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Intensity correlation OCT 
is a classical mimic of quantum OCT 
providing up to twofold resolution 
improvement
Sylwia M. Kolenderska1* & Piotr Kolenderski2

Quantum Optical Coherence Tomography (Q-OCT) uses quantum properties of light to provide several 
advantages over its classical counterpart, OCT: it achieves a twice better axial resolution with the 
same spectral bandwidth and it is immune to even orders of dispersion. Since these features are very 
sought-after in OCT imaging, many hardware and software techniques have been created to mimic 
the quantum behaviour of light and achieve these features using traditional OCT systems. The most 
recent, purely algorithmic scheme—an improved version of Intensity Correlation Spectral Domain OCT 
named ICA-SD-OCT—showed even-order dispersion cancellation and reduction of artefacts. The true 
capabilities of this method were unfortunately severely undermined, both in terms of its relation to 
Q-OCT and its main performance parameters. In this work, we provide experimental demonstrations 
as well as numerical and analytical arguments to show that ICA-SD-OCT is a true classical equivalent 
of Q-OCT, more specifically its Fourier domain version, and therefore it enables a true two-fold 
axial resolution improvement. We believe that clarification of all the misconceptions about this very 
promising algorithm will highlight the great value of this method for OCT and consequently lead to its 
practical applications for resolution- and quality-enhanced OCT imaging.

Optical Coherence Tomography (OCT) has become an indispensable tool in  medicine1 due to its ability to 
visualise internal structures of biomedical objects on a micrometre scale and in a non-contact and non-invasive 
way. OCT is based on an interferometric measurement of the time of flight of light and can be performed by 
axially translating a mirror in a reference arm as in Time-domain OCT or by keeping the mirror fixed and 
measuring the spectrum of light as in Fourier-domain OCT. OCT’s axial resolution—so the resolution in the 
direction of light propagation in an object—is inversely proportional to the spectral bandwidth of the light source. 
Assuming a Gaussian profile, axial resolution, δz , is given by δz = 2 ln 2

π
1
�k , which is traditionally rewritten to 

δz = 2 ln 2
π

�
2
c

��
 for convenience, where �k and �� is the spectral bandwidth in wavenumber and wavelength, and 

�c is the central wavelength. At first glance, it might seem that broader spectral bandwidths lead to better axial 
resolution. Unfortunately, the broader the spectral range is, the more prominent chromatic dispersion effects 
become. Whereas it is fairly easy to compensate the dispersion mismatch in the arms of an  interferometer2–8, the 
resolution degradation for deeper layers of an object caused by a dispersive character of these layers is challenging 
to mitigate as it requires the information about the dispersion coefficients of each  layer9. It was shown that the 
practical limit for axial resolution—one which weighs in the bandwidth-dispersion trade-off during imaging of 
bulk objects such as the eye—is 1 μm10 and this limit has already been achieved in OCT in both  visible11–13 and 
 NIR14,15 wavelength ranges.

Because of this trade-off, further development of OCT in terms of resolution seems no longer possible through 
traditional means. It rather necessitates novel and unconventional approaches which go beyond the standard 
viewpoints and which should borrow and adapt solutions from other fields of optics. With such an attitude, 
inspired by MRI, Ling et al.16 showed the first successful alternative algorithm to Fourier Transformation with 
which they obtained a several-fold resolution increase. Similarly, Abouraddy et al.17 reached to quantum optics 
to realize the first-ever Quantum OCT (Q-OCT)—not only did this method intrinsically provide a two-fold 
resolution increase, but also it is free of even-order dispersion effects, which contribute most to the resolution 
degradation.
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In Q-OCT, entangled photon pairs are created in a nonlinear crystal: one photon penetrates the object placed 
in one arm and the other photon is reflected from a mirror in the other arm of the interferometer. These pho-
tons overlap at a beamsplitter and the coincidence of their simultaneous arrival at photodiodes located at two 
output ports is measured. In the first implementation of this technique, Time-domain Q-OCT (Td-Q-OCT)18, 
a depth profile of the object—an A-scan—is obtained by axially translating the reference mirror and perform-
ing the coincidence rate measurement. In Fourier-domain Q-OCT (Fd-Q-OCT)19, the mirror is fixed and the 
coincidence measurement is done together with wavelength discrimination producing a two-dimensional joint 
spectrum. An A-scan is obtained by Fourier transforming the main diagonal of the joint spectrum. Unfortu-
nately, both Q-OCT modalities require sources of entangled photon pairs, which are inefficient and therefore, 
pose significant experimental challenges. Due to low intensity levels, data acquisition time extends from at least 
tens of minutes to even hours and the imaging itself can only be performed for simple highly reflective objects, 
which excludes biomedical samples.

Nevertheless, Q-OCT was able to inspire new solutions in traditional OCT and led to the creation of quan-
tum-mimic OCT methods aimed at recreating the features of Q-OCT using different hardware and software 
 techniques20–33. With time, many misconceptions arose around the performance of these methods, including 
whether the axial resolution improvement is on the order of 

√
2 or 2, or even claiming that the resolution 

enhancement is not present at  all32.
In the onslaught of different approaches and different points of view on the subject, the paper by Jensen et al.32 

has passed unnoticed and remains unappreciated—oddly, even by its own authors—despite its unquestionable 
relevance to Q-OCT and the potential it holds for the advancement of OCT. Here, we show that the method of 
Jensen et al. called intensity correlation spectral domain OCT (ICA-SD-OCT) is a true classical equivalent of 
Q-OCT. We prove that this approach is able to recreate the signal of Fd-Q-OCT and all that such signal entails: 
dispersion cancellation, artefacts and most importantly—what was tried to be debunked by Jensen et al.—almost 
two-fold axial resolution improvement. We provide an easy explanation of why the resolution increases by 2 in 
Q-OCT, how the factor of 2 can be achieved in quantum-mimic methods and finally, why the twofold improve-
ment is true and not merely illusory.

Theoretical results
General comparison of signals in Q-OCT and ICA-SD-OCT. The signal acquired in Fourier-domain 
Q-OCT (Fd-Q-OCT)19 is a two-dimensional joint spectrum and can be expressed in the following mathematical 
form:

where ω1 and ω2 are the frequencies of photons in a pair which add up to the frequency of the pumping laser 
2ω0 , whereas 

∣
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 is a two-dimensional joint spectral profile of the photon pairs, and f (ω) is an object’s 
transfer function which describes the phase delays which the object imparts on the light.

In both quantum and classical OCT methods, f (ω) is responsible for the appearance of fringes in the signal. 
In the Fd-Q-OCT signal, the transfer function appears in two different forms, each contributing to different ele-
ments in the A-scan after Fourier transformation. The term |f (ω1)|2 + |f (ω2)|2 will generate stationary artefact 
peaks. The height of these peaks will vary with ω0 and they will be located at a fixed distance from zero optical 
path difference (OPD), which corresponds to the zero point of the abscissa axis of the A-scan. For each artefact of 
this type, its distance will be equal to the distance between a pair of interfaces or scattering centres in the object 
this artefact is related to. Interestingly, since the Td-Q-OCT signal is an integration of (1) over ω1 and ω2 , the 
term |f (ω1)|2 + |f (ω2)|2 averages out to a constant contribution and, consequently, does not generate this type 
of artefact in Td-Q-OCT. The last term in expression (1), f (ω1)f

∗(ω2) , will lead to peaks representing object’s 
dispersion-cancelled and resolution-doubled structure as well as a new type of an artefact: an instationary one 
which appears midway between two interfaces. This type of artefact is also present in Td-Q-OCT signals.

In the method of ICA-SD-OCT by Jensen et al., a standard Fd-OCT signal is first Hilbert transformed so that 
its complex representation, IOCT , is created. It should be noted here that the letter A in the name of the method 
stands for analytical and is used to mark the main difference between this approach and previous Intensity 
Correlation OCT methods (referred to as IC-SD-OCT methods): whereas in IC-SD-OCT a raw, real-number 
OCT spectrum is taken and intensity correlated, ICA-SD-OCT first reconstructs the signal’s complex analytic 
representation and then uses it for calculation of intensity correlation and produces a two-dimensional output:

Algorithmically, IOCT(ω1) is the complex spectrum and I∗
OCT

(ω2) corresponds to a reversed complex-con-
jugated spectrum. If we assume a 50:50 beam-splitting ratio of the interferometer’s beam-splitter, then IOCT(ω) 
can be written as:

where I0 is the source’s spectrum. In (3), Re{f (ω)} is a cross-correlation term representing the depth structure 
of the object, and |f (ω)|2 is an auto-correlation term arising due to the interference of light backscattered from 
different parts of the object and responsible for peaks located close to 0 OPD in the A-scan. In (3), a reduced 
intensity of the light coming back from the sample is accounted for by the transfer function f through complex 

(1)CFd-Q-OCT(ω1,ω2) =
∣

∣

∣
φ
(

ω1,ω2)

∣

∣

∣

2(

|f (ω1)|2 + |f (ω2)|2 − 2Re{f (ω1)f
∗(ω2)}

)

,

(2)IICA-SD-OCT(ω1,ω2) = Re{IOCT(ω1)I
∗
OCT(ω2)}.

(3)IOCT(ω) = 2I0(ω)
∣

∣1+ f (ω)
∣

∣

2 = 2I0(ω)
(

1+ Re{f (ω)} + |f (ω)|2
)
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reflection coefficients (see (5) in the next section for the explicit formula for the transfer function). Using (3) 
in (2) gives:

The ICA-SD-OCT signal incorporates exactly the same terms as the Fd-Q-OCT signal: f (ω1)|2 + |f (ω2)|2 
responsible for the appearance of the stationary artefacts and f (ω1)f

∗(ω2) , which produces dispersion-cancelled 
and resolution-doubled structure positioned at twice the distance from 0 OPD as well as the instationary arte-
facts. In the ICA-SD-OCT signal, there are additional four terms, which give rise to more artefacts in the A-scan. 
The term 2Re{f (ω1)+ f (ω2)} will recreate the structure of an object at a standard distance from 0 OPD, but 
the peaks will have an oscillatory character of an artefact; f (ω1)|f (ω2)|2 and f (ω2)|f (ω1)|2 will be additional 
artefacts. As it will turn out later, this type of artefact will nearly overlap one other type. Finally, |f (ω1)|2|f (ω2)|2 
is an auto-correlation term—a dispersion-cancelled and resolution-doubled equivalent of the auto-correlation 
term in traditional OCT [ |f (ω)|2 in (3)]. In summary, in Td-Q-OCT, there is one artefact per pair of interfaces/
scattering centres, in Fd-Q-OCT—two artefacts per pair, and in ICA-SD-OCT, there are three artefacts per pair 
plus additional n artefacts ( n—number of interfaces/scattering centres in the object).

Apart from an increased number of artefacts, ICA-SD-OCT may also seem less attractive in terms of the axial 
resolution improvement. Although the resolution-doubling term f (ω1)f

∗(ω2) is present in both the Q-OCT 
signal and ICA-SD-OCT signal, the axial resolution of the latter is only improved by a factor of 

√
2 . As showed 

by Shirai and  Friberg27, this is due to the fact that to get the quantum-mimic OCT signal, the spectral profile, I0 , 
needs to be squared as well, as seen in equation (4), which in the case of Gaussian-like profiles reduces the profile’s 
width—and consequently the resolution—by 

√
2 . An obvious way around this problem is to use light sources 

with square-like spectral profiles which are transformed with little to no loss in full width at half maximum.

Signals in Q-OCT and ICA-SD-OCT for an object with two scattering centres. To see where 
exactly the resolution increase comes from in both quantum and quantum-mimic OCT, we first derive explicit 
expressions for their signals in the simplest case of two scattering centres as an object. We adapt the notation 
from the paper of Jensen et al. and write the formula expressing transfer function of an object consisting of two 
scattering centres in the following form:

where r1 , r2 are complex reflection coefficients, �L = L2 − L1 with L1 , L2 being twice the distances from the 
sample’s surface to each of the scattering centres, �l = ls − lr with ls , lr being the object and reference paths 
measured as twice the distance from the beam-splitter to the sample surface and reference mirror, respectively 
(see the schematics in Fig. 1 for more clarity), β(ω) = n(ω)ω

c  is the wavenumber, with c being the vacuum speed 
of light, and n being the depth-averaged refractive index of the sample. This depth-averaged refractive index 
is different for two scattering centres at different depths, but this difference is assumed to be negligible for the 
clarity of the calculations.

To account for higher order dispersion terms, β = β(ω) is expanded into Taylor series: 
β(ω) =

∑∞
j=1

βjω
′j

j! = β0 + β1ω
′ + β

(even)
NL + β

(odd)
NL  , where β(even)

NL =
∑∞

i=1
β2iω

′2i

2i!  and β(odd)
NL =

∑∞
i=1

β2i+1ω
′2i+1

(2i+1)!  
are even and odd-order dispersion terms.

We substitute (5) in (1) with ω1 = ω0 + ω′ and ω2 = ω0 − ω′ , where ω0 is a central frequency which “identi-
fies” a diagonal in the two-dimensional joint spectrum and ω′ is a frequency shift from the central frequency 
along the diagonal. Experimentally, a bigger number of diagonals is ensured by a spectrally broad pump laser. The 
substitutions give an explicit expression for the Fd-Q-OCT signal in the case of two scattering centres as an object:

(4)

IICA-SD-OCT(ω1,ω2) =
∣

∣

∣
S(ω1)

∣

∣

∣

2(

|f (ω1)|2 + |f (ω2)|2 + 2Re{f (ω1)f
∗(ω2)}

+ 2Re{f (ω1)+ f (ω2)} + f (ω1)|f (ω2)|2 + f (ω2)|f (ω1)|2 + |f (ω1)|2|f (ω2)|2 + 1}
)

.

(5)f (ω) = Re{r1e
ω�l
c +β(ω)L1 + r2e

ω�l
c +β(ω)L2},

Figure 1.  A schematic drawing of an interferometer with path lengths used for calculations.
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The terms in the second and third lines correspond to dispersion-cancelled structure shifted to twice the 
distance from 0 OPD due to the multiplication by a factor of 2. Also, what can be clearly seen in (6)—and 
what was not showed explicitly by authors of the paper introducing Fd-Q-OCT19—is that the instation-
ary and stationary artefacts (described by the terms in the last two lines) oscillate with ω0 at the same rate: 
cos

(

�Lβ0
)

= cos
(

�L n(ω0)
c ω0

)

 with �L n(ω0)
c  being the frequency. As expected, the artefacts incorporate both 

even- and odd-order dispersion terms.
(5) is used in (4), again with ω1 = ω0 + ω′ and ω2 = ω0 − ω′ . In this case, ω0 is the central frequency of an 

OCT spectrum and ω′ is the frequency shift from the central frequency. This gives an explicit expression for the 
ICA-SD-OCT signal in the case of two scattering centres as an object (repeated from the paper of Jensen et al., 
but with several modifications that arise from the fact that unlike in the paper of Jensen et al., here the full form 
of the OCT signal as expressed in (3) is used):

The three terms in the line 1 correspond to cross-correlation peaks representing the structure of the object, 
and to the auto-correlation peak, all moved to twice the distance from 0 OPD in the A-scan due to the multiplica-
tion by a factor of 2 (the first scatterer placed at the distance ∼ (2�l + 2L1) , the second scatterer at ∼ (2�l + 2L2) 
and the auto-correlation peak at ∼ 2�L , respectively). The terms in the lines 2 and 3 are responsible for the 
instationary and stationary artefacts, the next two in the lines 4 and 5—for artefacts recreating the structure at 
standard distances ( ∼ (�l + L1) and ∼ (�l + L2) ), the second to last term represents an artefact peak placed at 
a distance ∼ (�l +�L+ L2) and the last one—an artefact placed around the location of an artefact expressed 
as the term in the line 5.

To visualise the similarities between the two methods, imaging of an object consisting of two scattering 
centres was simulated for Fd-OCT and Fd-Q-OCT systems with similar optical parameters: central wavelength 
of 1560 nm and the total spectral bandwidth of 115 nm. The scatterers were placed 100 μm apart and 0.5 mm 
away from 0 OPD in the A-scan. We assumed the refractive index, group refractive index and group velocity 
dispersion ( β2 ) to be of quartz at 1560 nm.

An OCT spectrum (Fig. 2a) was processed using the ICA-SD-OCT algorithm in its original form: the spec-
trum was first split into smaller fragments—each 86 nm wide and centred at 200 different wavelengths within the 
range 1546–1557 nm (these central wavelengths correspond to ω0 ). Every fragment was transformed using (2) 
and put one on top of another to create a spectral stack depicted in Fig. 2c. In the case of Fd-Q-OCT, diagonals 
of a joint spectrum were calculated and also put one on top another to create a spectral stack (Fig. 2e). All rows 
from each such stack were Fourier transformed to create corresponding FFT stacks (Fig. 2d,f). As expected, the 
FFT stack in ICA-SD-OCT contains the same elements as the FFT stack in Fd-Q-OCT as well as some additional 
artefacts. The depth axes were not recalculated to optical distance to visualise that the positions of the peaks 
are moved to twice the distance from 0 OPD in an A-scan in Quantum and quantum-mimic OCT (Fig. 2d,f) 
compared to traditional OCT (Fig. 2b).

Twofold axial resolution improvement. The key parameter enabling axial resolution improvement in 
ICA-SD-OCT, or any of the quantum-mimic OCT methods that are based on the principle of spectral intensity 
correlation, is the factor of 2 by which the phase arguments of all the structural components in the signals are 
multiplied. We see this multiplication in (7) describing the quantum-mimic signal as well as in (6) describing an 
Fd-Q-OCT signal. In both quantum-mimic and quantum OCT, the multiplication by 2 doubles the frequency 
of all the oscillatory components of a corresponding spectrum. Since the frequency of these components is in 
direct relation to the position of the structural peaks in the A-scan, twofold frequency increase will lead to a 
twofold displacement of the peaks in an A-scan and, as a result, to a twofold increase of the distance between 
the two peaks. This means that if in a standard A-scan two peaks are placed so close to each other that they start 
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to overlap completely and are therefore no longer distinguishable, application of a quantum-mimic or quantum 
method will spread these peaks apart and can make them distinguishable in the resulting A-scan.

This matter can be looked at from the point of view of an axial resolution formula δz = 2 ln 2
π

1
�k . An oscilla-

tory component, f  , of an OCT signal is in practice a sum of cosine functions of R cos(Zk) form, where R is the 
reflection coefficient and Z is twice the distance between the scatterers in the object arm. The variable k varies 
between k1 and k2 , which represents a total spectral bandwidth of a light source with a Gaussian spectrum whose 
full width at half maximum is �k . In quantum-mimic and quantum regime, the same component is written as 
R cos(2Zk) . The factor of 2 in the cosine can be “grouped” with Z to explain the twofold frequency increase of 
the cosine as in the previous paragraph. Alternatively, the factor of 2 could be grouped with k . In such a case, a 
multiplication of k by 2 will lead to “moving” the limits of the spectral bandwidth to 2k1 and 2k2 , so consequently 
to doubling of the spectral bandwidth, and with it, to doubling of �k , which will directly reflect on the axial 
resolution: δzquantum = 2 ln 2

π
1

2�k = 1
2
2 ln 2
π

1
�k = 1

2
δz.

An experimental verification of this phenomenon is challenging due to the presence of artefacts. To elimi-
nate them, Jensen et al. used the fact that the artefacts’ height changes as a function of the central frequency ω0 
(expressed by the cosine components of all the artefact terms in (7)). As a result, a mean of the spectral frag-
ments—each centred at a different ω0—leads to reduction of artefacts. It was shown that this reduction is the 
most effective when the spectral fragments allow for at least five oscillations of an artefact. Interestingly, this 
algorithm can be treated as a numerical equivalent of an experimental artefact suppression used by Graciano 
et al.34 in Td-Q-OCT. In their system, they used a broadband pump laser to generate a joint spectrum which is 
broad in the anti-diagonal direction. A larger anti-diagonal width translates to more diagonals, each centred 
at a different ω0 . Performing a time-domain detection leads to a coherent averaging of all the diagonals and 
consequently, reduction of the artefacts.

The period of the artefacts’ oscillation depends on the distance between the peaks: the smaller the distance, 
the bigger the period (see Fig. 4a–c depicting FFT stacks for single-layer objects with varying thicknesses). It 
makes the suppression of artefacts very challenging for objects whose thickness lies at the axial resolution limit, 

Figure 2.  (a) A simulated spectrum in Fd-OCT corresponding to an object consisting of two scattering centres. 
(b) Its Fourier transform depicting two structural peaks representing the object (cross-correlation terms) and 
a peak around 0 which appears due to the interference of light back-scattered by the object (auto-correlation 
term). (c) Consecutive fragments of an Fd-OCT spectrum processed with the ICA-SD-OCT algorithm put one 
on top of another in a spectral stack, (d) Fourier transformed rows of the spectral stack show structural peaks 
at twice the distance from 0 OPD, an auto-correlation term and five varying artefacts. (e) Diagonals of a joint 
spectrum put one on top of another in a spectral stack, (f) Fourier transformed rows of the spectral stack show 
structural peaks at twice the distance from 0 OPD and two artefacts. The intensity in (c–f) is normalised.
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because too closely spaced scatterers create artefacts with periods requiring an ω0 span too big for the artefact 
suppression algorithm to be successful. Consequently, although the twofold resolution enhancement is present 
in quantum-mimic (and quantum) OCT methods, it can be obscured by the artefacts, more specifically mainly 
by the instationary artefact which is always located midway between every two peaks.

Experimental results
Change of axial resolution with the spectral shape. To show how the spectral profile’s shape affects 
the axial resolution, two interference signals were measured in an Fd-OCT system using light centred at 1560 nm 
(total spectral bandwidth of 115 nm) and a mirror as an object. The first signal was shaped to present a Gaussian-
like profile (Fig. 3a) and the other one—to have a square-like profile (Fig. 3b). Both spectra were algorithmically 
compensated for  dispersion7 and then processed according to (2). The absolute value of the output, an ICA-SD-
OCT spectrum, is plotted in Fig. 3c and d. Finally, both ICA-SD-OCT spectra were Fourier transformed and the 
absolute value of the outputs were plotted as A-scans in Fig. 3e and f in a light brown colour. For comparison, the 
original dispersion-compensated interference spectra were also Fourier transformed and plotted on the same 
graphs in a dark brown colour.

The insets in the graphs in Fig. 3e and f show an area around the peaks that represent the position of the 
mirror. The width of the peaks in the A-scans obtained with the OCT spectra is approximately 25.8 μm for a 
Gaussian-shaped spectrum and 25.1 μm for a square-shaped spectrum. In theory, a spectrum with a square-like 
shape provides a much better axial resolution than a Gaussian-shaped spectrum in the same spectral range. In 
our measurements, we performed a coarse hardware spectral shaping which resulted in narrowing of the effective 
wavelength range of both spectra (and a shift of central wavelength). The extent of narrowing was bigger for the 
square-like spectrum which led to decreasing of axial resolution almost down to the level of the axial resolution 
corresponding to the Gaussian-like spectrum.

In the case of the Gaussian-like profile, using the ICA-SD-OCT algorithm decreased the width of the peak to 
15.9 μm which translates to around 25.8/15.9=1.62 axial resolution increase. The increase is bigger than the theo-
retical 1.41, because the spectrum’s shape was not a perfect Gaussian. In the case of the square-like spectrum, the 
width dropped to 13.4 μm giving around 1.87-fold axial resolution improvement. We note that the axial resolution 
increase would be even higher if the spectrum was shaped into a square function shape in a more precise way.

Figure 3e and f show one artefact in the ICA-SD-OCT A-scans (light brown line). Indeed, when r2 = 0 , in 
the Eq. (7) describing an ICA-SD-OCT signal for two scatterers only two terms are left: one corresponding to 

Figure 3.  Experimentally measured Gaussian-like spectrum (a) and square-like spectrum (b). The results of 
transformation according to formula (2) depicted in panels (c, d), were Fourier transformed to produce A-scans 
(light brown in e, f) with a better axial resolution than A-scans corresponding to the original OCT spectra (dark 
brown in e, f). The insets with a zoom-in on the structural peaks show a 1.62 axial resolution increase in the case 
of the Gaussian-like profile, and a 1.87 increase in the case of the square-like profile. A difference in the shape 
of DC peaks and artefacts between (e) and (f) are due to different dispersion imbalance in the interferometer at 
the time of measurements. The theoretical axial resolution for both spectra—calculated as the full width at half 
maximum of the DC peak corresponding to raw OCT spectrum—is 25 μm for (a) and 24.1 μm for (b).
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the structural peak and the other—to the artefact placed at half the location of the structural peak. Also Fig. 3e 
and f show how unbalanced dispersion affects the artefacts in ICA-SD-OCT A-scans. Whereas in Fig. 3e the 
dispersion mismatch was very small, in Fig. 3f, it was substantial due to an additional piece of glass that was 
present in the reference arm at the time of the measurement. Since numerical dispersion compensation does not 
affect artefacts and even-order dispersion terms are inherently not cancelled in their case [see (7)], the artefact 
in Fig. 3f remains broadened and distorted by higher-order dispersion introduced by the excess amount of glass 
in the reference arm. On the other hand, the DC peak is affected by numerical dispersion compensation. The 
DC peak is related to the spectral profile which is not changed by unbalanced dispersion in the interferometer. 
Due to numerical dispersion compensation—which is a multiplication of the spectrum by a complex phase fac-
tor incorporating both linear and nonlinear terms negating the impact of unbalanced dispersion—the DC peak 
is shifted and broadened in an OCT A-scan (dark brown line in Fig. 3f), but only shifted in the ICA-SD-OCT 
A-scan (light brown line in Fig. 3f), because dominant second-order dispersion is automatically cancelled. In 
the case of the structural peak in the ICA-SD-OCT A-scan in Fig. 3f, numerical dispersion compensation was 
only applied to compensate for the third-order dispersion.

Axial resolution enhancement. Figure 4a–c present FFT stacks for 0.26-mm thick BK7, 0.14-mm thick 
sapphire and 0.08-mm thick quartz placed at around 1750 μm, 2145 μm and 1300 μm OPD obtained by post-
processing algorithmically dispersion-compensated spectra according to (2). For the quartz, the period of the 
instationary artefact becomes very big and, due to the proximity with the structural peak, this artefact starts to 
overlap the structure and interferes with it. Hence, estimation of the axial resolution improvement is challeng-
ing. To provide an experimental proof that ICA-SD-OCT is able to resolve two very closely spaced scatterers 
in a situation when traditional OCT cannot, we decided to use a spectrum for quartz and compared an A-scan 
calculated using a spectrum which was a 20-nm wide fragment of an original spectrum with an A-scan obtained 
using the ICA-SD-OCT algorithm on enough 20-nm spectral fragments to suppress the instationary artefact 
peak. Whereas in the first A-scan (dark brown line in Fig. 4d) the structure of the quartz is not resolved, in the 
second one (plotted in light brown line in Fig. 4d), it is. An FFT stack obtained by Fourier transforming the ICA-
SD-OCT-processed spectral fragments is presented in Fig. 4e and shows that one full well-sampled oscillation of 
an artefact was enough to suppress it completely.

Also, two interesting effects can be observed which occur due to numerical dispersion compensation. First, 
as it was already discussed in the previous subsection, the artefact peaks get distorted. Second, the position of 
the artefacts changes with varying central wavelength (corresponding to varying ω0 ). It is due to the fact that 
numerical dispersion compensation does not affect the artefacts and leaves dispersion-induced non-linearity in 
the cosine functions they are represented with. As a result, different fragments of a spectrum will correspond to 
a different frequency and therefore to a different position of a peak.

Discussion and outlook
ICA-SD-OCT algorithm processes an OCT spectrum into what can be interpreted as diagonals of Fd-Q-OCT’s 
joint spectrum and consequently, reproduces all the advantageous aspects of the Q-OCT signal: axial resolution 
enhancement and dispersion cancellation. On the other hand, it also recreates Q-OCT’s artefacts and, on top 
of that, produces several additional artefacts. An increased number of artefacts in quantum-mimic OCT may 

Figure 4.  FFT stacks obtained with 60-nm wide fragments of an OCT spectrum for 0.26-mm thick BK7 (a), 
0.14-mm thick sapphire (b) and 0.08-mm thick quartz (c) show that the period of the artefacts increases with a 
decreasing thickness. (d) The quartz structure is not resolved using a 20 nm wide spectrum (dark brown line), 
but becomes resolved when the artefacts are removed after averaging several 20-nm wide spectra (light brown 
line). (e) FFT stack of quartz corresponding to a reduced width of an individual spectrum. The intensity in (a–c) 
and (e) is normalised.
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seem disadvantageous as compared to Q-OCT, but from the viewpoint of biomedical imaging, which requires a 
perfect correspondence of the image to the imaged object, a single artefact is still one too many.

What works to the advantage of quantum-mimic OCT is the fact that it gives very easy access to features that 
were thought to be only possible through very expensive and time-consuming experiments in quantum optics. 
By being a simple algorithm, it can potentially be used with existing Fd-OCT systems to easily enhance their 
quality and resolution. The only remaining roadblock on the path to achieve this are artefacts. There are already 
both hardware and software schemes to reduce the artefacts and, in some well-defined cases, suppress them 
completely, but they are yet to be universal to work in practical OCT imaging scenarios.

Because the behaviour of artefacts is the same in quantum OCT and quantum-mimic OCT, the schemes for 
artefact removal in quantum OCT are easily adapted for use in quantum-mimic OCT (and vice versa). Such 
close relationship of quantum and quantum-mimic OCT on this and other levels creates a unique opportunity 
for very original solutions since it makes room for research methods from two fundamentally different sides 
of optics: classical and quantum. Such joint forces will undoubtedly enable the creation of methods which will 
remove the remaining obstacles and lead to substantial advancement of OCT imaging.

Methods
The OCT system used for the experiments is presented in Fig. 5a. It is an OCT setup enabling the acquisition 
of standard OCT signals where the grating-based spectral detection done with a spectrometer is replaced with 
the fibre-based spectral detection which incorporates Superconducting Single-Photon Detector (SSPD). Both 
types of spectral detection are equivalent, with the main performance difference being that the latter solution, as 
we have shown in our previous  work35, enables traditional OCT imaging at extremely low light intensity levels. 
Here, we will only repeat this system’s characteristics that are most relevant to this work.

Pulsed light with a central wavelength of 1560 nm and a total spectral bandwidth of 115 nm (MenloSystems 
T-Light, spectrum presented in Fig. 5b) is inputted into a Linnik–Michelson interferometer through a fibre colli-
mator FB1 (f = 11 mm). The repetition rate of the laser, 100 MHz, allows for a temporal broadening of up to 10 ns 
before adjacent pulses start to overlap each other. In the detection part, we used a 5-km long fibre spool (SMF28E, 
Fibrain) with a group velocity dispersion, β2 , equal to 23 fs2/mm which broadened the pulses coming from the 
interferometer to 9.6 ns. The output port of the fiber spool was monitored by a Superconducting Single-Photon 
Detector (SSPD) (Scontel) with a detection range is 350–2300 nm and a peak quantum efficiency of approximately 
65% at 1550  nm36. The SSPD outputs an electric pulse after each successful detection of a single photon and the 
FPGA electronics measures the timestamps of the electric pulses. The timing jitter of the apparatus consisting of 
the SSPD and the time tagging unit is 35 ps, which is very close to the state of the art, but an order of magnitude 
worse than for a standard photodiode. Due to the high sensitivity of the SSPD, the light source was attenuated 
to a level of single photons per pulse by using a half-wave plate and a polarization beam-splitter at the input of 
the interferometer. The SSPD was synchronized with the fast built-in photodiode in the light source. Because 
the fibre spool—through the phenomenon of dispersion—delays each wavelength by a different amount of time, 
time measurement performed by the SSPD provided a spectrum of the light at the input of the fibre collimator 
FB2 (f = 11 mm). Measured spectra were digitized by FPGA electronics and saved onto a computer. Because the 
fibre spool’s dispersion curve is not a linear function in wavenumber, a linearisation of the acquired spectra was 

Figure 5.  (a) Experimental setup (reproduced from Ref.35). The light source is a pulsed laser attenuated to 
a level of single photon per pulse. Pulses are coupled to a fibre (FB1) and propagate in a Linnik–Michelson 
interferometer. The input wavepacket (pulse) is then split at a beamsplitter (BS) into two arms. In the object arm, 
one wavepacket interacts with the object and acquires an additional phase; in the reference arm, the other one is 
reflected from the mirror. They both overlap at the beamsplitter and the output is coupled to a single-mode fibre 
spool using a fibre coupler FB2. The time-resolving Superconducting Single-Photon Detector (SSPD) together 
with the long dispersive fibre spool work as a spectrometer. Time reference is provided by a photodiode signal 
from the light source. The data is collected using an FPGA time-stamping electronics. F1, F2—lenses. (b) The 
light source’s spectrum—measured with Optical Spectrum Analyser (OSA)—is centred around 1560 nm and 
has full width at half maximum (FWHM) of around 60 nm which corresponds to the theoretical axial resolution 
of 17.6 μm. For full characterisation of the setup, see Ref.35
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 performed7. The sensitivity of this system was estimated to be around 26 dB, and the maximum imaging range 
is 5.1 mm with a 6-dB fall-off at around 1  mm35.

A coarse hardware spectral shaping discussed around Fig. 3 was performed using the half-wave plate and 
the polarization beam-splitter placed at the input of the interferometer. Rotation of the half-wave plate in front 
of the polarization beam-splitter led to simultaneous decrease in intensity and change in spectral shape of the 
spectrum enabling two spectral profiles: Gaussian- and square-like.

Received: 18 December 2020; Accepted: 11 May 2021
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