondria is upregulated, and
mitochondrial dysfunction, activation of the UPRER and UPRmt, impaired autophagosome maturation and changes in
Aβ levels are increased, which can ultimately lead to cell death. Different colours correspond to proteins involved in
different cellular processes and faded colours as well as dashed lines represent the downregulation of the process or protein
level/function. mPS2 represents PS2 with a FAD mutation.

4. MERCS in Parkinson’s Disease

PD is the second most common ND and is associated with tremors, rigidity, bradykine-
sia and, in the more severe stages of the disease, cognitive impairment. PD is characterized
by the loss of dopaminergic neurons in the substantia nigra pars compacta in the midbrain,
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and similar to AD, misfolded proteins accumulate, including α-synuclein, which forms
intracellular Lewy bodies [213].

α-Synuclein has been shown to localize to MERCS, and its overexpression leads to
an increase in MERCS [214]. However, PD-associated A53T and A30P mutations lead
to a decrease in α-synuclein in MERCS, decreasing the connectivity between the ER and
mitochondria, as well as increasing mitochondrial fragmentation [215]. Although the
majority of PD cases are idiopathic, the aforementioned mutations in α-synuclein have
been shown to cause a familial form of PD. Similarly, mutations in leucine-rich repeat kinase
2 (LRRK2), protein deglycase DJ-1, PINK1 and Parkin also cause familial forms of PD [216].
As mentioned before, PINK1 and Parkin are modulators of mitophagy. PD mutations in
these proteins have been reported as loss-of-function mutations that impair the normal
functioning of mitophagy and therefore prevent the clearance of damaged mitochondria.
Hence, it is not surprising that normal mitochondrial functioning is impaired in PD [217].

LRRK2 has been shown to modulate PERK activity, which then modulates the ultra-
structure of MERCS and IP3R-VDAC1-dependent Ca2+ shuttle from the ER to mitochondria
by phosphorylating and activating Parkin. This leads to the ubiquitination of the MERCS-
protein Mfn2 and inducing its proteasomal degradation [218]. Interestingly, DJ-1, PINK1
and Parkin have also been shown to be present at MERCS and to modulate contact. DJ-1
was recently shown to interact with IP3R3-Grp75-VDAC1 and indirectly affect MERCS.
DJ-1 PD-associated mutations leads to its loss of function and therefore a decrease in the
connectivity between the ER and mitochondria. Ablation of DJ-1 led to impaired IP3R3-
Grp75-VDAC1 complex formation and accumulation of IP3R3 in MAMs, while the levels
of Sigma-1R were decreased. [219]. Accordingly, overexpression of DJ-1 increases MERCS
and Ca2+ shuttling from the ER to mitochondria. Moreover, concomitant overexpression of
DJ-1 and Mfn2 rescues p53-induced mitochondrial dysfunction and fragmentation [220].
PINK1 also localizes at MERCS in human cells upon mitochondrial uncoupling and the
induction of mitophagy [221]. In general, PD mutations in any of the aforementioned
proteins impair the normal functioning of mitophagy (a more comprehensive review on
this topic was recently published by Liu and colleagues [222]). In MEFs, Parkin indirectly
modulates the ultrastructure of MERCS and Ca2+ shuttling from the ER to mitochondria
via ubiquitination of Mfn2, since this posttranslational modification is required for the
normal Mfn2 function as a regulator of MERCS [223,224]. Parkin is also known ubiquitylate
other MERCS proteins, including VDAC [121]. In D. melanogaster, the overexpression of
familial PD-mutated Parkin or PINK1 has been shown to activate the PERK branch of
the UPRER and to induce an increase in connectivity between the ER and mitochondria
in a mitofusin-dependent manner [105], as well as in a Miro- and mitochondrial Ca2+

shuttling-dependent manner [75].
In 2012, postmortem brains obtained from PD patients showed an increase in the

UPRmt marker Hsp-60 as well as unfolded mitochondrial respiratory complexes. In addi-
tion, D. melanogaster overexpressing PD-related mutant PINK1 or Parkin showed similar
results, as did a UPRmt model with truncated ornithine transcarboxylase (∆OTC). ∆OTC
leads to the accumulation and aggregation of ornithine transcarboxylase in the mitochon-
drial matrix, activating UPRmt [225]. Interestingly, the three models are phenocopies of
each other, exhibiting mitochondrial aggregation and fragmentation of cristae and de-
creased climbing ability, survival and mitochondrial function. In addition, ∆OTC activated
autophagy in an AMPK-dependent pathway, and the coexpression of WT Parkin with
∆OTC recovered the dysfunctional phenotypes observed in the ∆OTC flies [226]. ∆OTC
has also been shown to induce the accumulation of PINK1, recruiting Parkin and inducing
mitophagy, and this accumulation and recruitment can be mitigated by Lon protease [227].
In addition, expression of ∆OTC under the tyrosine hydroxylase (Th) promoter in mice
causes neurodegeneration in dopaminergic neuron with dysfunctional motor behaviour.
Knocking out PINK leads to a worsened phenotype [228]. Furthermore, loss of Grp75
leads to activation of UPRmt via the upregulation of Hsp-60 as well as activation of mi-
tophagy and apoptosis. Concomitant loss of Grp75 in ∆OTC-overexpressing SH-SY5Y cells
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exacerbated these phenotypes, while overexpression of either PINK1 or Parkin attenuated
them [229]. These data suggest that the mitochondrial dysfunction caused by the accumu-
lation of ∆OTC is similar to that observed in the PD models; therefore, one might assume
that modulation of MERCS can also have an effect in ameliorating this phenotype.

An illustration of the alterations observed in MERCS associated with PD is provided
in Figure 2. However, data in the field are still not coherent, since some publications
report that overexpression of WT Parkin leads to an increase in MERCS [223], while
others report that the overexpression of loss-of-function mutant Parkin and PINK1 leads
to the same increase in connectivity between the ER and mitochondria [105,230], or that
knocking down PINK1 leads to reduced MERCS [231]. Regardless, it is quite evident
that α-synuclein, LRRK2, DJ-1, PINK1 and Parkin can affect the connectivity between the
ER and mitochondria. In addition, the effects of DJ-1, PINK1 and Parkin on MERCS are
Mfn2-dependent, enhancing the importance of this protein not only in AD, but also in
PD. However, one should keep in mind that the majority of the aforementioned studies
used PD models based on a single PD mutation when, in fact, familial PD accounts for
only a very small percentage of total PD patients. Further studies need to be performed to
elucidate the roles of MERCS in idiopathic PD.
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Figure 2. MERCS in health and in PD. In healthy controls (upper part of the figure), different
functions of MERCS are integrated to maintain cell homeostasis. The IP3Rs-Grp75-VDAC1 complex
together with the MCU complex allows the entry of Ca2+ into mitochondria, where it can boost
the TCA cycle, inducing ATP production. This complex, together with Mfn2, can also modulate
the connectivity between the ER and mitochondria. Under normal conditions, PINK1 is imported
into mitochondria, where it can be degraded by PARL and MPP. In cases where mitochondria are
damaged, PINK1 import is unsuccessful, and this protein accumulates in the OMM, where it recruits
Parkin. Parkin then ubiquitinates proteins at the OMM, inducing mitophagy. In familial PD, mutation
in α-synuclein (αS in the figure) increases MERCS, inducing Ca2+ overflow inside mitochondria.
However, PD-related mutations in DJ-1 (mDJ-1), α-synuclein (mαS), PINK1, Parkin and LRKK2 led
to a decrease in MERCS. Nevertheless, these mutations lead to mitochondrial dysfunction, including
mitochondrial stress and decreased ATP production as well as ER stress. PD mutations in PINK1 and
Parkin (mPINK1 and mParkin in the figure) are usually associated with loss of function and therefore
lead to impaired mitophagy activation, preventing the clearance of damaged mitochondria. Different
colours correspond to proteins involved in different cellular processes and faded colours as well as
dashed lines represent the downregulation of the process or protein level/function. Red arrows as
well as red cross correspond to blocked/impaired process.



Biomedicines 2021, 9, 227 22 of 35

5. MERCS in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia

Although ALS is a motor-neuron disease and FTD is a form of dementia, both have
been clinically, genetically and pathologically linked. Deposits of fused sarcoma (FUS)
and Tar DNA-binding protein 43 (TDP-43) have been reported to be hallmarks of both of
these pathologies. Furthermore, mutations in any of these proteins have been connected
with the familiar form of ALS/FTD [232]. Both overexpression of TDP-43 and FUS have
been shown to disrupt VAPB-PTPIP51 tethering and the ultrastructure of MERCS, as well
as the movement from Ca2+ from the ER to mitochondria due to activation of glycogen
synthase kinase-3β (GSK-3β) [233–235]. However, mutation in VAPB P56S, which is known
to cause familial ALS type-8, has been shown to accumulate and to increase MERCS [44].
Additionally, in ALS/FTD, both increases and decreases in MERCS have been reported,
similar to AD and PD.

As mentioned above, Sigma-1R is a well-known protein in MERCS that acts as a
chaperone for IP3R [63], and a mutation in Sigma-1R has been connected with juvenile
ALS [236]. More recently, a new mutation in Sigma-1R was shown to induce a new form
of juvenile ALS. This mutation led to the accumulation of Sigma-1R in MERCS and to
the mislocalization of IP3R, preventing the binding of these two proteins, resulting in
deregulated Ca2+ homeostasis and decreased ATP synthesis [237]. In mouse models,
Sigma-1R knockout led to a decrease in MERCS and induced motor-neuron degeneration,
leading to locomotor deficits [238]. Additionally, the knockdown of this protein in primary
mouse hippocampal cultures led to neurodegeneration [180].

Interestingly, GSK-3β has also been shown to induce tau phosphorylation and induce
tangle-like aggregates similar to those isolated from AD patients [239], suggesting that
alterations in the VAPB and PTPIP51 pair may also be involved in AD. In fact, two recent
studies showed that these proteins are significantly decreased in SAD [189] and in FAD
(the differences were nonsignificant but revealed a tendency) [84]. Additionally, Sigma-1R
has been shown to be downregulated in SAD patients [180]. GSK-3β has also been shown
to modulate the levels of α-synuclein [240].

An illustration of the alterations observed in MERCS associated with FTD/ALS is
provided in Figure 3.

Biomedicines 2021, 9, 227 22 of 35 
 

 
Figure 3. MERCS in health and in ALS/FTD. In healthy controls (upper part of the figure), different 
functions of MERCS are integrated to maintain cell homeostasis. Complex IP3Rs-Grp75-VDAC1 and 
VAPB-PTPIP51 modulate the ultrastructure of MERCS. In ALS/FTD, FUS and TDP43 activate GSK-
3β, which dissociates PTPIP51 and VAPB and decreases the connectivity between the ER and mito-
chondria. Mutation in Sigma-1R (mSig1R) leads to the accumulation of these proteins at MERCS 
and to mislocalization of IP3R outside MERCS, leading to a juvenile form of ALS. Mutation in VAPB 
(mVAPB) leads to an increase in MERCS and an increase in the flow of Ca2+ inside mitochondria. 
Different colours correspond to proteins involved in different cellular processes and faded colours 
as well as dashed lines represent the downregulation of the process or protein level/function. 

6. MERCS as a Drug Target 
Taken together, the data presented above suggest that even though AD, PD, ALS and 

FTD are four distinctive diseases, alterations of MERCS are common features observed in 
all of them. Therefore, one can question whether chemical modulation of these MERCS 
can be used to prevent neurodegeneration and halt the progression of these pathologies. 
The value of MERCS as drug targets becomes more evident because several clinical mon-
otherapy trials for these pathologies have failed. Therefore, researchers are starting to 
change their strategies and drop the “one target, one treatment” approach and try to tackle 
different aspects altered in these pathologies. However, due to the complexity, organiza-
tion and dynamics of MERCS, finding a drug that allows their modulation and, particu-
larly, a single function/type of contacts might be extremely challenging. Thus, structural 
system pharmacology, which combines large-scale experimental studies with computa-
tional modelling, has been suggested as a possible method to develop efficient drugs to 
modulate MERCS [37]. In agreement with Magalhães Rebelo and colleagues, we believed 
that drugs can affect MERCS mainly via three different pathways: by direct interaction 
with proteins in MERCS, by affecting protein expression levels or by modulating up-
stream signalling pathways that result in the alteration of the ultrastructure and/or func-
tion of MERCS [37]. Currently, there are several drugs available that affect proteins asso-
ciated with MERCS. However, in most cases, MERCS were not assessed when these drugs 
were developed, and most of these drugs were discovered in cancer settings. Some exam-
ples are as follows: 

VDAC1—Drugs that affect the channel conductance (e.g., König’s polyanion, dicy-
clohexylcarbodiimide, fluoxetine, aspirin and itraconazole), its interaction with its partner 

Figure 3. MERCS in health and in ALS/FTD. In healthy controls (upper part of the figure), different
functions of MERCS are integrated to maintain cell homeostasis. Complex IP3Rs-Grp75-VDAC1 and
VAPB-PTPIP51 modulate the ultrastructure of MERCS. In ALS/FTD, FUS and TDP43 activate GSK-3β,
which dissociates PTPIP51 and VAPB and decreases the connectivity between the ER and mitochondria.
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Mutation in Sigma-1R (mSig1R) leads to the accumulation of these proteins at MERCS and to
mislocalization of IP3R outside MERCS, leading to a juvenile form of ALS. Mutation in VAPB
(mVAPB) leads to an increase in MERCS and an increase in the flow of Ca2+ inside mitochondria.
Different colours correspond to proteins involved in different cellular processes and faded colours as
well as dashed lines represent the downregulation of the process or protein level/function.

6. MERCS as a Drug Target

Taken together, the data presented above suggest that even though AD, PD, ALS and
FTD are four distinctive diseases, alterations of MERCS are common features observed in
all of them. Therefore, one can question whether chemical modulation of these MERCS can
be used to prevent neurodegeneration and halt the progression of these pathologies. The
value of MERCS as drug targets becomes more evident because several clinical monother-
apy trials for these pathologies have failed. Therefore, researchers are starting to change
their strategies and drop the “one target, one treatment” approach and try to tackle dif-
ferent aspects altered in these pathologies. However, due to the complexity, organization
and dynamics of MERCS, finding a drug that allows their modulation and, particularly,
a single function/type of contacts might be extremely challenging. Thus, structural sys-
tem pharmacology, which combines large-scale experimental studies with computational
modelling, has been suggested as a possible method to develop efficient drugs to modulate
MERCS [37]. In agreement with Magalhães Rebelo and colleagues, we believed that drugs
can affect MERCS mainly via three different pathways: by direct interaction with proteins
in MERCS, by affecting protein expression levels or by modulating upstream signalling
pathways that result in the alteration of the ultrastructure and/or function of MERCS [37].
Currently, there are several drugs available that affect proteins associated with MERCS.
However, in most cases, MERCS were not assessed when these drugs were developed, and
most of these drugs were discovered in cancer settings. Some examples are as follows:

VDAC1—Drugs that affect the channel conductance (e.g., König’s polyanion, dicyclo-
hexylcarbodiimide, fluoxetine, aspirin and itraconazole), its interaction with its partner
hexokinase (e.g., 3-bromopyruvate and methyl jasmonate) or adenine nucleotide translo-
case (ANT) (e.g., lonidamine, arsenites and steroid analogues) or that affect its own level
(e.g., endostatin, myostatin, hierridin B) have been described by Magrì and colleagues [241].

IP3R—As discussed above, Xestospongins B and C are known to block IP3R, affecting
several functions of MERCS, such as autophagy and Ca2+ homeostasis. Additionally,
2-aminoethyldiphenyl borate has been shown to block IP3R in neurons and increase
neuronal excitability [242]. Similarly, trifluoperazine, an FDA-approved antipsychotic
drug for schizophrenia, has been shown to induce Ca2+ release from IP3R1 and IP3R2 in
glioblastoma cell lines [243].

Mfn2—Small molecules and mini-peptides have been developed to alter Mfn2 con-
formation and its interaction with other proteins, improving mitochondrial defects in the
CMT2A model [244,245]. Resveratrol has been shown to improve mitochondrial fitness and
to decrease Aβ levels in the CSF of AD patients [246], to increase the levels of Mfn2 [247],
to induce Ca2+ shuttling from the ER to mitochondria and to enhance the MERCS in cancer
cells [248]. However, no study has connected the changes in Mfn2 levels with alterations
in the ultrastructure of MERCS upon resveratrol treatment of neuronal cells. In contrast,
nicotine has been shown to decrease the levels of Mfn2 [249], decrease OXPHOS and
reduce the levels of superoxide anion [250,251]. While resveratrol can boost mitochondrial
OXPHOS, as observed in an AD context, the reduction in ROS observed with nicotine
treatment may also be helpful. Therefore, treatment with either of these drugs can help
ameliorate the phenotypes observed in ND, and further studies must be performed to
better understand how modulation of Mfn2 can be applied to therapeutics.

PTPIP51—LDC-3/dynarrestin was first identified as an inhibitor of cytosolic dynein 1
and 2, which blocks endosome movement and affects mitosis in vivo by disturbing spindle
orientation. In a new study, this drug was shown to enhance the phosphorylation of
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PTPIP51, increase the PTPIP51-VAPB interaction and lead to decreased cell viability (as
measured by MTT assay) [252,253]. However, how these alterations affect MERCS function
and the effect of this drug in ALS/FTD models have not been explored.

Notably, several of the aforementioned drugs were developed in the context of ther-
apies for cancer. While cancer cells tend to avoid cell death and show a general increase
in metabolism, in ND, the opposite is usually observed. For example, it was recently
shown that the FAD mutation PS2-N141I leads to a decrease in mitochondrial Ca2+ and
a decrease in the dissociation of hexokinase-1 in mitochondria, leading to a decrease in
mitochondrial function [254]. In this case, adding 3-bromopyruvate and methyl jasmonate
would cause greater dissociation of the interaction between hexokinase and VDAC1, prob-
ably worsening cell fitness. In addition, some of these drugs are known to affect proteins
related to MERCS, but in the majority of the studies mentioned, the true ultrastructure and
function of MERCS were not measured. However, examples such as itraconazole have
been shown to block VDAC1, affecting mitochondrial function and ATP production and
inducing autophagosome formation [255], strongly suggesting that the ultrastructure and
other functions of MERCS are also altered.

7. Conclusions and Implications

In this review, we aimed to summarize the role of MERCS in some of the most common
NDs, particularly in AD. During the past 10 years, several findings have been reported
regarding how MERCS is altered and affected in these pathologies. In AD, most of the
published reports point out that the connectivity between the ER and mitochondria is
upregulated, leading to alterations in functions related to MERCS, including Ca2+ shuttling
from the ER to mitochondria, autophagosome formation and Aβ formation. In addition,
models with high levels of Aβ show increased MERCS. However, there are also studies
showing a decrease in ER and mitochondria connectivity. It is important to remember
that the total connectivity between the ER and mitochondria is based on the sum of all
MERCS. If we assume that there are different types of MERCS, as Giacomello and Pellegrini
suggested [23], one can assume that when certain types of MERCS are upregulated, others
may be downregulated. This possibility may also explain the apparent contradictory data
found in the literature that depend on the types of contacts and how the contacts were
assessed in a particular study. Nevertheless, whether the alterations of MERCS are a cause
or a consequence of cell dyshomeostasis observed in ND remains to be determined.

In summary, considering the studies on AD and MERCS mentioned in this review,
we propose the following updated model of the hypothesis of the function of MERCS in
AD: Aβ itself upregulates the connectivity between the ER and mitochondria, and this
increase in MERCS halts Aβ production by impairing γ-secretase assembly and activity
in a negative feedback loop. However, when an increase in MERCS is sustained due to
high levels of Aβ, the normal functions of MERCS are further enhanced, culminating in
organellar stress and overflow of Ca2+ into mitochondria, leading to organelle failure and
cell death (Figure 4).

We would also like to point out that most of the studies presented in this review use
either nonneuronal, immortalized or even cancer cell lines. These kinds of cells present a
different mitochondrial metabolic wiring than neurons since they undergo the Warburg
effect [256,257]. Therefore, it is extremely important that new studies that investigate the
role of MERCS in ND are performed in neuronal cells. In fact, some recent studies have
used neuronal cells, but very little is known about the effect of MERCS, for example, in
microglial cells. A new study showed that immortalized (possibly because they underwent
the Warburg effect) astrocytes derived from an AD mouse model showed increased mito-
chondrial function, increased ROS, decreased mitochondrial Ca2+, increased short distance
MERCS (8–10) and UPRER activation. However, interestingly, the authors could not explain
the discrepancy between the increase in MERCS and the decrease in mitochondrial Ca2+

and function [258].
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a cause or a consequence of cell dyshomeostasis observed in ND remains to be deter-
mined. 

In summary, considering the studies on AD and MERCS mentioned in this review, 
we propose the following updated model of the hypothesis of the function of MERCS in 
AD: Aβ itself upregulates the connectivity between the ER and mitochondria, and this 
increase in MERCS halts Aβ production by impairing γ-secretase assembly and activity 
in a negative feedback loop. However, when an increase in MERCS is sustained due to 
high levels of Aβ, the normal functions of MERCS are further enhanced, culminating in 
organellar stress and overflow of Ca2+ into mitochondria, leading to organelle failure and 
cell death (Figure 4). 

 
Figure 4. Effect of Aβ in MERCS under normal and AD conditions. Schematic representation of what happens in the cell 
upon an increase in Aβ levels in normal and AD conditions. Under normal conditions, an increase in Aβ leads to an 
increase in the connectivity between the ER and mitochondria, affecting MERCS ultrastructure and function. Together, 
the increased connectivity and altered function of MERCS prevent further Aβ formation. However, when the levels of Aβ 
are too high, this negative feedback loop is not enough to decrease the levels of this peptide. Aβ continues to induce an 
increase in the connectivity between the ER and mitochondria, which culminates in Ca2+ overflow into mitochondria, 
activating cell death. Arrows point up correspond to up-regulated and arrows point down down-regulation. Two arrows 
side-by-side correspond to a further increase or decrease biological process as compare to normal conditions. 

We would also like to point out that most of the studies presented in this review use 
either nonneuronal, immortalized or even cancer cell lines. These kinds of cells present a 
different mitochondrial metabolic wiring than neurons since they undergo the Warburg 
effect [256,257]. Therefore, it is extremely important that new studies that investigate the 
role of MERCS in ND are performed in neuronal cells. In fact, some recent studies have 
used neuronal cells, but very little is known about the effect of MERCS, for example, in 
microglial cells. A new study showed that immortalized (possibly because they under-
went the Warburg effect) astrocytes derived from an AD mouse model showed increased 
mitochondrial function, increased ROS, decreased mitochondrial Ca2+, increased short dis-
tance MERCS (8–10) and UPRER activation. However, interestingly, the authors could not 
explain the discrepancy between the increase in MERCS and the decrease in mitochon-
drial Ca2+ and function [258]. 

Although many proteins related to MERCS have been identified, we still do not fully 
know the complete MERCS proteome or fully understand how these proteins are regu-
lated. One of the major reasons for this lack of understanding is methodological limitation. 
For example, the methods that allow us to study the dynamics of these contacts lack spa-
tial resolution, and the methods that offer spatial resolution do not allow us to study dy-
namics since they usually require fixation of the sample. Current methods used to study 

Figure 4. Effect of Aβ in MERCS under normal and AD conditions. Schematic representation of what happens in the
cell upon an increase in Aβ levels in normal and AD conditions. Under normal conditions, an increase in Aβ leads to an
increase in the connectivity between the ER and mitochondria, affecting MERCS ultrastructure and function. Together, the
increased connectivity and altered function of MERCS prevent further Aβ formation. However, when the levels of Aβ are
too high, this negative feedback loop is not enough to decrease the levels of this peptide. Aβ continues to induce an increase
in the connectivity between the ER and mitochondria, which culminates in Ca2+ overflow into mitochondria, activating cell
death. Arrows point up correspond to up-regulated and arrows point down down-regulation. Two arrows side-by-side
correspond to a further increase or decrease biological process as compare to normal conditions.

Although many proteins related to MERCS have been identified, we still do not fully
know the complete MERCS proteome or fully understand how these proteins are regulated.
One of the major reasons for this lack of understanding is methodological limitation. For
example, the methods that allow us to study the dynamics of these contacts lack spatial
resolution, and the methods that offer spatial resolution do not allow us to study dynamics
since they usually require fixation of the sample. Current methods used to study MERCS
have been recently described in several review articles, including those of Scorrano et al.
and Giamogante et al. [11,259]. Therefore, further development of new tools to study
MERCS will help us to better answer questions such as those related to the possibility
of different types of MERCS and whether these MERCS have different proteomes and
phospholipid/lipid compositions in the same cell type or in different tissues. Other relevant
questions in the field include: Are different types of MERCS affected in different diseases,
and are MERCS altered the same way in the early and late stages of a pathology? Further
studies in the future might be able to answer these questions.
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Van der Toorn, M.; et al. Mitochondria as a possible target for nicotine action. J. Bioenerg. Biomembr. 2019, 51, 259–276. [CrossRef]

252. Höing, S.; Yeh, T.Y.; Baumann, M.; Martinez, N.E.; Habenberger, P.; Kremer, L.; Drexler, H.C.A.; Küchler, P.; Reinhardt, P.; Choidas,
A.; et al. Dynarrestin, a Novel Inhibitor of Cytoplasmic Dynein. Cell Chem. Biol. 2018, 25, 357–369. [CrossRef] [PubMed]

253. Dietel, E.; Brobeil, A.; Delventhal, L.; Tag, C.; Gattenlöhner, S.; Wimmer, M. Crosstalks of the PTPIP51 interactome revealed in
Her2 amplified breast cancer cells by the novel small molecule LDC3/Dynarrestin. PLoS ONE 2019, 14, e0216642. [CrossRef]
[PubMed]

254. Rossi, A.; Rigotto, G.; Valente, G.; Giorgio, V.; Basso, E.; Filadi, R.; Pizzo, P. Defective Mitochondrial Pyruvate Flux Affects Cell
Bioenergetics in Alzheimer’s Disease-Related Models. Cell Rep. 2020, 30, 2332–2348. [CrossRef] [PubMed]

255. Head, S.A.; Shi, W.; Zhao, L.; Gorshkov, K.; Pasunooti, K.; Chen, Y.; Deng, Z.; Li, R.J.; Shim, J.S.; Tan, W.; et al. Antifungal drug
itraconazole targets VDAC1 to modulate the AMPK/mTOR signaling axis in endothelial cells. Proc. Natl. Acad. Sci. USA 2015,
112, E7276–E7285. [CrossRef] [PubMed]

256. Liberti, M.V.; Locasale, J.W. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem. Sci. 2016, 41, 211–218.
[CrossRef] [PubMed]

257. DeBerardinis, R.J.; Chandel, N.S. We need to talk about the Warburg effect. Nat. Metab. 2020, 2, 127–129. [CrossRef]
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