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Materials science is a highly interdisciplinary field. It is devoted to the understand-
ing of the relationship between (a) fundamental physical and chemical properties
governing processes at the atomistic scale with (b) typically macroscopic prop-
erties required of materials in engineering applications. For many materials, this
relationship is not only determined by chemical composition, but strongly gov-
erned by microstructure. The latter is a consequence of carefully selected process
conditions (e.g., mechanical forming and annealing in metallurgy or epitaxial
growth in semiconductor technology). A key task of computational materials sci-
ence is to unravel the often hidden composition–structure–property relationships
using computational techniques. The present paper does not aim to give a com-
plete review of all aspects of materials science. Rather, we will present the key
concepts underlying the computation of selected material properties and discuss
the major classes of materials to which they are applied. Specifically, our focus
will be on methods used to describe single or polycrystalline bulk materials of
semiconductor, metal or ceramic form. C© 2013 John Wiley & Sons, Ltd.
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MATERIALS CLASSES

W ithin the focus of materials science, materials
can be classified by various criteria. Depend-

ing on the type of chemical bonding and electronic
structure, several major classes of materials are distin-
guished: metals (with no bandgaps) and semiconduc-
tors, ceramics, and polymers (with finite bandgaps).
The border between semiconductors and ceramics is
not well defined and their actual assignment is of-
ten determined by their specific application (e.g., in
electronic and optoelectronic applications, a material
may be considered a semiconductor, but in mechani-
cal applications, a ceramic).

An alternative way to classify materials is with
respect to whether their local atomic arrangement is
highly ordered or not, and the size/regularity of their
microstructure. Typically, one distinguishes perfect
bulk crystals (e.g., Si-based microelectronics), poly-
crystals consisting of multiple single crystalline grains
with sizes ranging from about 10 nm to several hun-
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dred μm, amorphous materials (e.g., glasses), soft
matter (e.g., polymers), composites (e.g., biomateri-
als), and nanostructures. In the present paper, the fo-
cus will be on crystalline and polycrystalline materials
on which density functional theory (DFT) has had a
particularly strong impact.

Further to the above classification schemes, ma-
terials are also distinguished as functional and struc-
tural materials. Functional materials are highly sen-
sitive in one or several of their properties to changes
in the environment, whereas structural materials are
optimized to withstand external forces. Table 1 classi-
fies important groups of functional materials together
with common simulation challenges.

Although some of the challenges are unique to
a specific material, a number of generic topics ap-
plying to several or all materials are apparent. They
are not restricted just to functional materials, but ap-
ply equally well to structural materials. Examples of
generic topics and structural motives are chemically
ordered and disordered bulk materials, point defects
(native defects, impurities/dopants), line defects (dis-
locations), planar defects (internal or external sur-
faces, homo- and heterointerfaces, grain boundaries,
stacking faults), or quasi-zero-dimensional defects
(precipitates, quantum dots). The behavior and the
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TABLE 1 Classification of Selected Functional Materials with Respect to the Mechanism They Are
Based on, Key Applications and Typical Questions Addressed by Density Functional Theory

Category Applications Simulation Challenges

Electronic Microelectronics Doping, defects, interfaces
Optical Laser diodes, light emitting diodes Bandstructure, matrix elements
Magnetic Storage applications, spintronics, magnetocalorics Magnetic structure, anisotropies, disorder
Mechanical Structural components, shape memory effect,

piezo- and pyroelectrics
Extended defects, elastic constants, complex energy

landscapes, plasticity, disorder
Combinations Multiferroics

impact of such motives on materials behavior can be
hugely different—for example, dislocations in semi-
conductors are highly detrimental to device perfor-
mance whereas in many metallic alloys they are de-
cisive for achieving high plasticity/ductility. Still the
electronic structure/atomic scale methods, which have
been developed to compute energetic stability, equi-
librium structure, or mechanical or electronic prop-
erties, are often very similar. Although these proper-
ties have been historically addressed using T = 0 K
formalisms, recent developments in efficient compu-
tation of accurate free energies allow extensions to
finite temperatures.

ELECTRONIC STRUCTURE

A key quantity of interest is the ground state (T =
0 K) total energy Etot({ �RI , ZI}) with the coordinates
�RI describing the atomic positions and ZI the atomic
numbers (i.e., the chemical species). This quantity is
directly accessible by most electronic structure ap-
proaches. For extended systems with spatial periodic-
ity relevant for crystalline systems, DFT is the method
of choice. One reason for this is that DFT relies solely
on single-particle wavefunctions, which makes the im-
plementation of periodicity straightforward. Second,
modern implementations of DFT using plane waves
together with pseudopotentials have for characteris-
tic system sizes (i.e., a few hundred atoms) an ef-
fective scaling of O(N2. . .N3) with N the number of
atoms.1–4 For very large systems consisting of >103

atoms, orthogonalization of the one-particle wave-
functions, which scales like O(N3), dominates the
computation time. For such large system sizes, lin-
early scaling O(N) methods including tight-binding
approaches have been developed.5,6

Although DFT has been proven to be formally
exact,7 practical realizations rely on an approxima-
tion of the unknown exchange correlation (XC) func-
tional EXC[ρ(�r )] of the charge density ρ(�r ). The func-
tionals most commonly employed in materials sci-
ence are local (like the local density approximation—

LDA8–10) or semilocal (such as the family of gener-
alized gradient approximations—GGA11,12), because
they combine high numerical performance with often
surprisingly good accuracy. In contrast to Hartree–
Fock-based approaches, which can be systematically
improved by expanding the many-particle wavefunc-
tion, a systematic improvement of the XC-functional,
although formally possible,13 is numerically impracti-
cal. A ‘gold standard’ against which the performance
of the various functionals can be tested, is therefore
not available. As a consequence, it is of paramount
importance to carefully check the accuracy and pre-
dictive power of the various XC-functionals taking,
e.g., selected experimental data into account.

SINGLE-CRYSTALLINE BULK

Historically, one of the first topics in materials science
to which DFT was successfully applied is the phase
and lattice stability of ideal crystals, that is, crystals
without any defects.14 For a material with a given
crystallographic structure [e.g., face-centered cubic
(fcc), body-centered cubic (bcc), or zincblende (zb)]
and in the absence of chemical disorder, the atomic
structure can be described by a single parameter—the
volume per atom.

Calculating the total energy versus this vol-
ume Etot(V) provides important information (see, e.g.,
Figure 1): The V at which Etot becomes minimal is the
equilibrium volume, V0, of the corresponding phase.
Fitting this curve to the Murnaghan equation of state

Etot(V) = E0 + B0V
B′

0(B′
0 − 1)

×
{

B′
0

(
1 − V0

V

)
+

(
V0

V

)B′
0

− 1

}
(1)

yields in addition the equilibrium bulk modulus B0

and its first derivative B′
0. These parameters give

the mechanical response of the crystal under hydro-
static load and are important engineering quantities.
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FIGURE 1 | Total energy versus volume curve for two
crystallographic (fcc, bcc) and three magnetic structures (non- (nm),
ferro- (fm), antiferro- (afm, afmd) magnetic) of single crystalline iron.
The calculations provide the equilibrium volume (minimum) of the
individual phases as well as information on the crystallographic and
magnetic preferences. The example shown here reveals that the T =
0 K thermodynamic ground state of bulk iron is the ferromagnetic bcc
structure.

Considering more complex deformations, the full
elastic tensor can be derived. Furthermore, the
difference between the minimal total bulk energy E0

and the atomic energy gives the cohesive energy, an
important measure of the chemical bond strength in
the crystal. As periodic boundary conditions are used,
the actual computational volume is only the (primi-
tive) unit cell that consists of one (e.g., for fcc) or two
(e.g., for zb) atoms making such calculations numer-
ically very efficient.

Figure 2 compares data for bulk modulus, B,
and equilibrium lattice constants, alat, calculated us-
ing various XC-functionals with experiment. The
errors shown are characteristic for these quantities:
lattice constants, bond lengths, and so forth can be
determined with an accuracy of better than a few per-
cent. In contrast, elastic properties are more sensitive,
resulting in errors of ±30%. The trends shown in
Figure 2 for the various functionals are well under-
stood and related to specific deficiencies of the respec-
tive functionals. LDA tends to yield an overbinding,
which results in too strong chemical bonds, too short
lattice constants/bond lengths, and, consequently, too
high (stiff) bulk moduli. In contrast, GGA is known
to lead generally to underbinding and thus to too
soft bulk moduli. It is important to note that there

FIGURE 2 | Relative errors between density functional theory
computed and experimental bulk moduli (y-axis) and lattice constants
(x-axis). Local density approximation and various generalized gradient
approximations for the exchange correlation functional have been
employed (PBE,12 PW91,15 AM05,16 PBEsol17). The figure is adapted
from Refs 18 and 19.

are prominent exceptions of these trends, such as Fe,
which even in GGA is predicted to have a too small
lattice constant.

CHEMICAL ALLOYS

Most of the metallic materials (such as, e.g., steels) ex-
ist as solid solutions of various alloying components,
rather than in a stoichiometric phase. Consequently,
the distribution of the chemical species over the avail-
able lattice sites is fully or partially disordered. Dis-
order is further relevant for magnetic materials in a
paramagnetic state, where the magnetic moments of
the individual atoms point in random directions. For
both aspects, a few methods that can be combined
with DFT have been established in the last decades.

Coherent Potential Approximation
In the coherent potential approximation (CPA), the
concept of an effective medium is used, where the
lattice sites are indistinguishable and represented by
a mixture of the ordered alloy components. The
corresponding coherent potential is self-consistently
determined from DFT energies such that the in-
teraction of electrons with individual atoms aver-
ages to zero.20 The CPA approach is most eas-
ily implemented in DFT codes that are based on a
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FIGURE 3 | Formation energy of various point defects in bulk GaN
as function of the Fermi energy EFermi. VN and VGa are N and Ga
vacancies, NGa and GaN antisites (a N(Ga) atom on a Ga(N) site
respectively), and Ni and Gai the corresponding interstitials. The
numbers give the (energetically) most favorable charge state of the
respective defect. The kinks in the formation energies give the position
of the electronic charge transfer level. (Reproduced with permission
from Ref 30. Copyright 2004, American Institue of Physics.)

Green’s function formulation.21,22 Examples are the
Korringa–Kohn–Rostoker (KKR) technique and the
linear muffin-tin orbital (LMTO) method.23,24 More
recently, the application of CPA has been extended to
exact muffin-tin orbital (EMTO) basis sets,25 which
allows all-electron precision and, therefore, even the
treatment of anisotropic lattice distortions. A major
advantage of CPA is its high numerical efficiency.
A disadvantage is the conceptional difficulty in in-
cluding deviations due to local atomic relaxations (as
occurring in disordered alloys) from the ideal lattice
structure.

Typical materials science problems to which
CPA in combination with DFT is applied are pro-
vided in Table 2.

TABLE 2 Fields in Materials Science to Which the Coherent
Potential Approximation can be Applied

Category Applications Material Systems

Structural Lattice constants Substitutionally disordered
bulk materials

Thermodynamic Mixing
enthalpies

Substitutionally disordered
bulk materials

Electronic Width of
bandgap

Off-stoichiometric ternary
semiconductors

Mechanical Elastic constants Intermetallic compounds
Dimensional Surface energies Substitutionally disordered

bulk materials

Special Quasirandom Structures
Chemical disorder can also be modeled, if the DFT
calculations are performed with sufficiently large su-
percells. The degree of artificial order in a (small, pe-
riodically repeated) supercell is quantified by corre-
lation functions attributed to a selected set of struc-
tural motives. The atomic configurations for which
these values are closest to an infinite random alloy
are called special quasirandom structures (SQS).26

Cluster Expansion
The results of DFT calculations for various atomic
configurations can be effectively generalized, if these
configurations are decomposed into structural mo-
tives within a cluster expansion (CE). In this ap-
proach, an Ising-like Hamiltonian is used to parame-
terize the total energy of a system27,28:

ECE(σ ) = J0 +
∑

i

Ji Ŝi (σ ) +
∑
j<i

Ji j Ŝi (σ )Ŝ j (σ )

+
∑

k< j<i

Ji jkŜi (σ )Ŝ j (σ )Ŝk(σ ) + . . . . (2)

For the special case of a binary alloy AxBy, the
pseudo spin variables Ŝi of a particular configura-
tion σ are +1 or −1, if site i is occupied by atom
A or B, respectively. The mapping (2) is exact, if
the number of interaction energies J is identical to
the number of atomic configurations. The idea of the
method is, however, to truncate the expansion to a
limited set of relevant motives. In this case, a fitting
of the J values to a relatively small number of direct
DFT calculations provides an efficient way to deter-
mine the energy of a large set of atomic configura-
tions. The predictive power of this expansion is typ-
ically tested by cross-validation schemes. It has been
shown that in many cases reliable results require the
consideration of concentration-dependent interaction
energies.29 Besides ground-state formation energies,
the CE has, for example, also been used to determine
the configurational entropy of alloys, configuration-
dependent elastic properties, or the energetics of spin
configurations.

POINT DEFECTS

Point defects are commonly classified into native
defects (vacancies, interstitials, antisites), if they
are lattice defects involving no external impuri-
ties, and extrinsic defects, if impurities are substitu-
tionally or interstitially incorporated. Key quantities
characterizing point defects are their concentration,
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their electrical activity in semiconductors and ceram-
ics, and their induced volume changes.

Fundamentals
To determine the above quantities, we need to com-
pute the defect formation energy30:

E f (q, EFermi) = Etot(bulk + D) −
∑

α

nαμα

− q(EFermi − EVB). (3)

Here, q is the charge state of the defect (for met-
als, q = 0), Etot(bulk + D) is the total energy of the
bulk system with defect D, EFermi and EVB are the
Fermi energy and the energy at the top of the valance
band respectively, and nα and μα are the number of
atoms in the supercell and the chemical potential of
species α, respectively. For conditions at which the de-
fects are in thermodynamic equilibrium with the en-
vironment (i.e., high temperatures, long timescales),
exact boundary conditions and relations between the
chemical potentials can be formulated. To be more
specific, an ordered binary compound AB with impu-
rity D is considered: ensuring thermodynamic stabil-
ity of the AB compound with the chemical potentials
of its constituents enforces μAB = μA + μB with μAB

the chemical potential of the bulk compound. To pre-
vent decomposition of the system into a mixture of
the bulk compound and a pure A or B phase an upper
limit for any potential is μA < μA(bulk) with μα(bulk) be-
ing the chemical potential of the bulk (or gas) phase
of the respective constituent. Finally, to avoid for-
mation of undesired precipitate phases the chemical
potentials have to obey different bounds, for exam-
ple, 2μA + μD < μA2D to prevent the formation of
an A2D phase. Using this approach, realistic environ-
ments can be modeled in a transparent way. For an
example, the formation energies of point defects in
GaN are provided in Figure 3.

Knowing the defect formation energy, the equi-
librium defect concentration can be directly deter-
mined:

ceq(q, EF) = c0e−E f (q,EFermi)/kBT. (4)

Here, c0 is the concentration of possible sites
where the defect can be formed, kB is the Boltzmann
constant, and T is the temperature. For metals, the
dependence on the Fermi energy EFermi (which is the
energetic position of the electron reservoir) and thus
on the charge state q drops: The equilibrium concen-
trations of the defects are thus directly determined.
For semiconductors/ceramics, the Fermi level can vary
between the top of the valence band (highest occu-
pied molecular orbital, HOMO) and the lowest un-
occupied state (lowest unoccupied molecular orbital,

LUMO). The position of the Fermi level is given by the
charge neutrality condition, that is, the sum over all
charges in the system (defects, electrons in the con-
duction band, holes in the valence band) must be
zero.30 In addition, the Fermi level where the for-
mation energy of two charge states q, q′ of the same
defect equals is the charge transfer level Eq,q′. Know-
ing the position of all charge transfer levels allows
one to determine the electronic behavior of the defect,
that is, whether the defect behaves as donor, acceptor,
or amphoteric defect that both accepts and donates
electrons.

Supercell Convergence
The most common approach to compute the above
defined defect formation energies is the supercell ap-
proach. In this approach, a large bulk cell consisting
of O(102) atoms and with a single defect in it is peri-
odically repeated. Because the defect concentration in
such a cell is typically orders of magnitude larger than
realistic defect concentrations, the interaction of the
defect with its periodic images is spurious and must be
corrected. The interaction of the defect with its images
occurs via three mechanisms.: first, electronic interac-
tions due to the overlap of the defect wave functions.
The importance of this effect can be seen by inspect-
ing the dispersion of the defect band. Second, elas-
tic interactions induced by atomic relaxations around
the defect. Third, if the defect is charged there is a
long-range Coulomb interaction with the neighbor-
ing defects and the compensating background. For all
three interactions, efficient correction schemes have
been proposed that allow the use of modest supercell
sizes in determining the correct formation energy of
an isolated defect in an infinitely large supercell.31–33

Overcoming the Bandgap Problem
A major hurdle in computing formation energies and
charge transfer levels of defects in semiconductors
is the infamous bandgap problem in DFT when us-
ing semilocal XC-functionals such as LDA or GGA.
Because errors in the theoretical bandgap can be
in the range of several eV, similar errors are ex-
pected in the computed formation energies. Recently,
thanks to hugely improved CPU power and algo-
rithmic developments, DFT approaches with hybrid
XC-functionals (mixing exact exchange and semilocal
XC-functionals)34,35 and, to a lesser extent, quasipar-
ticle (GW)36 and quantum Monte Carlo (QMC)37,38

calculations can be used to compute the large
supercells needed to describe point defects. These
approaches largely overcome the bandgap prob-
lem (typical errors are <0.1 eV), correctly describe
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localization phenomena at single dangling bond
states, and are generally believed to accurately de-
scribe defect energetics.

EXTENDED DEFECTS

Extended defects are commonly categorized into
one-dimensional line defects (dislocations) and
two-dimensional defects such as defects in the
crystallographic structure (stacking faults), grain
boundaries (occurring between two crystallites of the
same phase, e.g., in polycrystals), interfaces (bound-
ary between two different phases), and internal and
external surfaces and quasi-zero-dimensional defects
(precipitates, quantum dots).

Dislocations
Dislocations play a key role in understanding plastic-
ity in structural materials39 and are also well known
to adversely affect electronic and optical properties
and lifetime of modern semiconductor devices.40

To understand plasticity a key parameters that
needs to be modeled is the mobility (activation energy)
of dislocations under applied strain. Because the mo-
bility is strongly affected by the nucleation of disloca-
tion kinks, interactions with impurities/precipitates,
and phonon drag (frictional forces due to the inter-
action with phonons), large system sizes (>103. . .104

atoms) and large timescales (∼10 ps) are needed. This
makes such calculations impractical for today’s DFT
approaches and most computations on this topic have
been performed using empirical potentials (see, e.g.,
Ref 41). Only recently with the advent of multiscale
techniques could critical aspects of dislocation mobil-
ity be successfully addressed using DFT (see, e.g., Ref
42).

To understand the impact of dislocations on
electronic/optical properties their atomic geometry
and electronic structure need to be determined. For
straight dislocations (i.e., in the absence of any kinks),
the required atomic relaxation of a few internal dis-
location core structures can be accomplished using
DFT. To avoid artifacts due to the slowly decaying
1/r (with r the distance to the dislocation core) stress
field around a dislocation, various schemes have been
developed to minimize spurious interactions with pe-
riodic images.43,44

Stacking Faults, Grain Boundaries,
Interfaces, and Surfaces
Ideal planar defects, which are free of kinks or steps,
can exploit the periodic boundary conditions com-

mon to most DFT codes. For such structures, only
the direction normal to the defect shows no pe-
riodicity and requires a sufficiently large supercell
dimension to avoid image artifacts. In practice, 5–
10 atomic layers are often sufficient to separate in-
teractions between the extended defects in neigh-
boring supercells.45 For high-symmetry static planar
defects such as, for example, stacking faults or un-
reconstructed surfaces supercells as small as O(10)
atoms are sufficient to obtain converged results with
respect to equilibrium atomic geometry, electronic
structure and energy. These quantities are of high
relevance in addressing, for example, the properties
of semiconductor heterointerfaces (valence and con-
duction band offset, impurity segregation), catalytic
activity on surfaces, or mechanical strength of poly-
crystals or precipitate strengthened alloys.

Imperfections on planar defects such as steps
and kinks are important in understanding the dy-
namic behavior of such defects but can also strongly
affect the local chemical activity. Including such struc-
tural features requires large supercell sizes of more
than a few hundred atoms, which can be still han-
dled by modern DFT approaches. Modeling the time
evolution is critical in understanding, for example,
epitaxial surface growth (which is the preferred fab-
rication technique to make optoelectronic devices) or
grain coarsening which critically affects microstruc-
ture and thus mechanical stability of structural mate-
rials. Relevant timescales can be as slow as a fraction
of an atomic layer per second (e.g., semiconductor
surface growth) requiring advanced multiscale ap-
proaches that couple, for example, DFT calculated
single atom diffusion rates with efficient statistical
approaches such as kinetic Monte Carlo.46 For the
much faster dynamics of grain boundaries in metals
commonly empirical potentials are used.47

FREE ENERGIES

The original formulation of DFT was for the
T = 0 K ground state.7 Although it can be shown
that the concept can be extended to finite electronic
temperatures,48 historically most calculations were
restricted to T = 0 K properties due to computational
limitations.

Fundamentals
The key quantity for computing finite temperature
properties is the partition function:

Z(V, T) =
∑

{ �RI ,�σI , fi }V

exp

[
− EDFT{ �RI , �σI , fi }V

kBT

]
. (5)
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Here, EDFT is the DFT computed total energy of
a snapshot configuration with atoms I at positions �RI

and with magnetic spins �σI , fi is the occupation num-
ber of the electronic state i, V is the volume of the
specific configuration, and T the temperature. Know-
ing the partition function provides direct access to the
free energy and other finite temperature properties.
Because the dynamics of the electrons is much faster
than that of the atoms/magnetic moments (i.e., ap-
plying the Born–Oppenheimer approximation) each
configuration can be computed in the ground state or
the equilibrated finite temperature state using conven-
tional DFT.

A major challenge in computing free energies
based on the above formulation is the huge num-
ber of configurations needed to achieve statistically
converged results. A major reduction is achieved by
assuming an adiabatic decoupling of the various ex-
citation channels such as electronic (fi), magnetic
(�σI ), or vibrational ( �RI ) excitations. In addition, for
point defects and alloys (see corresponding sections
above) where many geometrically equivalent con-
figurations exist configurational entropy has to be
included. The free energy can then be written as
F = F el + F mag + F vib + F config where the triple sum
in Eq. (5) reduces to three single sums.

Electronic Excitations
The electronic free energy is given by

F el = kBT
∑

i

( fi ln fi + (1 − fi) ln(1 − fi)) (6)

with the occupation numbers fi given by the Fermi–
Dirac distribution. This contribution is included in
most DFT codes and computationally inexpensive.

Vibronic Excitations
In DFT, the vibronic free energy is commonly com-
puted by expanding the total energy around the equi-
librium configuration in a Taylor series of small
displacements. Because the first-order contribution
vanishes by definition for an equilibrium configura-
tion (which is a local minimum), the dominant term
is the second-order contribution (the harmonic con-
tribution). Neglecting higher-order contributions, the
harmonic free energy can be written as

F har = kBT
∑

q

ln
[
2 sinh

(
h̄ωq

2kBT

)]
, (7)

where ωq are the phonon energies obtained from diag-
onalizing the dynamical matrix and h̄ is Planck’s con-
stant. A large part of the anharmonic contributions
can be included by computing the volume dependence

of Eq. (7), that is, by computing how the phonon ener-
gies change when the volume increases due to thermal
expansion. This approximation is called the quasihar-
monic approximation and allows the computation of
temperature-dependent materials properties such as
thermal expansion, elastic constants (e.g., bulk mod-
ulus), or isobaric/isochoric heat capacities. The quasi-
harmonic approximation requires as its only input
the phonon frequencies for a few (5–10) volumes.
Two major techniques are used to compute phonon
spectra—linear response techniques where the calcu-
lations can be performed in the elementary unit cell49

and direct approaches where the response of the sys-
tem onto a small perturbation is computed in a large
supercell.50 The advantage of the first formalism is
that for simple bulk cells often only a single-atom cell
is needed, whereas the advantage of the second ap-
proach is that any DFT code providing forces can be
used. For bulk crystals, both techniques are nowadays
quite affordable.

For high temperatures above ∼0.7. . .0.8 Tmelt,
explicit anharmonic contributions become relevant.
Estimates show that to compute derivatives of the
free energy such as heat capacities, statistical errors
in the free energy should be well below 1 meV.51 To
achieve such an accuracy, direct configuration space
sampling such as Eq. (5) would require 106. . .107

configurations making it unfeasible with a direct DFT
approach. Modern sophisticated sampling techniques
allow the targeted accuracy to be achieved with a few
hundred carefully constructed configurations.52

Magnetic Excitations
Magnetic phenomena can be classified into diamag-
netism, paramagnetism, and collective magnetic or-
dering, such as ferromagnetism, ferrimagnetism, or
antiferromagnetism. Furthermore, one needs to dis-
tinguish between materials with localized magnetic
moments (caused by partially filled inner electron
shells) and itinerant moments (carried by conduction
electrons). The dominant magnetic excitations in sys-
tems with a collective magnetic ordering are (collec-
tive) spin-wave excitations or (single-particle) Stoner
excitations. In many materials, spin-wave excitations
of local moments dominate the thermodynamic prop-
erties. Their energetics is most often described using
a Heisenberg model

H = −
∑

i j

Ji, j SiS j , (8)

with spin operators Si for the localized spins and ex-
change integrals Ji,j, which in the most general case
also depend on the value of the localized magnetic
moments. Different DFT methods are available to
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determine the exchange integrals Ji,j, allowing an ab
initio-based description of magnetic excitations. The
most prominent ones are the application of the mag-
netic force theorem,53 the application of KKR meth-
ods or the calculation of frozen spin waves.

The spin Hamiltonian Eq. (8) can be solved
by applying analytical (such as the random phase
approximation54) or numerical (such as classical
or quantum Monte Carlo55) methods. Recent stud-
ies show that spin quantization effects (the quan-
tum character of the spin operators Si) cannot be
neglected when computing free energies, heat ca-
pacities or magnetization curves below the Curie
temperature.56

Other Free Energy Contributions
Beyond the three typically dominant excitation mech-
anisms discussed above several additional mecha-
nisms exist in realistic materials. Due to their large
configurational entropy point defects can occur at
high concentrations (10−3. . .10−4) at temperatures
close to the melting temperature and may impact
thermodynamic properties such as heat capacities. In
contrast, the configurational entropy of extended de-
fects is too small for them to exist in thermodynamic
equilibrium.

Although the adiabatic decoupling of vibrati-
onal, magnetic, and electronic degrees is very popular
due to its often high predictive power (see below) and
its computational efficiency, materials and conditions
exist where nonadiabatic couplings between these ex-
citations cannot be neglected. Examples are super-
conductors (electron–phonon coupling) and multifer-
roics or magnetic structural materials such as steels
(magnon–electron–phonon coupling).

Accuracy of Finite Temperature
Calculations
Recent methodological and computational advances
provided the opportunity to compute fully converged
(including statistical averages) free energies and de-
rived materials properties, such as heat capacities.18

For such calculations, the only unavoidable error
that remains is due to the choice of the DFT XC-
functional. Comparing with high-quality experimen-
tal data thus provides an efficient route to assess
the quality of various XC-functionals, which all have
been constructed for T = 0 K, in predicting thermo-
dynamic quantities.

Recent studies18 indicate that the magnitude of
the deviation between LDA and various GGA func-
tionals in the temperature dependence of various bulk
properties (heat capacity, free energy, thermal expan-

FIGURE 4 | Isobaric heat capacity of aluminum including the
quasiharmonic, electronic, anharmonic, and vacancy contributions
compared to experiment. The modification due to the last three
contributions with respect to the quasiharmonic result is for the case of
the generalized gradient approximations shown in the inset (note the
different scale). The melting temperature Tm of Al (933 K) is indicated
by a vertical dashed line. (Adapted with permission from Ref 59.
Copyright 2011, IOP publishing. References for the experimental data
can be found in Ref 57.)

FIGURE 5 | Calculated heat capacity (lines) of cementite in
comparison with available experimental data (open symbols). The
calculated vibrational, electronic, and magnetic contributions to the
heat capacity are shown in shaded gray (lower area), blue (middle),
and red (upper area) correspondingly. (Adapted with permission from
Ref 59. Copyright 2011, IOP publishing. References for the
experimental data can be found in Ref 58.)

sion) provides an approximate indicator for DFT er-
ror bars. These studies also show that GGA does not
outperform LDA for finite temperature calculations.
Presently, it is therefore highly advisable to perform
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such calculations with at least two XC-functionals
and to carefully monitor deviations.

The presently achievable accuracy of common
XC-functionals is exemplary shown in Figure 4 for
the experimentally relevant isobaric heat capacity of
aluminum: The scatter in the experimental data is sub-
stantially larger than the estimated DFT error bar (dif-
ference between the LDA and GGA functional). The
accuracy achievable with these DFT techniques opens
new opportunities to identify the mechanisms driving
the instability of materials at high temperatures52 or
can even be used to assess the quality of experimental
thermodynamic data (see Figure 5). As all free en-
ergy contributions are included, they also provide a
unique insight into the relative importance and tem-
perature dependence of the various contributions (see
Figure 5).

CONCLUSIONS

DFT has emerged as a powerful technique in materials
science for addressing a wide range of topics. Recent
years have seen an enormous progress in overcom-
ing early challenges such as the infamous bandgap
problem for semiconductors or the restriction to T =
0 K ground-state calculations when considering re-
alistic materials. Still, many challenges are left for
future research such as the development of improved
XC-functionals for predicting phase transition tem-
peratures with an accuracy of ∼20 K (as, e.g., needed
for technical thermodynamic databases), the efficient
sampling of huge chemical and structural configura-
tion spaces (as crucial for technical materials), or go-
ing to realistic length and timescales by developing
efficient multiscale strategies.
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54. Körmann F, Dick A, Grabowski B, Hallstedt B, Hickel
T, Neugebauer J. Free energy of bcc iron: Integrated
ab initio derivation of vibrational, electronic, and mag-
netic contributions. Phys Rev B 2008, 78:033102.

55. Alet F, Lucini B, Vettorazzo M. A cluster algorithm for
lattice gauge theories. Comput Phys Commun 2005,
169:370–373.
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58. Dick A, Körmann F, Hickel T, Neugebauer J. Ab initio
based determination of thermodynamic properties of
cementite including vibronic, magnetic, and electronic
excitations. Phys Rev B 2011, 84:125101.

59. Hickel T, Grabowski B, Körmann F, Neugebauer J.
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