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Negative Poisson’s ratio (NPR) materials are functional and mechanical metamaterials that shrink (expand) longitudinally after
being compressed (stretched) laterally. By using first-principles calculations, we found that Poisson’s ratio can be tuned from
near zero to negative by different stacking modes in van der Waals (vdW) graphene/hexagonal boron nitride (G/h-BN)
superlattice. We attribute the NPR effect to the interaction of pz orbitals between the interfacial layers. Furthermore, a
parameter calculated by analyzing the electronic band structure, namely, distance-dependent hopping integral, is used to
describe the intensity of this interaction. We believe that this mechanism is not only applicable to G/h-BN superlattice but can
also explain and predict the NPR effect in other vdW layered superlattices. Therefore, the NPR phenomenon, which was
relatively rare in 3D and 2D materials, can be realized in the vdW superlattices by different stacking orders. The combinations
of tunable NPRs with the excellent electrical/optical properties of 2D vdW superlattices will pave a novel avenue to a wide range
of multifunctional applications.

1. Introduction

Negative Poisson’s ratio (NPR) material shrinks laterally
when axially compressed or laterally expands when subjected
to axial stretching. Compared to positive Poisson’s ratio
(PPR) materials, NPR material has higher indentation resis-
tance [1], larger impact resistance, more superior sound
absorption performance, and better crack propagation resis-
tance [2]. In addition, when subjected to out-of-plane bend-
ing moments, the NPR material will exhibit a dome shape
rather than the PPR material tending to saddle shape. These
excellent properties indicate that the NPR materials have
broad application prospects in the automotive, aerospace,
marine, and other industrial fields [3].

The NPR phenomena have been found in many natural
and artificial materials, such as cubic metals [4], porous poly-
mers [5], honeycombs [6], perovskite [7, 8], silicon oxides [7,
8], ceramic aerogels [9], reentrant crystal structures [10–17],
and liquid crystal elastomer [18]. Recently, the NPR effect
has also been found in some two-dimensional (2D) materials
[19], such as black phosphorus [20, 21], δ-phosphorene [22],
borophene [23, 24], graphene [25], h-BN [26], 1T-type tran-
sition metal dichalcogenides [27], group-IV monochalcogen-

ides [28], Be5C2 [29], silicon dioxide [30, 31], FeB6 [32], B4N
[33], and Ag2S [34]. In addition, there are hundreds of thou-
sands of materials in the inorganic crystal structure database
(ICSD); however, the number of NPR materials reported in
the study is a few hundred, which is relatively small. Among
them, artificial materials and structures often have a very
high NPR, while crystal materials have a relatively small
NPR. Especially in 2D materials, NPR is smaller. In 2014,
NPR was first found in 2Dmaterials, namely, black phospho-
rus, with a value of -0.027 [20]. After that, the NPR of the 2D
materials found in the later study mostly remains near -0.1.
Based on our theoretical calculations, unlike pure 2D mate-
rials, the NPR in the vdW heterostructure can only be main-
tained around -0.1, which is due to the expansion amplitude
of pz orbital under in-plane strain.

Moreover, although many in-depth studies have exam-
ined the possible existence of NPR effects in 3D and 2D
materials, few studies have reported the NPR effect in vdW
superlattice. With the development of manufacturing tech-
nology, graphene-based superlattices showed enhanced sta-
bility in experiments [35]. Therefore, the designability and
diversity of vdW superlattices provide a broad prospect for
designing multifunctional NPR materials, such as NPR
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electrodes and molecular sieves [36]. In previous studies, the
most NPR phenomena can be attributed to its unique wrinkle
or re-entrant structures. In addition to these special geomet-
ric reasons, we want to study the fundamental physical mech-
anisms that form NPR effect.

In our previous study, we reported near-zero Poisson’s
ratio (ZPR) phenomena in G/h-BN and multilayer h-BN
[37]. Interestingly, in this study, using first-principles calcula-
tions, we found that Poisson’s ratios of G/h-BN superlattices
are -0.109, -0.111, and 0.023 in different stacking modes.
The dichotomy between NPR and PPR effects exhibited in
the G/h-BN superlattice, which can be explained by a special
electronic structure at the interfacial layer. Although G/h-BN
is a kind of simple vdW heterostructure, it is convenient to
make theoretical analysis and calculation clearly. It may open
a beginning for the theoretical study of NPR effect in different
stacking modes of vdW materials. In addition, we calculated
the out-of-plane stiffness of the G/h-BN superlattice with dif-
ferent stacking modes. These modes with NPR also have out-
of-plane negative shear modulus (NSM), i.e., when shear
strain is applied to NSM materials, as the shear strain
increases, the corresponding shear stress tends to decrease.

Ultimately, the NPR phenomenon, which was relatively
rare in 3D and 2D materials, can be realized in the vdW
superlattices by different stacking orders as designed. Fur-
thermore, studying on how to change the PPR material into
the NPR material not only has important practical engineer-
ing application value but also theoretical value for in-depth
study on other possible related interesting physical proper-
ties, such as negative pressure electricity, negative stiffness,
and negative thermal expansion.

2. Results

The unit cell of the G/h-BN superlattice is composed of
1 × 1 graphene unit cell (2 C atoms) and 1 × 1h-BN unit
cell (1 B atom and 1N atom) in the x-y plane. The lattice
constant a of the pristine monolayer graphene and h-BN
are 2.465Å and 2.509Å, respectively. Then, the a of
G/h-BN superlattice calculated by first-principles calcula-
tions is 2.485Å, and the lattice mismatch between gra-
phene and h-BN is less than 1%.

The interlayer binding energies (Ebind) and equilibrium
distances (d) of all stacking modes of G/h-BN superlattices
obtained by density functional theory (DFT) approach are
given in Table S1. Here, we investigated three highly
symmetric stacking modes of G/h-BN superlattices: N atom
sublattice on hexagonal C atom ring (stacking mode A), B
atom sublattice on C atom ring center (stacking mode B),
and N atom sublattice on C atom ring center (stacking mode
C) [38]. Ebind follows the order of Ebind ðAÞ < Ebind ðBÞ <
Ebind ðEÞ, while d follows the order of dA > dB > dC.

2.1. Stiffness. By analyzing the strain energy, the elastic
constants of G/h-BN superlattices were derived from the
linear fitting of the energy-strain relationship (Table S2). For
hexagonal crystal, the in-plane mechanical properties of
G/h-BN superlattice are isotropic (Y11 = Y22, v12 = v21, v13
= v23) [41]. Young’s modulus Yαα is determined by elastic

constants Cαβ (see method section). Notably, the in-plane Y11
of the 2D material is the product of the Y11 of the
corresponding 3D material and the effective thickness [27],
and we took the d as the effective thickness for each layer of
2D material.

Table 1 shows that the out-of-plane Y33 of the stacking
mode A, B, and C is 44.9, 45.6, and 49.0GPa, respectively.
The smaller the d of the stacking mode, the greater the corre-
sponding Y33. In addition, we calculated the in-plane Y11 of
the G/h-BN superlattice, which is almost equal to the sum
of Y11 of the monolayer graphene and h-BN. Therefore, this
result explains the reason for the stability enhancement of
carbon-based superlattices observed in experiments [35].
However, the difference in Y11 of the superlattice is mainly
due to the different in d.

2.2. Poisson’s Ratio. We compared G/h-BN superlattices in
different stacking modes under different uniaxial strains
along the x direction (εx) (Figure 1). For stacking modes A
and B, the d is auxetic for εx > 0, but the same phenomenon
was not found in stacking mode C. Interestingly, stacking
modes A and B not only have the NPR (v13) effect but they
also have negative shear modulus (NSM) (G44) in the out-
of-plane direction. The shear force decreases with the
increase of shear deformation, which is the NSM effect.

In order to study the anisotropy of Poisson’s ratio of these
materials, orientation-dependent Poisson’s ratio was calcu-
lated (Figure 2). We found that the stacking modes A, B,
and C have the ZPR (v13) effect at θ = 36:4°, 36.8°, and
18.7°, respectively. Therefore, stacking modes A and B exhibit
a NPR effect in a larger crystal orientation angle range than
stacking mode C.

To our knowledge, it is very difficult to measure Poisson’ s
ratio of several layers of two-dimensional (2D) material with
the existing experimental method. Because for these ultra-thin
films, when the in-plane strain is applied, the out-of-plane
deformation is very small and difficult to observe. However,
for multilayer 2D materials, X-ray diffraction can be easily used
to measure Poisson’ s ratio when the thickness is close to 10nm
[42]. The NPR effect is generated in the interfacial layer. There-
fore, both multi and single-layer vdW materials can exhibit the
sameNPR. It is relatively easy tomeasure Poisson’ s ratio for the
multilayer vdW materials with a certain thickness.

3. Discussion

3.1. Interlayer Binding Energy. Assuming that the interaction
between the two layers of the superlattice is additive, the
binding potential can be expressed as the cumulative interac-
tion of atoms between different layers [43]. The binding
energy of two atoms combined by vdW forces can be
expressed by the Lennard-Jones potential:

E rð Þ = 4ε −
σ

r

� �6
+ σ

r

� �12� �
: ð1Þ

Here, r represents the distance between the two atoms.
The ε and σ are fitting constants. The first term represents
the vdW attraction, and the second term represents Pauli’s
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Table 1: Poisson’s ratio, Young’s, and shear modulus of graphene, h-BN and G/h-BN.

Method
In-plane Out-of-plane

v12 Y11 G66 v13 v31 Y33 G44

G/h-BN

Stacking mode A DFT 0.199 886.8 369.7 -0.109 -0.005 44.9 -1.3

Stacking mode B DFT 0.198 896.4 374.2 -0.111 -0.006 45.6 -2.8

Stacking mode C DFT 0.199 932.8 389.1 -0.023 -0.001 49.0 8.7

Monolayer

Graphene
Expt. [39] 0.165 340 ± 50 145:9 ± 30

DFT 0.159 340 146.7

h-BN
Expt. [40] 0.19 273 114.7

DFT 0.199 238 99.3

For monolayer materials, the unit of Young’s and shear modulus is Nm-1. For G/h-BN superlattices, the unit of Young’s and shear modulus is GPa.
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Figure 1: Top and side views of G/h-BN superlattices in different stacking modes under in-plane strain (a, d, g) εx = −0:08, (b, e, h) εx = 0, and
(c, f, i) εx = 0:08. Here, d represents interfacial layer equilibrium distance.
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Figure 2: Poisson’s ratio vijðθÞ (v13) as a function of G/h-BN superlattices in (a) stacking mode A, (b) stacking mode B, and (c) stacking mode
C for i fixed in the x direction and j varying in the y - z plane. Interlayer binding energy (Ebind) of G/h-BN superlattices in (d) stacking mode A,
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repulsion [44]. Therefore, the interlayer potential of the
vdW superlattice can be expressed as

Ebind dð Þ = ρ1ρ2

ð∞
0
2πxE rð Þdx = 2περ1ρ2 −

σ6

d4
+ 2σ12
5d10

� �
,

ð2Þ

where ρ1 and ρ2 are the mass densities of two layers of

vdW superlattice, respectively. The distance rðxÞ =ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + d2

p
is obtained from the geometric relationship

between the coordinate x and d. For G/h-BN superlattice,
ρ1 = ρ2. In Figure 2, the fitting curves of ~ d−4 below the
horizontal coordinate axis represent vdW attraction, and
the curves of ~ d−10 above the horizontal coordinate axis
represent Pauli repulsion. Therefore, the low-order vdW
term plays a major role in the large d, while high-order
Pauli’s repulsion term plays a major role in the small d.
According to the first-principles calculation, Eq. (2) can
well describe the Ebind of the vdW superlattice.

Figures 2(d) and 2(e) show that when εx = 0:08, the Pauli
repulsion energy increases significantly, while the vdW
attraction energy has a negligible change. Therefore, with
the decrease of Ebind, d of the G/h-BN superlattice expands,
while the lowest point of the energy curve moves forward
along the positive direction of the x axis, resulting in a nega-
tive v13 of -0.109 and -0.111. For the stacking mode C, vdW
and Pauli repulsion show negligible changes under εx = 0:08
(see Figure 2(f)). The binding energy increases slightly; so,
the G/h-BN superlattice exhibits the ZPR effect. According
to the first-principles calculation, Poisson’s ratio of the mate-
rial has a relationship with σ. If the material can exhibit the
NPR effect, the value of σ under tensile strain (σ′) is greater
than the initial value of σ (Table S4). However, we calculated
that the increase of ε is not a necessary condition for the NPR
effect, i.e., σ plays a major role in the NPR effect.

3.2. Relationship between pz Orbitals and NPR. The Bloch
wave function of the pz orbital electron in a periodic lat-
tice under the tight binding (TB) approximation can be
expressed as

ϕA Bð Þ k
*
, r*

� �
= 1ffiffiffiffi

N
p 〠

m

eik
*
·R
*

mφA Bð Þ r* − R
*

m

� �
: ð3Þ

For G/h-BN superlattice, C atoms in graphene and N atoms in
h-BN have pz orbitals. When the atom A is used as the origin
of coordinates (Figures 3(a) and 3(b)), let the in-plane strain

be the perturbation δ
*
. The wave function of pz orbitals of

the atom A is ϕAðk
*
, r*Þ. Meanwhile, the wave function of

pz orbitals of the atom B is ϕBðk
*
, r* − δ

*Þ. When the A
and B atoms in the lattice are bonded, the wave function of
the bonded pz orbital can be expressed by the linear combina-
tion of atomic orbitals as

ψpz
k
*
, r*

� �
= C ϕA k

*
, r*

� �
+ e−i k

*
·δ
*

jϕB k
*
, r*

� �� �
:

ð4Þ

The constant C is a normalization constant, which should

satisfy the normalization condition hψpz
ðk*Þ ∣ ψpz

ðk*Þi = 1.
The density-weighted length of the pz electrons in the out-
of-plane direction can be expressed as

lz k
*

� �
= ψpz

k
*

� �
∣ zj j ∣ ψpz

k
*

� �	 

: ð5Þ

Here, lzðk
*Þ is the length of the pz electrons with momentum

k
*
in the out-of-plane direction. Therefore, the length (Lz) of

pz electrons with all momentum should be the integral of lz
ðk*Þ in the first Brillouin zone (BZ). Finally, the charge
density-weighted length of the pz orbital in the out-of-plane
direction can be obtained:

Lz δ
*

� �
= 1
SBZ

∬
SBZ

lz k
*

� �
dk2 = lpz f δ

*
� �

, ð6Þ

where f ðδ*Þ = 1 + ð1/3SBZÞ∬SBZ
ð2eikxða/2Þ cos ðkyð

ffiffiffi
3

p
a/2ÞÞ

+ e−ikxaÞ cos ðk* · δ
*Þdk2 and lpzðk

*Þ = hφð r* − R
*A

mÞ ∣ jzj ∣ φ
ð r* − R

*A

mÞi , which is the length of the isolated pz orbital
(Figure 3(c)). Therefore, according to Eq. (6), we got the ana-

lytical solution of the relationship between εx and Lzðδ
*Þ

(Figure 3(d)). The calculation details can be found in the
Supporting Information. Meanwhile, partially differentiate

f ðδ*Þ to the in-plane perturbation δ
*

j is ∂f ðδ*Þ/∂ δ
*

> 0.
Therefore, pz orbitals will extend out-of-plane under in-
plane tensile strain.

Since the length of the pz orbital has auxetic effect under
in-plane strain, we quantitatively studied the charge density
distribution along the out-of-plane direction of G/h-BN
superlattice by using first-principles calculations. In the
out-of-plane direction, the charge density at coordinate z
can be expressed as

Pz zð Þ =
ðεF
−∞

ð
ρE x, y, zð ÞdxdydE: ð7Þ

Here, ρEðx, y, zÞ is the charge density at the coordinate (x,
y, z) with the energy of E, and εF is the Fermi level of the
system. In order to quantify the change of the charge den-
sity in the out-of-plane direction under stress, we calcu-
lated the weighted length of the electron density in the
out-of-plane direction according to the following formula:

Lz =
Ð
zj jPZ zð ÞdzÐ
PZ zð Þdz : ð8Þ
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Notably, the charge of the graphene in the out-of-plane
direction is mainly contributed by the pz orbital. The Lz
of each layer in the G/h-BN superlattice under in-plane
strain εx = 0 and εx = 0:08 is shown in Table S4. In each
layer of the G/h-BN superlattice, the Lz is elongated.
When an in-plane strain εx = 0:08 was applied, the bond
angle ∠NBN increased from 120° to 122.36°, resulting in
the charge localization (Fig. S2).

Quantitatively, we found that the value of LZ of the
monolayer h-BN and graphene in G/h-BN superlattices
increased by 1.8~ 1.9% and 2.3~ 2.4%, as the in-plane tensile
strain increases by 8% (Table S5), explaining the NPR effect
in stacking modes A and B along the out-of-plane
direction. This is consistent with the analytical solution
obtained by TB approximation (Figure 3(d)). For stacking
mode C, the N atom sublattice is on the C atom ring
center. In h-BN, the N atom has a fully filled pz orbital,
while the B atom has an empty pz orbital. The pz orbitals of
G/h -BN superlattices hardly overlap (Figure 4(c)); so, the
change of the pz orbitals has little effect on the Pauli
repulsion between the interfacial layers, resulting in no
significant NPR effect.

3.3. Relationship between Electronic Band Structures and
NPR. Figure 5 shows the DFT and TB-based band structure

of G/h-BN superlattices in different stacking modes. To fur-
ther understand the first-principles calculation results, we
adopted the TB model to describe the electrons in G/h-BN
superlattices with different stacking modes near the Fermi
level. During the TB calculation, a unit cell contains two C1
and C2 carbon atoms at different positions and one N atom.
Since the electronic states of the three bands around the
Fermi level are completely contributed by the pz orbitals of
C1, C2, and N atoms, only the pz orbitals of C1, C2, and N
atoms are included in the TBmodel. The Hamiltonianmatrix
can be written as

H11 H12 H13

H12
∗ H22 H23

H13
∗ H23

∗ H33

0
BB@

1
CCA, ð9Þ

where subscripts 1, 2, and 3 represent C1, C2, and N atoms,
respectively. Because the interlayer distance is longer than
the C-C bond length, the nearest-neighbor interaction
between C and N atoms and the next nearest-neighbor
interaction between C and C atoms are considered (detailed
Hamiltonian matrix elements can refer to the Supporting
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Information). The distance-dependent hopping integral is
determined by the formula

f ijσ dij
� �

=Vijσe
qij 1−di j

d0

� �
: ð10Þ

Here, d0 represents the interfacial layer equilibrium distance,
and Vijσ is the hopping integral between pz orbitals at d0. dij
is the distance between the ith and jth atoms, and qij is the
decay constant for the integral [45]. For the G/h-BN superlat-
tices, the values of Vijσ and qij can refer to the Supporting
Information Table S6.

The distance-dependent hopping integral (f CNσ) describes
the intensity of the interaction between the pz orbitals of C
and N atoms. Therefore, f CNσ is a power-exponential func-
tion of the interlayer spacing and is proportional to the
NPR (Table 2). Furthermore, the higher the value of f CNσ,
the greater the value of the corresponding NPR. Note that
after Taylor expansion of the f CNσðdijÞ, the quadratic term
is the previous research results [46, 47].

Consequently, the vdW superlattice can exhibit an NPR
effect only if they have pz orbitals in the out-of-plane direc-
tion, and the pz orbitals overlap between the interfacial layers.
Meanwhile, the NPR effect in all vdW materials can be
explained by the same physical mechanism given in this
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overlap of the pz orbits, while the black dotted arrows and circles show that the overlap of the pz orbitals does not actually exist.
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section. For example, for lattice-matched materials, a previ-
ous study showed that AA-stacked h-BN (a N atom on a N
atom in another layer) can exhibit an NPR effect [26]
(Table 3). In addition, for lattice-mismatched vdWmaterials,
the pz orbitals between the interfacial layers overlap; so, these
materials should exhibit an NPR effect. For example, it has
been observed that WS2/WSe2 heterostructure expands
abnormally under engineering tensile strain [48]. Therefore,
according to this physical mechanism, the NPR phenomenon
should exist in a large number of vdW materials, which was
considered as a rare phenomenon in bulk and monolayer
2D materials.

Moreover, in the experiment, the isolated atomic layers
can also be reassembled into the designed heterostructure
layer by layer in a precisely selected order [49]. Therefore,
for the same kind of investigated material, it can also be
switched in different stacking modes through experimental
methods. For example, the G/h-BN superlattices may also
be tuned among stacking modes A, B, and C. Similarly,
we can change the material without strong interlayer pz
orbital interaction into a material with pz orbitals strongly
overlapping between the interfacial layers, thus exhibiting
an NPR effect.

In conclusion, we studied Poisson’s ratios and the bind-
ing energies of G/h-BN superlattices in different stacking
modes by using the first-principles method. We found that
the stacking mode C has a ZPR effect at the interfacial layer,
while the stacking modes A and B show NPR effects. The
NPR effect is mainly due to the interaction of the pz orbitals
between the interfacial layers. Furthermore, the distance-
dependent hopping integral (f CNσ) calculated by analyzing
that the electronic band structure can be used to describe
the intensity of this interaction. The f CNσ is a power-
exponential function of the interlayer spacing and is propor-
tional to the NPR. Moreover, we calculated their Young’s and
shear modulus and found that the stacking modes A and B

also have NSM effect in the out-of-plane direction. These
materials with negative index coexistence will provide broad
prospects for multifunctional and multipurpose materials.
Finally, we expect that the theory can be verified by experi-
ments and provide a solid foundation for the large-scale
searching and predicting NPR materials in the future.

4. Methods

Based on density of functional theory, all first-principles cal-
culations were implemented by the planewave projector aug-
mented wave (PAW) method in Vienna ab initio simulation
package (VASP) code [50]. The exchange correlation func-
tional adopted the generalized gradient approximation
(GGA) of the Perdew−Burke−Ernzerhof (PBE) functional
[51]. In order to test the robustness of our results, the
vdW-corrected functionals proposed by Grimme DFT+D2
[52], DFT+D3 [53], many-body dispersion (MBD) [54],
and vdW-corrected functional optB88-vdW [55] methods
were used in first-principles calculations. In this paper, the
calculation results of functional optB88-vdW are given
because of its good agreement with the experimental results,
and the results obtained by different vdW-corrected methods
are only slightly different in numerical value (the detailed
results are in the Supporting Information).

The G/h-BN superlattice was calculated by using 28 ×
28 × 10 Monkhorst–Pack K-point mesh. The energy cut-off
value is 500 eV, and the structures were completely relaxed
until their atomic Hellmann–Feynman forces were less than
0.005 eV/Å. The convergence criterion of energy in the self-
consistency process is 10-6 eV. We also calculated electronic
band structures for G/h-BN superlattices by using the
HSE06 hybrid functional [56].

To quantitatively characterize the mechanical properties
of the interface, the interlayer binding energy (Ebind) between
the monolayer graphene and h-BN is as follows:

Ebind =
EG/h−BN − EG + Eh−BNð Þj j

S
, ð11Þ

where EG/h−BN, EG, and Eh−BN are the energies of the G/h-BN
superlattice, graphene, and h-BN, respectively. S represents
the in-plane area of the superlattice.

The elastic constant is defined by expanding the internal
energy E into Taylor series in elastic strain at constant
entropy. The expansion coefficient in the Taylor series is
the elastic constant [57]:

Cijkl = ρ0
∂2E

∂ηij∂ηkl







η=0

, ð12Þ

where ρ0 and ηij are the initial mass density and the Lagrang-
ian strains of the material [58]. In this work, we use con-
tracted notations (11→ 1, 22→ 2, 33→ 3, 13→ 4, 23→
5, 12→ 6, Cijkl → Cαβ) as tensor indices. In addition, we

Table 3: Poisson’s ratios of vdW materials with NPR.

v13
Bilayer graphene [26] -0.09

AA-stacked h-BN [26] -0.12

G/MoS2 heterostructure [37] -0.09

G/h-BN

Stacking mode A -0.109

Stacking mode B -0.111

Table 2: The values of d0, f CNσ, and Poisson’s ratio of G/h-BN
superlattices in different stacking modes.

Stacking mode d0 (Å) f CNσ (eV) Poisson’s ratio

A 3.448 -0.31 -0.109

B 3.416 -0.31 -0.111

C 3.274 -0.22 -0.023
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define Lagrangian strains η1 → εx, η2 → εy and η3 → εz . The
compliance coefficients Sαβ are defined as

σα =〠
β

Sαβεβ, α, β = 1, 2,⋯,6ð Þ: ð13Þ

Young’s modulus for the material is computed by

Yαβ =
1
Sαβ

: ð14Þ

Poisson’s ratio is defined as

vij = −
εj
εi
, ð15Þ

where εi is the strain in the direction of uniaxial loading (in
the i-direction), and εj is the resulting strain in the transverse
direction (the j-direction). In our calculations, we applied
different uniaxial strains to the lattice. This strained structure
was then completely relaxed to evaluate the magnitude of the
strain in the out-of-plane direction. The detailed calculation
process of the relationship between θ and ν13 is provided in
the Supporting Information.
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presented in the paper and supplementary materials. And
additional data are available from the corresponding authors
upon reasonable request.

Conflicts of Interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

This work is supported by the Center for Computational Sci-
ence and Engineering of Southern University of Science and
Technology, NSFC (National Natural Science Foundation of
China) grant number 51972160, the Science and Technology
Research Items of Shenzhen grant numbers JCYJ201704121
53325679, JCYJ20180504165650580, JCYJ20190809142603
695, and JCYJ20170817110302672, and High-level Special
Funding (Nos. G02206303 and G02206403).

Supplementary Materials

1: interlayer binding energies and equilibrium distances
results-Supplementary Table S1 2: elastic constants results-
Supplementary Table S2 3: volume modulus and shear mod-
ulus results-Supplementary Table S3 4: interlayer binding
energy-Supplementary Table S4 5: relationship between pz
orbitals and NPR-Supplementary Figure S1 6: charge
density-Supplementary Figure S2, Table S5 7: charge density.
Table 8: the relationship between Poisson's ratio and stiff-

ness. The relationship between θ and ν13 9. The relationship
between electronic band structures and NPR-Supplementary
Table S6. (Supplementary Materials)

References

[1] A. Alderson and K. L. Alderson, “Auxetic materials,” Proceed-
ings of the Institution of Mechanical Engineers, Part G: Journal
of Aerospace Engineering, vol. 221, no. 4, pp. 565–575, 2007.

[2] W. Yang, Z.-M. Li, W. Shi, B. H. Xie, and M. B. Yang, “Review
on auxetic materials,” Journal of Materials Science, vol. 39,
no. 10, pp. 3269–3279, 2004.

[3] C. Huang and L. Chen, “Negative Poisson's ratio in modern
functional materials,” Advanced Materials, vol. 28, no. 37,
pp. 8079–8096, 2016.

[4] F. Milstein and K. Huang, “Existence of a negative Poisson
ratio in fcc crystals,” Physical Review B, vol. 19, no. 4,
pp. 2030–2033, 1979.

[5] B. D. Caddock and K. E. Evans, “Microporous materials with
negative Poisson's ratios. I. Microstructure and mechanical
properties,” Journal of Physics D Applied Physics, vol. 22,
no. 12, pp. 1877–1882, 1989.

[6] R. Lakes, “Foam structures with a negative Poisson's ratio,” Sci-
ence, vol. 235, no. 4792, pp. 1038–1040, 1987.

[7] C. W. Huang, W. Ren, V. C. Nguyen et al., “Abnormal
Poisson's ratio and linear compressibility in perovskite
materials,” Advanced Materials, vol. 24, no. 30, pp. 4170–
4174, 2012.

[8] A. Yeganeh-Haeri, D. J. Weidner, and J. B. Parise, “Elasticity of
agr-cristobalite: a silicon dioxide with a negative Poisson's
ratio,” Science, vol. 257, no. 5070, pp. 650–652, 1992.

[9] X. Xu, Q. Zhang, M. Hao et al., “Double-negative-index
ceramic aerogels for thermal superinsulation,” Science,
vol. 363, no. 6428, pp. 723–727, 2019.

[10] S. Babaee, J. Shim, J. C. Weaver, E. R. Chen, N. Patel, and
K. Bertoldi, “3D soft metamaterials with negative Poisson's
ratio,” Advanced Materials, vol. 25, no. 36, pp. 5044–5049,
2013.

[11] Z. Y. Wei, Z. V. Guo, L. Dudte, H. Y. Liang, and L. Mahadevan,
“Geometric mechanics of periodic pleated origami,” Physical
Review Letters, vol. 110, no. 21, article 215501, 2013.

[12] J. L. Silverberg, A. A. Evans, L. McLeod et al., “Using origami
design principles to fold reprogrammable mechanical meta-
materials,” Science, vol. 345, no. 6197, pp. 647–650, 2014.

[13] A. U. Ortiz, A. Boutin, A. H. Fuchs, and F.-X. Coudert, “Aniso-
tropic elastic properties of flexible metal-organic frameworks:
how soft are soft porous crystals?,” Physical Review Letters,
vol. 109, no. 19, article 195502, 2012.

[14] L. J. Hall, V. R. Coluci, D. S. GalvaO et al., “Sign change of
Poisson's ratio for carbon nanotube sheets,” Science, vol. 320,
no. 5875, pp. 504–507, 2008.

[15] F. Song, J. Zhou, X. Xu, Y. Xu, and Y. Bai, “Effect of a negative
Poisson ratio in the tension of ceramics,” Physical Review Let-
ters, vol. 100, no. 24, article 245502, 2008.

[16] J. J. Williams, C. W. Smith, K. E. Evans, Z. A. D. Lethbridge,
and R. I. Walton, “Off-Axis elastic properties and the effect
of extraframework species on structural flexibility of the
NAT-type zeolites: simulations of structure and elastic proper-
ties,” Chemistry of Materials, vol. 19, no. 10, pp. 2423–2434,
2007.

9Research

https://downloads.spj.sciencemag.org/research/2021/1904839.f1.docx


[17] M.-S. Pham, C. Liu, I. Todd, and J. Lertthanasarn, “Damage-
tolerant architected materials inspired by crystal microstruc-
ture,” Nature, vol. 565, no. 7739, pp. 305–311, 2019.

[18] D. Mistry, S. D. Connell, S. L. Mickthwaite, P. B. Morgan, J. H.
Clamp, and H. F. Gleeson, “Coincident molecular auxeticity
and negative order parameter in a liquid crystal elastomer,”
Nature Communications, vol. 9, no. 1, article 5095, 2018.

[19] R. Peng, Y. Ma, Q. Wu, B. Huang, and Y. Dai, “Two-dimen-
sional materials with intrinsic auxeticity: progress and per-
spectives,” Nanoscale, vol. 11, no. 24, pp. 11413–11428, 2019.

[20] J. W. Jiang and H. S. Park, “Negative poisson's ratio in single-
layer black phosphorus,” Nature Communications, vol. 5, arti-
cle 4727, 2014.

[21] Y. Du, J. Maassen, W. Wu, Z. Luo, X. Xu, and P. D. Ye, “Auxe-
tic black phosphorus: a 2D material with negative Poisson's
ratio,” Nano Letters, vol. 16, no. 10, pp. 6701–6708, 2016.

[22] H. Wang, X. Li, P. Li, and J. Yang, “δ-Phosphorene: a two
dimensional material with a highly negative Poisson's ratio,”
Nanoscale, vol. 9, no. 2, pp. 850–855, 2017.

[23] L. Kou, Y. Ma, C. Tang, Z. Sun, A. Du, and C. Chen, “Auxetic
and ferroelastic borophane: a novel 2D material with negative
Possion's ratio and switchable dirac transport channels,” Nano
Letters, vol. 16, no. 12, pp. 7910–7914, 2016.

[24] A. J. Mannix, X. F. Zhou, B. Kiraly et al., “Synthesis of boro-
phenes: anisotropic, two-dimensional boron polymorphs,”
Science, vol. 350, no. 6267, pp. 1513–1516, 2015.

[25] Q. Zhang, X. Xu, D. Lin et al., “Hyperbolically patterned 3D
graphene metamaterial with negative Poisson's ratio and
superelasticity,” Advanced Materials, vol. 28, no. 11,
pp. 2229–2237, 2016.

[26] S. Woo, H. C. Park, and Y.-W. Son, “Poisson's ratio in layered
two-dimensional crystals,” Physical Review B, vol. 93, no. 7,
article 075420, 2016.

[27] L. Yu, Q. Yan, and A. Ruzsinszky, “Negative Poisson's ratio in
1T-type crystalline two-dimensional transition metal dichal-
cogenides,” Nature Communications, vol. 8, article 15224,
2017.

[28] X. Kong, J. Deng, L. Li et al., “Tunable auxetic properties in
group-IV monochalcogenide monolayers,” Physical Review B,
vol. 98, no. 18, article 184104, 2018.

[29] Y. Wang, F. Li, Y. Li, and Z. Chen, “Semi-metallic Be5C2
monolayer global minimum with quasi-planar pentacoordinate
carbons and negative Poisson's ratio,” Nature Communications,
vol. 7, article 11488, 2016.

[30] Z. Gao, X. Dong, N. Li, and J. Ren, “Novel two-dimensional
silicon dioxide with in-plane negative Poisson's ratio,” Nano
Letters, vol. 17, no. 2, pp. 772–777, 2017.

[31] V. O. Özçelik, S. Cahangirov, and S. Ciraci, “Stable single-layer
honeycomblike structure of silica,” Physical Review Letters,
vol. 112, no. 24, article 246803, 2014.

[32] J. Li, Y. Wei, X. Fan et al., “Global minimum of two-
dimensional FeB6and an oxidization induced negative Pois-
son's ratio: a new stable allotrope,” Journal of Materials
Chemistry C, vol. 4, no. 40, pp. 9613–9621, 2016.

[33] B. Wang, Q. Wu, Y. Zhang, L. Ma, and J. Wang, “Auxetic B4N
monolayer: a promising 2D material with in-plane negative
Poisson’s ratio and large anisotropic mechanics,” ACS Applied
Materials & Interfaces, vol. 11, no. 36, pp. 33231–33237, 2019.

[34] R. Peng, Y. Ma, Z. He, B. Huang, L. Kou, and Y. Dai, “Single-
layer Ag2S: a two-dimensional bidirectional auxetic semicon-
ductor,” Nano Letters, vol. 19, no. 2, pp. 1227–1233, 2019.

[35] C.-M. Park and H.-J. Sohn, “Black phosphorus and its com-
posite for lithium rechargeable batteries,” Advanced Materials,
vol. 19, no. 18, pp. 2465–2468, 2007.

[36] K. Gopinadhan, S. Hu, A. Esfandiar et al., “Complete steric
exclusion of ions and proton transport through confined mono-
layer water,” Science, vol. 363, no. 6423, pp. 145–148, 2019.

[37] X. Li, C. Huang, S. Hu et al., “Negative and near-zero Poisson's
ratios in 2D graphene/MoS2and graphene/h-BN heterostruc-
tures,” Journal of Materials Chemistry C, vol. 8, no. 12,
pp. 4021–4029, 2020.

[38] R. Quhe, J. Zheng, G. Luo et al., “Tunable and sizable band gap
of single-layer graphene sandwiched between hexagonal boron
nitride,” NPG Asia Materials, vol. 4, article e6, 2012.

[39] C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the
elastic properties and intrinsic strength of monolayer gra-
phene,” Science, vol. 321, no. 5887, pp. 385–388, 2008.

[40] K. Kim, W. R. L. Lambrecht, and B. Segall, “Elastic constants
and related properties of tetrahedrally bonded BN, AlN,
GaN, and InN,” Physical Review B, vol. 53, no. 24,
pp. 16310–16326, 1996.

[41] K. Brugger, “Pure modes for elastic waves in crystals,” Journal
of Applied Physics, vol. 36, no. 3, pp. 759–768, 1965.

[42] S. Hu, A. Alsubaie, Y. Wang et al., “Poisson's ratio of BiFeO3
thin films: X-ray reciprocal space mapping under variable uni-
axial strain,” physica status solidi (a), vol. 214, no. 1, article
1600356, 2017.

[43] H. C. Hamaker, “The London–van der Waals attraction
between spherical particles,” Physica, vol. 4, no. 10, pp. 1058–
1072, 1937.

[44] O. V. Gritsenko, P. R. T. Schipper, and E. J. Baerends, “Effect of
Pauli repulsion on the molecular exchange-correlation Kohn-
sham potential: a comparative calculation of Ne2 and N2,”
Physical Review A, vol. 57, no. 5, pp. 3450–3457, 1998.

[45] Z. Gong, X. Shi, J. Li et al., “Theoretical prediction of low-
energy Stone-Wales graphene with an intrinsic type-III Dirac
cone,” Physical Review B, vol. 101, no. 15, article 155427, 2020.

[46] S. Froyen and W. A. Harrison, “Elementary prediction of lin-
ear combination of atomic orbitals matrix elements,” Physical
Review B, vol. 20, no. 6, pp. 2420–2422, 1979.

[47] L. Hu, J. Zhao, and J. Yang, “Nano-scale displacement sensing
based on van derWaals interactions,”Nanoscale, vol. 7, no. 19,
pp. 8962–8967, 2015.

[48] S. Xie, L. Tu, Y. Han et al., “Coherent, atomically thin
transition-metal dichalcogenide superlattices with engineered
strain,” Science, vol. 359, no. 6380, pp. 1131–1136, 2018.

[49] A. K. Geim and I. V. Grigorieva, “Van der Waals heterostruc-
tures,” Nature, vol. 499, p. 419, 2013.

[50] G. Kresse and J. Furthmüller, “Efficient iterative schemes forab
initiototal-energy calculations using a plane-wave basis set,”
Physical Review B, vol. 54, no. 16, pp. 11169–11186, 1996.

[51] J. P. Perdew, J. A. Chevary, S. H. Vosko et al., “Atoms, mole-
cules, solids, and surfaces: applications of the generalized gra-
dient approximation for exchange and correlation,” Physical
Review B, vol. 46, no. 11, pp. 6671–6687, 1992.

[52] S. Grimme, “Semiempirical GGA-type density functional con-
structed with a long-range dispersion correction,” Journal of
Computational Chemistry, vol. 27, no. 15, pp. 1787–1799,
2006.

[53] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, “A consistent
and accurate ab initio parametrization of density functional
dispersion correction (DFT-D) for the 94 elements H-Pu,”

10 Research



The Journal of Chemical Physics, vol. 132, no. 15, article
154104, 2010.

[54] T. Bučko, S. Lebègue, T. Gould, and J. G. Ángyán, “Many-body
dispersion corrections for periodic systems: an efficient recip-
rocal space implementation,” Journal of Physics: Condensed
Matter, vol. 28, no. 4, article 045201, 2016.

[55] T. Thonhauser, V. R. Cooper, S. Li, A. Puzder, P. Hyldgaard,
and D. C. Langreth, “Van der Waals density functional: self-
consistent potential and the nature of the van der Waals
bond,” Physical Review B, vol. 76, no. 12, article 125112, 2007.

[56] J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Hybrid functionals
based on a screened coulomb potential,” The Journal of Chem-
ical Physics, vol. 118, no. 18, pp. 8207–8215, 2003.

[57] R. N. Thurston and K. Brugger, “Third-order elastic constants
and the velocity of small amplitude elastic waves in homoge-
neously stressed media,” Physical Review, vol. 133, no. 6A,
pp. A1604–A1610, 1964.

[58] J. Zhao, J. M. Winey, and Y. M. Gupta, “First-principles calcu-
lations of second- and third-order elastic constants for single
crystals of arbitrary symmetry,” Physical Review B, vol. 75,
no. 9, article 094105, 2007.

11Research


	Tunable Negative Poisson’s Ratio in Van der Waals Superlattice
	1. Introduction
	2. Results
	2.1. Stiffness
	2.2. Poisson’s Ratio

	3. Discussion
	3.1. Interlayer Binding Energy
	3.2. Relationship between pz Orbitals and NPR
	3.3. Relationship between Electronic Band Structures and NPR

	4. Methods
	Data Availability
	Conflicts of Interest
	Acknowledgments
	Supplementary Materials

