Expression profile of circular RNAs in epicardial adipose tissue in heart failure

Mei-Li Zheng^{1,2}, Xiang-Peng Du³, Lei Zhao^{1,2}, Xin-Chun Yang^{1,2}

¹Heart Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China;
 ²Beijing Key Laboratory of Hypertension Research, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China;
 ³Department of Cardiology, Weihaiwei People's Hospital, Weihai, Shandong 264200, China.

Abstract

Background: Recent studies have reported circular RNA (circRNA) expression profiles in various tissue types; however, circRNA expression profile in human epicardial adipose tissue (EAT) remains undefined. This work aimed to compare circRNA expression patterns in EAT between the heart failure (HF) and non-HF groups.

Methods: RNA-sequencing was carried out to compare circRNA expression patterns in EAT specimens from coronary artery disease cases between the HF and non-HF groups. Quantitative real-time polymerase chain reaction was performed for validation. Comparisons of patient characteristics between the two groups were using *t* test, Mann-Whitney *U* test, and Chi-squared test. **Results:** A total of 141 circRNAs substantially different between the HF and non-HF groups (P < 0.05; fold change >2) were detected, including 56 up-regulated and 85 down-regulated. Among them, hsa_circ_0005565 stood out, for it had the highest fold change and was significantly increased in HF patients in quantitative real-time polymerase chain reaction validation. The top highly expressed EAT circRNAs corresponded to genes involved in cell proliferation and inflammatory response, including GSE1, RHOBTB3, HIPK3, UBXN7, PCMTD1, N4BP2L2, CFLAR, EPB41L2, FCHO2, FNDC3B, and SPECC1. The top enriched Gene Ontology term and Kyoto Encyclopedia of Genes and Genomes pathway were positive regulation of metabolic processes and insulin resistance, respectively.

Conclusion: These data indicate EAT circRNAs may contribute to the pathogenesis of metabolic disorders causing HF. **Keywords:** CircRNA; Epicardial adipose tissue; Heart failure

Introduction

Circular RNAs (circRNAs) constitute a new group of noncoding RNAs with a cyclic structure,^[1] and contribute to gene regulation. A recent study^[2] carried out deep sequencing of ribosome-free RNAs from 12 human and 25 mouse hearts, as well as human embryonic stem cellderived cardiomyocytes during differentiation for 28 days, and showed cardiac circRNA expression profile in detail, which provides a valuable reference for the further analysis of circRNAs. Not only have circRNAs been considered intracellular effectors in the pathophysiologic alterations of cardiovascular tissues as well as cardiovascular disease markers,^[3] they are also involved in multiple cardiovascular ailments.^[2,4]

However, as a key cardio-metabolic factor, epicardial adipose tissue (EAT) is scarcely included in heart tissue

Access this article online				
Quick Response Code:	Website: www.cmj.org			
	DOI: 10.1097/CM9.0000000000001056			

specimens in previous studies identifying circRNAs. EAT produces multiple bioactive molecules, including adipokines and cytokines,^[5,6] as well as micro-particles carrying proteins, lipids, and ribonucleic acids (RNAs).^[7] In addition, EAT is correlated with heart failure (HF), without regard to metabolic status or coronary artery disease (CAD).^[8-10] Meanwhile, EAT releases molecules with vasocrine and paracrine impacts on the myocardium.^[11,12] Therefore, EAT secretome alterations could regulate heart function.

This study aimed to compare circRNA expression patterns in EAT in patients with CAD between the HF and non-HF groups. Our findings would supplement circRNA expression patterns in EAT for circRNA detection in cardiac specimens, also providing plausible HF markers.

Dr. Lei Źhao, Heart Center, Beijing Chao-Yang Hospital, Capital Medical University, 8# Gong-Ti South Road, Beijing 100020, China

E-Mail: lily885300@sina.com

Copyright © 2020 The Chinese Medical Association, produced by Wolters Kluwer, Inc. under the CC-BY-NC-ND license. This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

Chinese Medical Journal 2020;133(21)

Received: 29-02-2020 Edited by: Xiu-Yuan Hao and Xin Chen

Mei-Li Zheng and Xiang-Peng Du contributed equally to the work.

Correspondence to: Prof. Xin-Chun Yang, Heart Center, Beijing Chao-Yang Hospital, Capital Medical University, 8# Gong-Ti South Road, Beijing 100020, China E-Mail: yangxc99@gmail.com;

Methods

Ethical approval

The study was conducted in accordance with the *Declaration of Helsinki* and was approved by the Ethics Committee of Beijing Chao-yang Hospital, Capital Medical University (No. 2018-Ke-21). Informed written consent was obtained from all patients prior to their enrollment in this study.

Study participants

The participants assessed in the present study have been described in our previous report.^[13] EAT specimens were obtained from ten patients with CAD undergoing coronary artery bypass grafting in Heart Center, Beijing Chao-Yang Hospital, Capital Medical University. They were assigned to the HF and non-HF groups (n = 5/group). HF was defined by brain natriuretic peptide (BNP) >500 ng/L and abnormal echocardiograms (left ventricular end diastolic diameter >50 mm and >55 mm in females and males, respectively; left ventricular ejection fraction <50%). The non-HF group comprised individuals showing BNP <100 ng/L and normal echocardiograms.

RNA-sequencing procedure

The detailed RNA-sequencing procedure was described in our previous study^[13] [Supplementary Figure 1, http:// links.lww.com/CM9/A290].

Quantitative real-time polymerase chain reaction

Quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure selected hsa_circ_0005565 according to standard methods: the forward primer was 5'-AACCAGCGGCTTCAATAACAA-3', the reverse primer was 5'-GCTGTTGGTGCAGGTGGTCTA-3'. The house keeping gene used for qRT-PCR analysis was β -actin.

Statistical analysis

Comparisons of patient characteristics between the two groups were performed using SPSS version 24.0 software (IBM, Armonk, NY, USA). Continuous variables with normal distribution were expressed as mean \pm standard deviation, and compared by two-sample *t* test, while those with non-normal distributed were expressed as median (Q1, Q3) and compared by Mann-Whitney U test; categorical variables were expressed as percentages and numbers, and compared using the Chi-squared test. R package was used to calculate the Fragments Per Kilobase of exon model per Million mapped fragments value and differential expression for transcript level and perform hierarchical clustering, Gene Ontology (GO) enrichment, pathway analysis, scatter plots, and volcano plots with the differentially expressed genes. A P < 0.05 was considered as statistically significant.

Results

Patient characteristics

The major characteristics of the HF and non-HF groups showed no significant differences [Table 1]. However, the HF group had elevated BNP (P = 0.006) and left ventricular end diastolic diameter (P = 0.007), and reduced left ventricular ejection fraction (P = 0.008), in comparison with the non-HF group.

RNA sequencing findings

We performed RNA-sequencing analysis of ribosomaldepleted total RNAs extracted from EAT in patients with

Table 1: Clinical characteristics of coronary artery disease patients with and without HF.

Characteristics	HF group (<i>n</i> = 5)	Non-HF group (<i>n</i> = 5)	Statistical values	Р
Male	2	3	0*	0.999
Age (years)	67.8 ± 5.0	60.8 ± 8.1	-1.644^{\dagger}	0.139
BMI (kg/m^2)	23.8 ± 4.6	25.0 ± 5.5	0.374^{\dagger}	0.718
Diabetes	2	2	0.417^{*}	1.000
Hypertension	4	5	0^*	1.000
HbA1c (%)	6.85 ± 0.87	7.00 ± 1.81	0.167^{\dagger}	0.871
Total cholesterol (mmol/L)	2.68(1.17, 5.08)	3.13 (2.64,4.63)	-0.046^{\ddagger}	0.965
LDL-C (mmol/L)	1.40 (0.50, 3.10)	1.50 (1.40, 3.20)	-0.077^{\ddagger}	0.941
HDL-C (mmol/L)	0.70 (0.40, 1.30)	0.70 (0.60, 0.80)	-0.576^{\ddagger}	0.580
Triglyceride (mmol/L)	0.78 (0.74, 1.18)	1.39 (1.22, 2.36)	2.241‡	0.055
Creatinine (µmol/L)	88.2 ± 25.2	76.8 ± 16.8	-0.842^{\dagger}	0.424
Uric acid (µmol/L)	363.2 ± 82.4	357.0 ± 69.3	-0.129^{\dagger}	0.901
BNP (pg/mL)	1795.4 ± 1053.3	76.4 ± 22.6	-3.648^{\dagger}	0.006
LVEDD (mm)	60.0 ± 5.9	47.5 ± 5.2	-3.554^{\dagger}	0.007
LVEF (%)	44.2 ± 10.2	62.0 ± 4.8	3.531^{+}	0.008

Data are shown as mean \pm standard deviation, median (Q1, Q3), or *n*. * Chi-squared values. † *t* values. * *U* values. BMI: Body mass index; BNP: Brain natriuretic peptide; HbA1c: Glycosylated hemoglobin; HDL-C: High-density lipoprotein cholesterol; HF: Heart failure; LDL-C: Low-density lipoprotein cholesterol; LVEDD: Left ventricular end diastolic diameter; LVEF: Left ventricular ejection fraction.

CAD of the HF and non-HF groups (n = 5/group). In total, 2278 EAT circRNAs were detected in the ten patients with CAD. The lengths of the EAT circRNAs detected were mainly within 2000 nt [Figure 1]. On the basis of backspliced junctions and existing exon-exon splicing annotation (CIRCexplorer2 was used for circRNA analysis according to a previous study^[14]), the predicted number of exons per circRNA averaged 3 (ranging between 1 and 21). Single-exon circRNAs accounted for 9.3% (211/ 2278), while 2.8% (63/2278) of all circRNAs were predicted to span at least ten exons. The circRNA hsa_circ_0087255 was the longest (21 exons). A total of 90.0% (2051/2278) circRNAs had average read counts of less than 10, while 0.5% (11/2278) had values exceeding 50. This indicated that the latter group had highest levels in human EAT; these circRNAs corresponded to genes such as GSE1, RHOBTB3, HIPK3, UBXN7, PCMTD1,

Figure 1: Length range of circular RNAs (circRNAs) in human epicardial adipose tissue. nt: Nucleotide.

N4BP2L2, CFLAR, EPB41L2, FCHO2, FNDC3B, and SPECC1 [Table 2].

Hierarchical clustering was carried out for grouping differently expressed circRNAs in patients with CAD of the HF and non-HF groups based on expression, and circRNA expression patterns in the HF group showed marked differences in comparison with the non-HF group. A total of 1240 circRNAs with significant level changes (P < 0.05) were detected, with 561 up-regulated and 679 down-regulated [Figure 2].

To explore the possible roles of circRNAs in EAT, we selected the circRNAs with substantially different amounts between the HF and non-HF groups (P < 0.05; fold change >2) as potential novel biomarkers of HF; in total, they were 141, including 56 up-regulated circRNAs [Table 3, Supplementary Figure 2, http://links.lww.com/CM9/A291] and 85 down-regulated circRNAs [Table 4, Supplementary Figure 2, http://links.lww.com/CM9/A291], respectively. Among them, hsa_circ_0005565 had the highest fold change (27.4), and was highly expressed in all the five patients with CAD with HF and lowly expressed in the non-HF group. In qRT-PCR validation, hsa_circ_0008) [Figure 3] and might be a potential biomarker for HF.

Protein-coding genes associated with differentially expressed circRNAs

The majority of circRNAs have unknown functions. Therefore, GO terms [Figure 4] and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway [Figure 5] analyses were carried out of circRNAs with differential expression between the HF and non-HF groups to determine the associated protein-coding genes. The three first enriched GO terms in order were positive regulation of metabolic process (GO:0031325), and macromolecule metabolic process (GO:0043170). The first 3 KEGG pathways in order included insulin resistance (hsa04931), transcriptional misregulation in cancer (hsa05202), and platinum drug resistance (hsa01524).

Table 2. Top ingliest expressed circular in numan epicarulai aupose ussue.					
CircRNA	Locus	Genes	Length (bp)	Read counts [*]	
hsa_circ_0000722 chr16:85	667519-85667738:+	GSE1	219	293 (236, 412, 306, 202, 294, 438, 151, 250, 376, 263)	
hsa_circ_0007444 chr5:950	91099-95099324:+	RHOBTB3	479	264 (149, 332, 142, 203, 196, 234, 404, 403, 348, 232)	
hsa_circ_0000284 chr11:33	307958-33309057:+	HIPK3	1099	258 (183, 430, 205, 214, 224, 192, 288, 266, 276, 305)	
hsa_circ_0001380 chr3:196	118683-196129890:-	UBXN7	247	72 (75, 84, 46, 82, 63, 81, 73, 62, 80, 76)	
hsa_circ_0001801 chr8:527	73404-52773806:-	PCMTD1	402	68 (56, 63, 47, 31, 48, 63, 126, 111, 76, 59)	
hsa_circ_0000471 chr13:33	091993-33101669:-	N4BP2L2	388	61 (86, 50, 50, 54, 45, 57, 67, 63, 56, 77)	
hsa_circ_0001092 chr2:202	010100-202014558:+	CFLAR	187	57 (43, 53, 50, 32, 47, 79, 80, 63, 49, 76)	
hsa_circ_0001640 chr6:131	276244-131277639:-	EPB41L2	719	56 (41, 62, 36, 94, 41, 54, 71, 62, 50, 45)	
hsa_circ_0002490 chr5:723	70568-72373320:+	FCHO2	268	53 (66, 43, 79, 30, 38, 35, 55, 66, 48, 66)	
hsa_circ_0006156 chr3:171	965322-171969331:+	FNDC3B	526	51 (34, 81, 48, 50, 36, 52, 75, 40, 57, 41)	
hsa_circ_0000745 chr17:20	107645-20109225:+	SPECC1	1580	51 (32, 53, 28, 37, 34, 57, 96, 66, 44, 61)	

 Table 2: Top highest expressed circRNA in human epicardial adipose tissue.

*The average read counts (the read counts of circRNA of all samples). CircRNA: Circular RNA.

Figure 2: Hierarchical clustering (A) and scatter plot (B) of circRNAs with differential expression (P < 0.05) in the HF and non-HF groups (red and green denote up-regulation and down-regulation, respectively). A total of 1240 circRNAs were found (561 up-regulated and 679 down-regulated). HF: Heart failure.

Table 2: Un-regulated	oiroDNA	aroun	oomnarod	with	non-HE group	
Table 3: Up-requiated	CITCRINA	aroup	compared	wiui		

CircRNA	Locus	Genes	Length (bp)	Fold change	Р
hsa circ 0005565	chr17:30689932-30695033:+	ZNF207	565	27.38140408	0.008598851
hsa_circ_0129624	chr5:74675161-74685512:-	COL4A3BP	696	24.86264606	0.012255936
hsa_circ_0047021	chr18:13048857-13059311:+	CEP192	2421	24.72359702	0.012289967
hsa_circ_0019611	chr10:103558598-103560157:-	MGEA5	773	24.63647121	0.012311795
hsa_circ_0000749	chr17:27430616-27434207:-	MYO18A	176	22.27650415	0.018929488
hsa_circ_0076125	chr6:35280078-35280549:+	DEF6	384	21.84158085	0.019084565
chr6:16486202-16658132:-	chr6:16486202-16658132:-	ATXN1	454	21.16825381	0.01950708
hsa_circ_0008263	chr19:46116798-46117958:-	EML2	227	20.84579324	0.023950416
hsa_circ_0116462	chr22:32108068-32121596:-	PRR14L	5282	20.48584952	0.024105109
hsa_circ_0007203	chr3:196807921-196846401:-	DLG1	740	20.32683989	0.024174277
hsa_circ_0118648	chr2:202400743-202446940:-	ALS2CR11	990	19.61633381	0.024708032
hsa_circ_0119571	chr2:24787163-24866991:+	NCOA1	378	19.0818756	0.03072117
hsa_circ_0057608	chr2:197777605-197786910:-	PGAP1	586	19.00729654	0.030762086
hsa_circ_0103215	chr15:25638892-25657118:-	UBE3A	339	18.96668046	0.030780743
hsa_circ_0012109	chr1:44363906-44365399:+	ST3GAL3	347	18.38544959	0.031360571
hsa_circ_0017099	chr1:236148678-236154358:-	NID1	300	17.94901854	0.03159643
chr6:17783876-17790141:-	chr6:17783876-17790141:-	KIF13A	322	17.94901854	0.03159643
hsa_circ_0098611	chr12:459786-475270:-	KDM5A	942	17.90831862	0.031618867
hsa_circ_0138685	chr9:3488775-3490345:-	RFX3	187	17.86765346	0.039392115
hsa_circ_0128726	chr5:179136873-179150780:+	CANX	990	17.70686546	0.039494674
hsa_circ_0064654	chr3:30686238-30715738:+	TGFBR2	1302	17.47868633	0.039640952
hsa_circ_0008833	chr6:130505247-130505768:-	SAMD3	271	16.26295988	0.002139375
hsa_circ_0002290	chr11:77396149-77404656:-	RSF1	240	11.51930187	0.001497853
hsa_circ_0023670	chr11:76696686-76709865:+	ACER3	177	11.0388378	0.022959611
hsa_circ_0086694	chr9:33932559-33933626:-	UBAP2	206	10.84816913	0.023307007
hsa_circ_0007493	chr2:61505299-61508377:-	USP34	435	10.46996756	0.030008409
hsa_circ_0025128	chr12:6442234-6443410:-	TNFRSF1A	512	9.898405267	0.037227819
hsa_circ_0008271	chr7:102412855-102427916:+	FAM185A	273	9.625514855	0.039717893
hsa_circ_0008275	chr1:12359258-12368698:+	VPS13D	617	9.62342074	0.03973916
hsa_circ_0031939	chr14:52977957-53011089:-	TXNDC16	937	9.593218315	0.039380882
hsa_circ_0008157	chr11:118425173-118430579:-	IFT46	518	9.552132968	0.03955805
hsa_circ_0028099	chr12:109577201-109577863:+	ACACB	662	8.22971981	0.021220204

(continued)

Table 3

(continued).					
CircRNA	Locus	Genes	Length (bp)	Fold change	Р
hsa_circ_0084764	chr8:72211281-72246409:-	EYA1	702	7.713988907	0.00635426
hsa_circ_0004538	chr12:51467605-51467865:-	CSRNP2	260	7.568205093	0.029190438
hsa_circ_0012425	chr1:51860052-51913807:-	EPS15	1156	7.192204797	0.038487019
hsa_circ_0011377	chr1:32689634-32690076:+	EIF3I	154	6.823596136	0.046488026
hsa_circ_0008223	chr16:28177828-28181230:-	XPO6	238	6.647115397	0.020056305
hsa_circ_0092984	chr10:123298105-123325218:-	FGFR2	639	6.145283077	0.032379561
hsa_circ_0066682	chr3:101304280-101309114:+	PCNP	131	6.089275279	0.033157013
hsa_circ_0064645	chr3:29910348-29977687:+	RBMS3	413	6.049926234	0.033822004
hsa_circ_0027244	chr12:57682791-57690334:-	R3HDM2	282	5.922510609	0.040818274
hsa_circ_0083756	chr8:27151596-27151827:-	TRIM35	231	5.208018799	0.009705216
hsa_circ_0007717	chrX:13684435-13698717:+	TCEANC	964	5.057578474	0.042568327
hsa_circ_0006376	chr8:42812236-42819617:+	HOOK3	311	4.948783788	0.005659977
hsa_circ_0006087	chr5:145634505-145638156:+	RBM27	295	4.829701417	0.016895556
hsa_circ_0030051	chr13:41515056-41518061:-	ELF1	727	4.106755498	0.02695576
hsa_circ_0120233	chr2:48869540-48898819:+	STON1-GTF2A1L	1082	4.038002822	0.031619956
hsa_circ_0118701	chr2:203620260-203624076:+	FAM117B	491	3.65129251	0.045830218
hsa_circ_0099634	chr12:97886238-97954825:+	RMST	1314	3.609560699	0.022760573
hsa_circ_0033144	chr14:99723807-99724176:-	BCL11B	369	3.548221774	0.047128109
hsa_circ_0000396	chr12:46622935-46637097:-	SLC38A1	522	3.343282539	0.029173369
hsa_circ_0001847	chr9:33953282-33963789:-	UBAP2	377	3.071888941	0.001030606
hsa_circ_0007817	chrX:53641494-53642796:-	HUWE1	304	2.84867162	0.045858186
hsa_circ_0000053	chr1:36826821-36828257:-	STK40	218	2.720299718	0.023934941
hsa_circ_0128780	chr5:21491429-21497305:+	GUSBP1	448	2.463027543	0.022946216
hsa_circ_0003426	chr20:32207322-32211102:+	CBFA2T2	272	2.191793227	0.018940558

CircRNAs: Circular RNAs; HF: Heart failure.

Table 4: Down-regulated circRNA of HF group compared with non-HF group.

CircRNA	Locus	Genes	Length (bp)	Fold change	Р
hsa_circ_0005268	chr18:12370847-12371690:-	AFG3L2	178	0.026142196	0.000878077
hsa_circ_0002371	chr10:70545892-70546449:+	CCAR1	230	0.0263028	0.000896776
chr1:1330773-1330894:-	chr1:1330773-1330894:-	CCNL2	121	0.028731724	0.001757764
hsa_circ_0078619	chr6:161469647-161471011:+	MAP3K4	1364	0.035567145	0.006488951
hsa_circ_0099494	chr12:93226287-93246801:-	EEA1	848	0.036147847	0.006800891
hsa_circ_0004901	chr12:99071202-99080651:+	APAF1	511	0.036679856	0.00832476
hsa_circ_0001139	chr20:32659871-32665051:+	RALY	837	0.039070179	0.011190314
hsa_circ_0085769	chr8:141856358-141889736:-	PTK2	398	0.04052931	0.012041717
hsa_circ_0078617	chr6:161455290-161471011:+	MAP3K4	1555	0.041081657	0.012200344
chr1:27697086-27700942:-	chr1:27697086-27700942:-	FCN3	567	0.042497835	0.015040601
hsa circ 0093908	chr10:69726439-69797926:-	HERC4	1540	0.042497835	0.015040601
hsa_circ_0006667	chr3:183368083-183390272:+	KLHL24	1663	0.043116853	0.01514122
chr5:79974745-80088663:+	chr5:79974745-80088663:+	MSH3	1482	0.043171062	0.015150269
hsa_circ_0132295	chr6:76331247-76388643:+	SENP6	2002	0.045080967	0.018713783
hsa_circ_0042828	chr17:28593902-28613920:-	BLMH	753	0.046198634	0.019062659
hsa_circ_0006248	chr3:185638891-185641772:-	TRA2B	389	0.046349754	0.019087833
hsa_circ_0029920	chr13:32768279-32776664:+	FRY	427	0.046575201	0.019126662
hsa_circ_0007694	chr11:108137897-108138069:+	ATM	172	0.04700422	0.019198614
hsa_circ_0000018	chr1:15860731-15863309:+	DNAJC16	407	0.047306387	0.019250139
hsa_circ_0062936	chr22:32108068-32113277:-	PRRÍ4L	5209	0.047396027	0.019265095
hsa_circ_0108197	chr18:29218606-29246335:-	B4GALT6	473	0.047763942	0.02361012
hsa_circ_0012417	chr1:51829537-51831701:-	EPS15	240	0.048772425	0.023796844
hsa_circ_0108003	chr18:18571136-18600200:-	ROCK1	871	0.050139593	0.024234392
hsa_circ_0080826	chr7:76990140-77006707:-	PION	451	0.050236519	0.024250628
hsa_circ_0083196	chr7:158528193-158531812:-	ESYT2	337	0.050738232	0.024340624
hsa_circ_0114230	chr1:7895821-7897209:+	PER3	335	0.050751804	0.024342874
hsa_circ_0099310	chr12:81503338-81545875:+	ACSS3	787	0.05199158	0.030276693
hsa_circ_0007183	chrX:154736558-154754293:-	TMLHE	814	0.054040561	0.030899442
hsa_circ_0006723	chr11:47444124-47444524:-	PSMC3	293	0.054206683	0.030930714
hsa_circ_0086743	chr9:34234213-34242106:+	UBAP1	1049	0.054314364	0.030950676
hsa_circ_0062938	chr22:32154531-32161046:+	DEPDC5	221	0.07743487	0.007212382
hsa_circ_0066536	chr3:71739160-71759635:-	EIF4E3	452	0.084201406	0.011664274
hsa_circ_0001512	chr5:94224583-94248681:-	MCTP1	583	0.086719534	0.015605756
hsa_circ_0077495	chr6:101246588-101253756:-	ASCC3	594	0.091482641	0.017060834
hsa_circ_0084140	chr8:42725146-42729149:-	RNF170	185	0.092696407	0.02062798
hsa_circ_0001630	chr6:99860426-99864304:-	PNISR	388	0.097155527	0.022856931
hsa_circ_0007503	chr10:28872327-28884970:+	WAC	645	0.097663673	0.002602553

(continued)

Р

0.029936354

0.037863145 0.038045427

0.047127231

0.009027269

0.049359712

0.013083493

0.021254235

0.034514046

0.010382494

0.018328569

0.010809857

0.000798391

0.010728197

0.006486127

0.017892199

0.04890254

0.023372885

0.012264088

0.003157276

0.04204242

0.02373141

0.003144261

0.029122319

0.016772984

0.038124627

0.030368215

0.024965464

0.047309616

1.42787E-0.5

0.029049766

0.029932253

0.005984753

0.044237185

0.039832629

0.010857001

0.024581434

0.019728111

0.018801873

0.018468847

0.005394708

0.048740491

0.012514583

0.038078237

0.03950502

0.048430222

0.042757958

0.02374435

Fold change

0.101307578

0.105989315

0.106483482

0.110755333

0.113903208

0.117162525

0.118562456

0.139198603

0.145978995

0.152604696

0.168083179

0.169678885

0.169782067

0.179047042

0.181703264

0.187111432

0.192294616

0.194625732

0.199440913

0.207439212

0.219123557

0.221586841

0.221851507

0.225498605

0.231510084

0.236598602

0.236757306

0.240401684

0.245737648

0.246129832

0.274572964

0.28257951

0.297624737

0.320591442

0.322939594

0.325019888

0.374663002

0.375793135

0.378252457

0.398121805

0.42729236

0.440418601

0.442873106

0.464163082

0.518639544

0.591846765

0.2317629

362

477

215

1926

363

434

716

813

327

402

0.12786215

I	I a	ble	4
(co	ntir	nued

hsa_circ_0130908

hsa_circ_0071480

hsa_circ_0006602

hsa_circ_0004658

hsa_circ_0086376

hsa_circ_0001400

hsa_circ_0001346

hsa_circ_0001524

hsa_circ_0008732

hsa_circ_0001801

(continued).			
CircRNA	Locus	Genes	Length (bp)
hsa_circ_0003911	chr16:58608512-58617086:-	CNOT1	1173
hsa_circ_0068610	chr3:195785154-195787118:-	TFRC	209
hsa_circ_0003570	chr10:126370175-126384781:-	FAM53B	828
hsa_circ_0004210	chr7:156758963-156759786:+	NOM1	265
hsa_circ_0073706	chr5:122881110-122911657:+	CSNK1G3	920
hsa_circ_0056558	chr2:136360069-136362586:+	R3HDM1	420
hsa_circ_0001486	chr5:56526672-56527148:+	GPBP1	348
hsa_circ_0079673	chr7:28527792-28610155:+	CREB5	461
chr17:66898853-66904020:-	chr17:66898853-66904020:-	ABCA8	626
hsa_circ_0056248	chr2:120684173-120702816:+	PTPN4	514
hsa_circ_0136856	chr8:62531536-62596747:-	ASPH	873
hsa_circ_0069718	chr4:52729602-52765544:+	DCUN1D4	1156
hsa_circ_0006365	chr7:65751497-65751696:+	TPST1	199
hsa_circ_0070562	chr4:106155053-106158508:+	TET2	3455
hsa_circ_0022537	chr11:62594626-62595103:-	STX5	198
hsa_circ_0021570	chr11:32948702-32956981:+	QSER1	3968
hsa_circ_0004717	chr1:154223516-154224129:+	$\overline{U}BAP2L$	451
hsa_circ_0002910	chr17:63739185-63746842:-	CEP112	213
hsa_circ_0003275	chr18:76953182-76974038:+	ATP9B	234
hsa_circ_0064335	chr3:12353878-12422990:+	PPARG	472
hsa_circ_0007193	chr21:37619814-37623582:+	DOPEY2	424
chr19:6697354-6697805:-	chr19:6697354-6697805:-	C3	356
hsa_circ_0001947	chrX:147743428-147744289:+	AFF2	861
hsa_circ_0004179	chr16:11063017-11076848:+	CLEC16A	728
hsa_circ_0001459	chr4:178274461-178274882:+	NEIL3	421
hsa_circ_0003164	chr14:89041036-89044484:+	ZC3H14	418
hsa_circ_0107487	chr17:64023618-64026141:-	CEP112	438
hsa_circ_0125725	chr4:166960490-166999182:+	TLL1	1284
hsa_circ_0005362	chr3:169889160-169896726:-	PHC3	400
hsa_circ_0073237	chr5:82832825-82838087:+	VCAN	5262
hsa_circ_0007381	chr2:230701563-230744844:-	TRIP12	1193
hsa_circ_0005405	chr9:33351557-33352717:+	NFX1	305
hsa_circ_0095427	chr11:14852243-14882912:+	PDE3B	1079
hsa_circ_0001932	chrX:76907603-76912143:-	ATRX	437
hsa_circ_0002162	chr8:141856358-141874498:-	PTK2	231
hsa_circ_0023936	chr11:85718584-85742653:-	PICALM	677
hsa_circ_0000347	chr11:85722072-85742653:-	PICALM	635
hsa_circ_0046843	chr18:9195548-9221997:+	ANKRD12	856

chr6:144858717-144864006:+

chr4:183522076-183550042:+

chr1:29481207-29481422:-

chr9:14146687-14179779:-

chr4:37633006-37640126:-

chr9:16727794-16738483:-

chr8:52773404-52773806:-

chr3:149563797-149639014:+

chr5:131013395-131044965:-

chr18:2890558-2892484:+

CircRNAs: Circular RNAs; HF: Heart failure.

Figure 3: Quantitative real-time polymerase chain reaction analysis of expression of hsa_circ_0005565 in patients with HF and without heart failure (non-HF) (n = 5 in each group). HF: Heart failure.

Discussion

UTRN

ODZ3

SRSF4

NFIB

RELL1

RNF13

FNIP1

BNC2

PCMTD1

EMILIN2

Here, circRNA expression patterns in EAT of patients with CAD were compared between the HF and non-HF groups. A total of 11 circRNAs were highly expressed in human EAT, including hsa_circ_0000722, hsa_circ_0007444, hsa_circ_0000284, hsa_circ_0001380, hsa_circ_0001801, hsa_circ_0000471, hsa_circ_0001092, hsa_circ_0001640, hsa_circ_0002490, hsa_circ_0006156, and hsa_circ_ 0000745). The circRNAs with differential expression in EAT among HF cases (including 56 up-regulated and 85 down-regulated circRNAs), as well as GO terms and KEGG pathways were also determined.

Expression profiling of circRNAs has been performed in various tissue types.^[15]In vivo, circRNAs have been reported in cardiovascular tissues (right atrium, vena

Figure 4: Gene Ontology annotation analysis for circRNAs with differential expression between patients with and without heart failure. BP: Biological process (red pillars); CC: Cellular component (green pillars); DE: Differential expression; GO: Gene Ontology; MF: Molecular function (blue pillars).

Figure 5: KEGG pathways analysis for circRNAs with differential expression between patients with and without heart failure: (A) Enrichment score; (B) Enrichment score dot plot. DE: Differential expression; KEGG: Kyoto Encyclopedia of Genes and Genomes.

cava, and heart) based on mouse or human Genome-wide association studies (GWAS) data from blood cells.^[16,17]*In vitro*, circRNAs have been described in cardiomyocytes, cardiac fibroblasts, vascular smooth muscle cells, endothelial cells, macrophages, and blood monocytes.^[18-20] A recent study^[2] assessed ribosome-free RNAs from human and mousecardiac specimens as well as human embryonic stem cell-derived cardiomyocytes by RNA-seq, detailedly

revealing cardiac circRNA expression patterns, which provided a valuable reference for further circRNA analysis.^[2] However, circRNA expression profiles in human EAT remain largely unclear. Meanwhile, it is known that circRNAs are associated with different types of cardiovascular diseases, such as HF.^[17]

EAT is a link between metabolic disorders and HF. Its thickness, independently of BMI, is positively associated with left ventricular mass.^[21] Epicardial fat amounts, without regard to metabolic status or CAD, correlates with impaired left ventricular function and myocardial fibrosis.^[22,23] ETA is considered to be involved in the pro-inflammatory polarization and fibrotic transformation occurring in HF.^[12,23-25] Similarly to other visceral adipose tissues, EAT secretes many molecules with exocrine and paracrine impacts on adjacent organs. These factors, released from EAT, might affect cardiac cell metabolism, as well as endothelial, arterial smooth muscle and inflammatory cell functions, causing HF.

In summary, the expression patterns of EAT circRNAs in patients with CAD were identified, with special attention to those involved in HF. These findings also reveal potential HF biomarkers, which should be confirmed in further investigations.

Funding

The study was supported by a grant from the Natural Science Foundation of China (No. 81800304).

Conflicts of interest

None.

References

- Li D, Yang Y, Li ZQ, Li LC, Zhu XH. Circular RNAs: from biogenesis and function to diseases. Chin Med J 2019;132:2457– 2464. doi: 10.1097/CM9.00000000000465.
- Tan WL, Lim BT, Anene-Nzelu CG, Ackers-Johnson M, Dashi A, See K, et al. A landscape of circular RNA expression in the human heart. Cardiovasc Res 2017;113:298–309. doi: 10.1093/cvr/cvw250.
- 3. Holdt LM, Kohlmaier A, Teupser D. Molecular functions and specific roles of circRNAs in the cardiovascular system. Noncoding RNA Res 2018;3:75–98. doi: 10.1016/j.ncrna.2018.05.002.
- Werfel S, Nothjunge S, Schwarzmayr T, Strom TM, Meitinger T, Engelhardt S. Characterization of circular RNAs in human, mouse and rat hearts. J Mol Cell Cardiol 2016;98:103–107. doi: 10.1016/j. yjmcc.2016.07.007.
- 5. Gaborit B, Sengenes C, Ancel P, Jacquier A, Dutour A. Role of epicardial adipose tissue in health and disease: a matter of fat? Compr Physiol 2017;7:1051–1082. doi: 10.1002/cphy.c160034.
- 6. Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, *et al.* Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 2003;108:2460–2466. doi: 10.1161/01. CIR.0000099542.57313.C5.
- Ansaldo AM, Montecucco F, Sahebkar A, Dallegri F, Carbone F. Epicardial adipose tissue and cardiovascular diseases. Int J Cardiol 2019;278:254–260. doi: 10.1016/j.ijcard.2018.09.089.
- Fontes-Carvalho R, Fontes-Oliveira M, Sampaio F, Mancio J, Bettencourt N, Teixeira M, *et al.* Influence of epicardial and visceral fat on left ventricular diastolic and systolic functions in patients after myocardial infarction. Am J Cardiol 2014;114:1663–1669. doi: 10.1016/j.amjcard.2014.08.037.

- Van Gaal LF, Mertens IL, De Block CE. Mechanisms linking obesity with cardiovascular disease. Nature 2006;444:875–880. doi: 10.1038/nature05487.
- 10. Fitzgibbons TP, Czech MP. Epicardial and perivascular adipose tissues and their influence on cardiovascular disease: basic mechanisms and clinical associations. J Am Heart Assoc 2014;3:e000582. doi: 10.1161/JAHA.113.000582.
- 11. Cherian S, Lopaschuk GD, Carvalho E. Cellular cross-talk between epicardial adipose tissue and myocardium in relation to the pathogenesis of cardiovascular disease. Am J Physiol Endocrinol Metab 2012;303:E937–E949. doi: 10.1152/ajpendo.00061.2012.
- Patel VB, Mori J, McLean BA, Basu R, Das SK, Ramprasath T, *et al.* ACE2 deficiency worsens epicardial adipose tissue inflammation and cardiac dysfunction in response to diet-induced obesity. Diabetes 2016;65:85–95. doi: 10.2337/db15-0399.
- Zheng M, Zhao L, Yang X. Expression profiles of long noncoding RNA and mRNA in epicardial adipose tissue in patients with heart failure. BioMed Res Int 2019;2019:3945475. doi: 10.1155/2019/ 3945475.
- Zhang XO, Dong R, Zhang Y, Zhang JL, Luo Z, Zhang J, Chen LL, Yang L. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res 2016;26:1277–1287. doi: 10.1101/gr.202895.115.
- Maass PG, Glazar P, Memczak S, Dittmar G, Hollfinger I, Schreyer L, et al. A map of human circular RNAs in clinically relevant tissues. J Mol Med (Berl) 2017;95:1179–1189. doi: 10.1007/s00109-017-1582-9.
- Khan MA, Reckman YJ, Aufiero S, van den Hoogenhof MM, van der Made I, Beqqali A, *et al.* RBM20 regulates circular RNA production from the Titin gene. Circ Res 2016;119:996–1003. doi: 10.1161/ CIRCRESAHA.116.309568.
- Sergeeva IA, Hooijkaas IB, Ruijter JM, van der Made I, de Groot NE, van de Werken HJ, *et al.* Identification of a regulatory domain controlling the Nppa-Nppb gene cluster during heart development and stress. Development 2016;143:2135–2146. doi: 10.1242/ dev.132019.
- Holdt LM, Stahringer A, Sass K, Pichler G, Kulak NA, Wilfert W, et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun 2016;7:12429. doi: 10.1038/ncomms12429.
- Shan K, Liu C, Liu BH, Chen X, Dong R, Liu X, et al. Circular noncoding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus. Circulation 2017;136:1629–1642. doi: 10.1161/ CIRCULATIONAHA.117.029004.
- 20. Wang K, Long B, Liu F, Wang JX, Liu CY, Zhao B, *et al.* A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J 2016;37:2602–2611. doi: 10.1093/eurheartj/ehv713.
- Bakkum MJ, Danad I, Romijn MA, Stuijfzand WJ, Leonora RM, Tulevski II, *et al.* The impact of obesity on the relationship between epicardial adipose tissue, left ventricular mass and coronary microvascular function. Eur J Nucl Med Mol Imaging 2015;42:1562–1573. doi: 10.1007/s00259-015-3087-5.
- 22. Nakanishi K, Fukuda S, Tanaka A, Otsuka K, Taguchi H, Shimada K. Relationships between periventricular epicardial adipose tissue accumulation, coronary microcirculation, and left ventricular diastolic dysfunction. Can J Cardiol 2017;33:1489–1497. doi: 10.1016/j.cjca.2017.08.001.
- 23. Jiang DS, Zeng HL, Li R, Huo B, Su YS, Fang J, *et al.* Aberrant epicardial adipose tissue extracellular matrix remodeling in patients with severe ischemic cardiomyopathy: insight from comparative quantitative proteomics. Sci Rep 2017;7:43787. doi: 10.1038/ srep43787.
- Iacobellis G, Zaki MC, Garcia D, Willens HJ. Epicardial fat in atrial fibrillation and heart failure. Horm Metab Res 2014;46:587–590. doi: 10.1055/s-0034-1367078.
- 25. Packer M. Leptin-aldosterone-neprilysin axis: identification of its distinctive role in the pathogenesis of the three phenotypes of heart failure in people with obesity. Circulation 2018;137:1614–1631. doi: 10.1161/circulationaha.117.032474.

How to cite this article: Zheng ML, Du XP, Zhao L, Yang XC. Expression profile of circular RNAs in epicardial adipose tissue in heart failure. Chin Med J 2020;133:2565–2572. doi: 10.1097/CM9.000000000001056