
RESEARCH ARTICLE

The genetics and development of mandibles

and hypopharyngeal sclerite and cornua in

larvae of Drosophila gaucha

Eduardo Alvarez☯, Francisco Del Pino☯, Lilian Jara☯, Raúl Godoy-Herrera☯*
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Abstract

The genetics and epigenetic processes associated with morphological organization are a

principal aim of biology, ranging from cohesion between cells to shape and size of organ-

isms. We investigate the post-embryonic development of Hypopharyngeal sclerite and cor-

nua HPC and mandibles M of Drosophila gaucha larva. Integrated functioning of these

Cephalopharyngeal skeleton parts of D. gaucha larva is essential for food acquisition, partic-

ipating in locomotion and microhabitat selection. We examined two isolates by recording the

growth of the HPC and M every 24 h for 8 days in parental, F1, F2 and backcross larvae. In

F1 larvae, the HPC and M growth was similar to the parental. In F2 and backcross larvae,

the growth was slower. Epistasis and dominance are the principal sources upon which the

growth of HPC and M are based. Pleiotropic genes seem also to be involved in integrating

the development of M and HPC. Our data suggest that hybridization of the isolates modified

epigenetic processes involved in the development of those morphological structures of D.

gaucha larva.

Introduction

Animals have highly sophisticated molecular mechanisms to regulate the development of cell,

organ and body size [1, 2]. Animal cells synthesize a variety of chemical signals to communi-

cate to form collaborative tissues and organs [3]. Such linkage ensures that morphological

organization is expressed in coordinate manner in relation to environment [2, 4, 5]. Therefore,

it is important to investigate growth and integration among body parts to understand the

shape and size of organisms [6]. Of particular interest is the post-embryonic development of

body parts that act coordinately and participating in ecological functions intimately associated

with feeding rates and selection of microhabitats, and ultimately, with biological fitness [7, 8].

As development proceeds, epigenetic relationships between genes may be modified, and simi-

larly, the ecological demands of an individual change during its life history. Consequently, it is

important link epigenetic processes with ecology and evolution of populations by investigating

isolates living in heterogeneous and changing environments. Inter-population differences in
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the development of bodily parts may indicate epigenetic differentiation in gene expression,

suggesting that gene regulation is under natural selection action [9]. Additionally, population

investigations of epigenetic processes aid to understand phenotypic plasticity, and adaptation

and colonization of new habitats [10,11]. In this study, we investigate the proposition that the

post-embryonic development of Mandibles M and Hypopharyngeal sclerite and Cornua HPC

of Drosophila larva is associated with the ecology of breeding sites. This notion suggests that

those parts of cephalopharyngeal skeleton of Drosophila larva [12] act coordinately to shovel

food into the gut of larvae. The structures also participate in digging and tunneling into sub-

stratum serving as a fulcrum to facilitate larval body movements [13–15].

The changing features of variable Drosophila breeding sites [16] may interfere with the

development of HPC and M, obstructing the coordination of these body parts. We conjectured

that the progress of these morphological parts of Drosophila larva should be genetically cana-

lized to originate standard shapes that facilitate interactions among them. We hypothesized

that epigenetic interactions expressed in epistasis and pleiotropic phenomena could be key in

the development and integration of HPC and M of Drosophila larva. Here, we focus on the

genetics and development of those parts of Cephalopharyngeal skeleton by examining two nat-

ural populations of Drosophila gaucha and discussing the role of epigenetic mechanisms in

such development.

Elevator and depressor muscle tendons attach via apodemes to the M base and HPC. A

hinge joint also links these bodily structures allowing the M to move along on an inclined or

horizontal plane [12]. The apical tooth of M in Drosophila larva is curve, long and wide, and

small teeth are usually present [17], originating a structure fitted for stabbing the substratum

[18]. Thus, integrated function of HPC and M combined with muscle contractions of the body

walls ensuring that Drosophila larva navigate through the substrate searching for food to com-

plete its development, favoring the adaptation of these individuals to environments that

change their features in a short time [16].

D. gaucha larvae breed on decaying cladodes of prickly pear, Opuntia ficus-indicus [19].

Because the plant has an extended geographical distribution, D. gaucha has established popula-

tions in a variety of environments [20]. The larval period of D. gaucha is twice that of Drosoph-
ila melanogaster at the same temperature [21]. Therefore, D. gaucha larva is a good model to

substantiate the effect of environmental, genotypic and epigenetic changes on the post-

embryonic development of poly-functional body parts that act in a coordinated fashion.

Results

The growth in length of mandibles

Fig 1A–1J shows the growth in length (μm) of larval mandibles M of the BA and CJ parental

strains and the reciprocal F1’s, F2’s and backcrosses between 24 to 192 h of larval age. As the

larval development elapses, the length of the M increases stepwise according to an exponential

function in larvae of the parental and reciprocal F1 generations (Fig 1A–1D). By contrast, in F2

and backcross larvae, the growth in length of M tends to be exponential, but a decrease in size

of steps is noted (Fig 1E–1J and Table 1). These findings suggest that recombination of BA and

CJ genotypes in the F2 and backcross generations modified the development pathway of the M

(Fig 1E–1J and Table 1).

Exponential function describes satisfactorily the growth in length of the M in the parental,

F1, F2 and backcross generations (R2 coefficients of determination in S3 Table). The calculated

equations are presented in Table 1. One-way ANOVA for differences between the BA and CJ

parental slopes yielded a F1, 98-value = 0.51, P> 0.05, NS. The same analysis for slopes of the

reciprocal F1, F2 and the four types of backcrosses yielded no significant differences: (i)
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Fig 1. A—J. Growth in length (μm) of mandibles M in D. gaucha larvae (solid line). The exponential function

describing the growth of this body part is shown by the broken line. BA parental strain, A. CJ parental strain, B.

Reciprocal F1, C and D. Reciprocal F2, E and F. Reciprocal backcrosses, G—J. For further details see

Materials and methods and Tables 2 and 3. When standard errors are not shown is because they are too

small.

https://doi.org/10.1371/journal.pone.0185054.g001
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between the F1’s, F1, 98-value = 0.52, P> 0.05, NS, (ii) between the F2’s, F1, 98-value = 1.26,

P> 0.05, NS, (iii) between the four backcrosses, F3, 196-value = 2.39, P> 0.05, NS. We infer

that differences in the X chromosome and cytoplasm have a negligible role in the length-wise

growth of M in D. gaucha larvae.

Moreover, the slopes of the segregating generations tend to be smaller than those of the

parental and F1 generations (Table 1). For example, in the BA and CJ parental strains, the

slopes are 27.14e0.009X and 27.18e0.009X, respectively. In the F2 obtained to cross (BA mother x

CJ father) mother and (BA mother x CJ father) father, the value is 28.48e0.0009X (Table 1). The

comparison of parental and F1’s slopes yielded a F3, 196-value = 0.22, P> 0.05, NS. The parental

and the two F2’s produced a F3, 196-value = 10.09, P< 0.01, and the parental against the four

backcrosses provided a F5, 294 = 32.15, P< 0.001. The analysis confirmed that the introgression

of BA and CJ gene pools introduced substantial changes in the development of the M of larvae

of the recombinant generations.

The growth in width of mandible

The growth in width of mandible was previously published as Figure 2 in [22]. It is shown in

S1 Fig. Here we comment some principal points of that Fig, and we provide statistical and

genetic analysis. The growth in width (μm) of M is exponential and stepwise in BA and CJ and

F1 larvae of D. gaucha (S1A–S1D Fig). This pattern tends to change to lose some steps in larvae

of the F2 and backcross generations (S1E–S1J Fig). These findings support our contention that

the introgression of BA and CJ genes altered the growth of M in F2 and backcross larvae.

The exponential function effectively describes the width-wise growth of D. gaucha larvae M

(R2 = 86.56%). The equations listed in Table 1 suggest that the width-wise growth of M of F2

and backcross larvae is slower than that of parental and F1 larvae (ANOVA were: (i) between

BA and CJ parental strains, F1, 98-value = 0.65, P> 0.05, NS; (ii) between the parental strains

and F1´s, F3,196-value = 0.82, P> 0.05, NS; (iii) between the parental strains and F2’s, F3,196-

value = 10.39, P< 0.01; (iv) between the parental strains and backcrosses, F5, 294-value = 12.36,

Table 1. Exponential equations computed to the growth in length and width of mandibles and HPC in larvae of the BA and CJ parental strains,

reciprocal F1, reciprocal F2 and backcrosses, D. gaucha. The larvae were 24, 48, 72, 96, 120, 144, 168, and 192 h of age (N = 50 individuals per group of

genotypes and larval age; see Materials and methods). For all crosses, the first parent shown is the female.

Genotype group Equations

mandible HPC

length width

Parental

BA strain 27.14e0.009x 5.08e0.1x 136.27e0.09x

CJ strain 27.18e0.009x 5.42e0.1x 144.76e0.09x

Reciprocal F1

BA x CJ 25.81e0.009x 4.93e0.1x 146.70e0.09x

CJ x BA 26.48e0.009x 4.86e0.1x 146.55e0.09x

Reciprocal F2

(BA x CJ) x (BA x CJ) 2 8.48e0.0009x 9.08e0.008x 163.19e0.007x

(CJ x BA) x (CJ x BA) 26.60e0.0001x 8.92e0.008x 156.29e0.007x

Reciprocal backcrosses

(BA x CJ) x BA 15.34e0.0001x 4.56e0.001x 115.59e0.007x

BA x (BA x CJ) 16.70e0.0001x 4.89e0.001x 114.93e0.007x

(CJ x BA) x CJ 14.44e0.00012x 4.48e0.009x 108.90e0.007x

CJ x (CJ x BA) 16.12e0.00011x 4.40e0.009x 117.96e0.006x

https://doi.org/10.1371/journal.pone.0185054.t001
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P< 0.05). We conclude that in the F2 and backcross generations, genetic introgression of the

BA and CJ strains tends to delay M growth.

The growth in length of HPC

The growth in length (μm) of HPC is stepwise in BA and CJ and F1 larvae (Fig 2A–2D). These

abrupt jumps in size tend to decrease in the F2 and backcross larvae (Fig 2E–2J). Taken together,

these results with those shown in Fig 1 suggest that hybridization among the BA and CJ strains

introduces deep changes in the development of those two parts of head of D. gaucha larvae. The

exponential function effectively describes the HPC growth length (R2 = 92.71). Moreover, the

growth slopes of the BA and CJ parental strains and F1 larval HPC are statistically similar

(F3,196-value = 0.68, P> 0.05, NS), but different than those of the F2 (F3, 196-value = 45.78,

P> 0.01) and backcross larvae (F5, 294- value = 75.03, P< 0.01). The findings again suggest that

recombination of BA and CJ gene pools substantially modified the development of the HPC in

D. gaucha larvae.

Teeth number

Fig 3 presents the number of M teeth in larvae of the BA and CJ parental strains and F1, F2’s

and backcrosses between 24 and 192 h of larval development. Number of teeth in BA, CJ and

F1 larvae is 4 to 5 per M between 24 to 120 h of development (Fig 3A–3D). Between 144

and 192 h of larval development we counted 8 to 10 teeth per M (Fig 3A–3D). By contrast,

between 24 and 96 h of development F2´s larvae exhibited 4 to 5 teeth per M; the number

tends to increase progressively until 9 to 10 teeth after 120 h of larval age (Fig 3E–3F). Thus,

recombination of BA and CJ gene pools causes a premature emergence of teeth in F2 larvae

(Fig 3E–3F). Interestingly, this situation changed dramatically in the backcross larvae because

4 to 5 teeth were counted in the M of larvae at 24 to 144 h-old- larvae, and 8 to 9 teeth in M of

larvae at 168 to 192 h (Fig 3G–3J). Although recombination of BA and CJ genes causes a pre-

mature increase of teeth number in M of F2 larvae, a remarkable delay in emergency of these

structures in M of backcross larvae is observed (Fig 3G–3J).

Genetic analysis

Scaling tests. We applied scaling tests (A, B, C), as suggested by Mather and Jinks [23], at

192 h of larval development to analyze genetically phenotypic differences in shape of M and

HPC of D. gaucha larvae obtained from crossing the BA and CJ strains. For M the following

values were obtained: A = -22.24 ± 16.35, t = 5.50, df = 48, P< 0.01; B = -44.66 ± 28.32,

t = 8.40, df = 48, P< 0.01; C = -21.58 ± 16.18, t = 5.36, df = 48, P< 0,01. Similar results were

obtained for HPC: A = 36.65 ± 21.61, t = 8.02, df = 48, P< 0.01; B = 38.52 ± 26.05, t = 8.32,

P< 0.01; C = 19.34 ± 13.23, t = 12.03, P< 0.01. These values are not compatible with a simple

additive-dominance model [23]. In addition, the χ2 test measuring goodness of fit to the

additive-dominance model (the joint scale test) also produced the same results as the t test

(M, χ2 = 29.29, df = 3, P< 0.001; HPC, χ2 = 26.54, df = 3, P< 0.001). Thus, the analysis sug-

gests that epistasis is a principal source in the control of the development of M and HPC of D.

gaucha larva.

Estimation of genetic parameters. Table 2 presents estimations of additive, dominance

and epistatic parameters for M length and width, HPC length and number of teeth. S2 Table

shows t-values and statistical significance of the estimations listed in Table 3. Dominance and

epistatic genetic interactions are the principal forces that appear to act through the develop-

ment of these body parts in D. gaucha larvae (Table 2). Epistasis occurs principally among

additive and dominant genes. Dominant and epistatic genes are also associated with number
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Fig 2. A–J. Growth in length (μm) of HPC in BA, A; CJ, B; F1, C and D; F2, E and F, and backcross larvae, G–

J, of D. gaucha. For further details see Fig 4.

https://doi.org/10.1371/journal.pone.0185054.g002
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Fig 3. A–J. Number of mandible teeth in BA (A), CJ (B), F1 (C and D), F2 (E and F) and backcross larvae (G

to J) of D. gaucha. For further details see Fig 4 and Tables 2 and 3.

https://doi.org/10.1371/journal.pone.0185054.g003
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of teeth (Table 2). These estimates are in agreement with data presented in Figs 1–3 and the

scaling tests. We infer that the genetic architecture of the shape and size of the HPC and M of

D. gaucha larva reminds to us that exhibited by traits associated with biological fitness as fertil-

ity and viability [24].

Discussion

The development of M and HPC and the teeth emergency of Buenos Aires BA, Campos de Jor-

dan CJ, and F1 larvae of D. gaucha is very similar (Figs 1A–1D to 3A–3D, see also S1 Fig). The

results suggest conservation of the development pathways in the two isolates. In addition,

genes of the BA and CJ pools are expressed without any interference in F1 larvae. By contrast,

the results from F2 and backcrosses suggest substantial changes in gene action (Figs 1F–1J to

3F–3J, see also S1 Fig). In the F2 and backcross generations, alleles belonging to various loci of

one of the populations appear to interact negatively with genes of the other population of D.

gaucha delaying the development of M and HPC. On the other hand, genetic analysis sug-

gested that dominance and epistasis were principal forces controlling the development of M

and HPC (Table 3). These findings are all symptoms of coadaptation of the BA and CJ genetic

pools [25], suggesting epigenetic canalization for the growth of M, HPC and the emergence of

teeth.

Table 3. Mandible M and Hypopharyngeal sclerite and Cornua HPC measurements performed in lar-

vae of D. gaucha. The larvae were of the CJ and BA strains and F1, F2 and reciprocal backcrosses. Larvae

measured were 24, 48, 72, 96, 120, 144, 168 and 192 h of development (see also Fig 1). Measurements were

expressed in micrometers (μm).

Trait measured Description of measurement

Mandible length From the apex of the apical tooth to the end of the medial posterior

region of the mandible

Mandible width From the ventral apodeme to the dorsal apodeme

Length of hypopharyngeal sclerite

and cornua HPC

From ectostomal sclerite to the ventral arm

Teeth of mandibles Number of teeth of mandible were counts under microscope in

larvae of 24 to 196 h of development

https://doi.org/10.1371/journal.pone.0185054.t003

Table 2. Estimation of additive, dominance and epistasis parameters for mandible length and width, CPS length and teeth number in D. gaucha

larvae. The individuals were 192 h of development. Goodness of fit of an additive- dominant-epistatic model to the collected data was performed (Chi-squared

test values are listed in S1 Table). Probabilities showing significance of the calculated parameters are given at bottom of the Table, and the corresponding t-

values are listed in S2 Table. For all crosses the parental lines were the Buenos Aires (BA) and Campos de Jordan (CJ) strains.

Trait Parameter

[m] [a] [d] [aa] [ad] [dd]

Mandible

Length 167.51 ± 7.44** 4.36 ± 0.32** 132.15 ± 20.61** 39.36 ± 7.44** — 100.18 ± 13.36**

Width 59.18 ± 3.16** 0.56 ± 0.19** 76.98 ± 7.94** 23.29 ± 3.15** — 55.18 ± 4.89**

CPS

Length 930.82 ± 25.19** 8.09 ± 0.93** 1946.69 ± 63.01** 292.07 ± 25.17** — 1667.56 ± 39.67**

Teeth number 10.56 ± 0.44** 0.76 ± 0.11 1.92 ± 0.57* 1.42 ± 0.46* 2.66 ± 0.98* —

[m] = Common effects to every genotype; [a] = Additive component; [d] = Dominant effects of means; [aa] = additive x additive interaction; [ad] = additive x

dominance interaction; [dd] = dominance x dominance interaction.

*P < 0.01

**P< 0.001

https://doi.org/10.1371/journal.pone.0185054.t002
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To better understand why inter-population recombination caused changes in the growth of

M and HPC of F2 and backcross larvae, but not in F1 larvae, we focused our attention on cis-
regulatory sequences of BA and CJ genes. Current understanding of the molecular structure of

eukaryotic genes indicates that gene transcription depends on promoters, transcription initia-

tion sites, enhancers, introns and exons. Thus, gene regulatory proteins bind to DNA regula-

tory sequences, whereas transcription factors assemble on the promoters [3].

These functionally different nucleotides sequences are near to introns and exons, and

recombination may occur between regulatory sequences of homologous chromosomes [3, 25,

26]. We conjectured that BA and CJ isolates differ in nucleotide sequences of promoters and

cis-regulatory DNA sequences at genes that contribute to the development of the M and HPC.

We hypothesize that dissimilar gene control regions increase the efficiency of transcription in

each population. In female meiosis of the F1, crossing-over might change some nucleotides

regulatory sequences, altering gene transcription patterns, and the development pathways of

M and HPC of F2 and backcross larvae (Figs 1A–1J and 2A–2J). Notably, recombination of the

BA and CJ populations resulted in premature emergency of teeth in the F2 larvae, but there

was a delay in the emergence of these structures in backcross larvae (Fig 3A–3J). Future studies

should compare nucleotide sequences of cis-regulatory elements in natural populations of D.

gaucha.

On the other hand, it is known that distinct chromatin states stimulate or repress gene

activity [11]. In the process long non-coding RNAs lncRNAs are key [9, 11]. We conjectured

that cis-acting lncRNA could control the expression of protein-coding genes located adjacent

to their transcription sites; lncRNA-coding loci are often entwined with protein-coding genes

[27]. The BA and CJ populations of D. gaucha could differ in nucleotide sequence and tran-

script abundance of lncRNA. In the F2 and backcross generations changes in the primary

sequence of some lncRNA-coding loci could occur. As a result, new interactions could arise

between the novel lncRNAs and protein-coding genes affecting the development of M and

HPC and teeth emergency (Figs 1E–1J to 3E–3J). Thus, our statistical estimations of additive,

dominance and epistatic genetic variance of M, HPC and teeth number based on performance

covariances between relatives may reflect changes in gene regulatory networks.

Interestingly, our findings indicate similar patterns of growth for the M and HPC

(Figs 1A–1J to 3A–3J). These findings may be all signs of common genes participating in the

development of these two very different anatomical parts (see Fig 4). Perhaps a single molecu-

lar function is common to the M and HPC development, as proposed by He and Zhang [28].

Pleiotropic genes tend to limit phenotypic variation, ensuring that the corporal organization is

expressed in anatomic functioning wholes [5, 29]. Little attention has received the evolutionary

role of pleiotropic genes in the development of organisms living in changing environments.

An appropriate integration of M and HPC guarantees the optimal performance of body

parts necessaries to explore in a relatively short time ephemeral and variable environments as

Drosophila breeding sites [16, 19]. D. gaucha larvae are highly mobile animals investing a sub-

stantial amount of time and energy searching for microorganisms to consume and places to

pupate [19, 30]. Moreover, decaying cladodes of Opuntia ficus-indica, on which D. gaucha lar-

vae breed in the nature, are filamentous. The fibers could offer resistance when they are

ingested, requiring a fine integration of M and HPC, and pharynx to ensure that food reaches

the larva gut. An epigenetically canalized development provides circumstances to assure a

proper integration of those anatomic parts, guaranteeing food ingestion by the larvae.

Most studies on genetic recombination among isolates of one species have largely focused

on consequences for phenotypic variation of such recombination [31, 32]. Our study suggests

that inter-population recombination has also importance for the development and integration

of body parts. In other investigations, we reported that hybridization of the BA and CJ strains
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affects the locomotion and feeding rate of D. gaucha larvae [30]. These behavioral changes

could reflect alterations in M and HPC integration and/or neurological changes at central

level. Consequently, recombination among isolates of one species may have consequences for

the development of a diversity of traits ranging from behaviors to body parts that act

cooperatively.

The epigenetics of post-embryonic development of morphological traits that do not play

role in blocking gene flow, but are key to fitness have received little attention. The M and HPC

are related to feeding, nutrition, and subsequently, fitness through a nexus of connections with

rates of development, larval growth, adult body size, sexual success and fecundity. Our study

suggests that the M and HPC represent an excellent model for any comprehension of the evo-

lution of morphological organization.

Concluding remarks

Our findings suggest integration of epigenetics networks in the post-embryonic development

of body parts that act coordinately in D. gaucha larva. Such gene regulatory networks appear

generate additivity, dominance, epistasis and pleiotropic phenomena. Notably, hybridization

of two isolates of endemic D. gaucha seems to produce substantial changes in levels of gene

expressions impacting the development of corporal structures. These epigenetic changes

might be inherited by future generations providing a substrate upon which natural selection

can act. Whereas we have not identified the molecules that regulate the post-embryonic devel-

opment of M and HPC, we know that their interactions have ecological implications related

with ingestion of food and presumably, in allocation of space and microhabitat selection as in

pupation site preferences. Future molecular studies make feasible to better identify the epige-

netic control of the development of M and HPC in D. gaucha larva. Those studies will also aid

to better understand the nature of heritable epigenetic variation in natural populations of D.

gaucha and their implications for morphological organization. In summary, our data suggest

Fig 4. A simplified lateral view of Cephalopharyngeal skeleton CPS of D. gaucha. Hypopharyngeal

sclerite and Conua HPC and Mandibles M are identified; dc, dorsal cornu; vc, ventral cornu. Measurement

performed expressed in micrometers (μm) are framed. Larvae measured were 24, 48, 72, 96, 120, 144, 168

and 196 h old (N = 50 per larval age). HPC and M of larvae of the BA and CJ parental strains, reciprocal F1,

two out of four F2 and four out of eight backcrosses were measured (N = 4,000 larvae). Mandible teeth

number was also counted at each larval age. CPS shown corresponds to 96 h old larvae.

https://doi.org/10.1371/journal.pone.0185054.g004

The genetics and development of mandibles and hypopharyngeal sclerite and cornua

PLOS ONE | https://doi.org/10.1371/journal.pone.0185054 October 18, 2017 10 / 14

https://doi.org/10.1371/journal.pone.0185054.g004
https://doi.org/10.1371/journal.pone.0185054


an inter-population evolutionary divergence in genetic regulation of development and func-

tional integration of body parts essentials to ingest food and move. Such genetic differences

between natural populations rarely are considered in evolution of the genus Drosophila.

Materials and methods

Subjects

D. gaucha is a South American neotropical species. Together with an additional 9 to 12 species,

D. gaucha forms the mesophragmatica group of species of Drosophila [20, 21, 33]. We tested

wild-type larvae of two natural D. gaucha populations (the Buenos Aires BA and Campos de

Jordan CJ strains). Campos de Jordan, 22˚44’ S at 1700 meters sea level, has tropical height cli-

matic conditions. The annual rainfall is approximately 1566 millimetres and the annual mean

temperature is 13.6˚C. Campos de Jordan is the only place in Brazil where snow occasionally

falls in winter. Buenos Aires, 35˚0’ S at 25 meters sea level, has temperate humid climatic con-

ditions. The annual rainfall is circa 1147 millimetres. Each strain was founded with about 25

flies (Campos de Jordan and Buenos Aires strains), and the sex ratio was variable. When the

crosses were made, approximately 10 generations of breeding in the laboratory had elapsed.

We presumed that a significant amount of the genetic variation present in the founders was

retained when the strains were crossed. The F1, F2 and backcross adult individuals were all vig-

orous and female fecundity similar to that of the parental. Flies were all reared under constant

light at 18 ± 1˚C 80% humidity in 250 cc glass bottles in synthetic Burdick’s medium [34]. D.

gaucha grows better at this temperature and humidity than at 24˚C. Facilities to change the

light / dark cycle were not available in the laboratory. All experimental flies were raised and

stored under the same conditions.

Groups of 20–30 inseminated females of the BA and CJ strains, and as well as the hybrids

between the strains were allowed to lay eggs for 3–4 h on their respective plastic spoons filled

with Burdick’s medium. The spoons with eggs were incubated at 18˚C. In D. gaucha, larvae

rise from eggs out 48 h after they are deposited on the medium. We randomly collected larvae

in 4-h windows every day for 8 days at 1–8 days after hatching. Thus, we examined the larvae

of 1-day-old to 8-day-old larvae. We examined larvae of the two reciprocal F1, two out four

reciprocal F2 and four out eight types of backcrosses, that is, 10 groups of genotypes.

Hypopharyngeal sclerite and cornua and mandible measures

We measured M and HPC of D. gaucha larva [12, 35]. We measured length and width of M in

micrometers (μm). Only the length (μm) of HPC was measured. HPC width changes notably

at the two ends (Fig 4). This Fig 4 agrees almost exactly with Fig 1 published by Alvarez et al.
[22]. However, Fig 1 in Alvarez et al. [22] contains some inaccuracies mainly in the names;

these were corrected as shown in Fig 4 of the present manuscript. Table 3 describes the mea-

surements performed on 24, 48, 72, 96, 120, 144, 168 and 192-hour-old larvae, covering the

entirely larval period (N = 50 larvae per age and genotypic group). The goal was evaluate the

effect of hybridization between the BA and CJ parental strains on the growth of those body

parts.

The larvae were randomly collected and sacrificed by placing in phosphate-buffered saline

PBS 0.1 M-1. Once dead, the larvae remained completely extended. The larvae were individu-

ally collected from the buffer and dried by depositing them on Whatman cellulose filter paper.

Then, M and HPC were dissected and mounted as described by Frı́as et al. [35]. For this task

we used a stereomicroscope Leica MZ6 at 20 x magnification.
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Crosses and statistical analysis

We crossed the CJ and BA strains reciprocally (see above). For the valid application of the

Mather and Jinks model [23], the assumption of additivity must be tested. We attempted to

remove multiplicative effects by changing the scale. We transformed the data to logarithms;

this scale is used to convert multiplicative into additive effects [36]. However, log transforma-

tions did not remove multiplicative effects. We accepted that the collected data have nonlinear

components. We followed the analysis, applying scaling tests to examine the adequacy of the

results in an additive-dominance model [23]. The tests consider the relationships between the

generation means. The failure to observe the relationships between the expected means for an

additive- dominance model is indicative of non-allelic interactions [23]. We applied the indi-

vidual scaling tests and the joint scaling test to ensure that the data contained non-allelic com-

ponents [37].

We also used ANOVA to compare the parental and F1 generations. We tested whether the

parental strains differed, whether there were reciprocal differences in the F1’s, and whether

F1’s showed dominance. To determine whether there were maternal or sex—linkage effects we

performed ANOVA for all 10 crosses (see Fig 1A–1J to 3A–3J). Thus we compare the CJ and

BA parental, F1’s, F2’s and reciprocal backcrosses. For example, we tested whether larvae of

backcross F1 males to CJ females had different larval mandible sizes compared with those from

the reciprocal cross F1 females to CJ males at the same larval age.

We searched for the curve that mathematically best described changes in the traits mea-

sured (see above) as larval development proceeded. The function that showed higher R2 deter-

mination coefficient was chosen as the most reliable to describe the data (see S3 Table). We

applied an ANOVA to compare the slopes of the traits measured in the parental strains and

the F1, F2 and backcrosses.

We applied a multiple linear regression and χ2 test to estimate goodness-of-fit between an

additive-dominant-epistatic model and the data (see S1 Table). Once applied the test, we esti-

mated the [m], [a], [d], [aa], [ad] and [dd] parameters [23, 37].

To make our statistical analysis we used STATGRAPHICS Program, Centurion XVII

64-bit, paid 2014 version.

Supporting information

S1 Fig. Growth in width (μm) of mandibles M in BA, A; CJ, B; F1, C and D; F2, E and F,

and backcross larvae, G—J of D. gaucha. For further details see Figs 1 and 2, and Table 2. See

also reference [22].

(TIFF)

S1 Table. Goodness of fit of an additive-dominant-epistatic model to the collected data.

(DOCX)

S2 Table. Statistical significance, t-test, of parameters value presented in Table 2 (see also

Materials and methods).
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S3 Table. Proportion of variances, R2 –values, in the dependent variable that is predictable

from the independent variable in the parental, F1, F2 and backcross generations.

(DOCX)
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and hypopharyngeal sclerite and cornua HPC in larvae of Drosophila gaucha.

(XLS)
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Writing – review & editing: Raúl Godoy-Herrera.
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