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Abstract: Objective: In this study, small molecules possessing tetrahydropyrimidine derivatives have
been synthesized having halogenated benzyl derivatives and carboxylate linkage. As previously
reported, FDA approved halogenated pyrimidine derivatives prompted us to synthesize novel
compounds in order to evaluate their biological potential. Methodology: Eight pyrimidine derivatives
have been synthesized from ethyl acetoacetate, secondary amine, aromatic benzaldehyde by adding
catalytic amount of CuCl2·2H2O via solvent less Grindstone multicomponent reagent method.
Molecular structure reactivity and virtual screening were performed to check their biological efficacy
as an anti-oxidant, anti-cancer and anti-diabetic agent. These studies were supported by in vitro
analysis and QSAR studies. Results: After combined experimental and virtual screening 5c, 5g and
5e could serve as lead compounds, having low IC50 and high binding affinity.

Keywords: pyrimidine; solvent less; in silico; in vitro; QSAR; DFT; MTT; molecular docking

1. Introduction

Heterocyclic compound chemistry has revolutionized the modern and versatile medic-
inal chemistry [1]. These heterocyclic compounds have a very expansive effect on human
life and influence heterogeneous fields like medicine, polymer science, agronomy and
various chemical industries [2]. These heterogeneous compounds, constituted of dihy-
dropyrimidinones (DHPMs), have gained the much attention after the discovery of DNA
and RNA bases having purines and pyrimidines as core group [3]. DHPMs mode of action
is evident from the formation of H-bonding along with nucleotides like uracil, thymine, cy-
tosine, adenine and guanine in both DNA and RNA [4]. This class of heterocyclic synthetic
compounds contains many naturally occurring therapeutic drugs like quinine, emetine,
dibucaine, morphine and reserpine, as shown in Figure 1 [5,6].

DHPMs become part of many medicinal and therapeutic agents which interact with
DNA and RNA of the infected cells and terminate the cell division of infected cells by
seizing DNA and RNA biosynthesis of these cells, as these DHPMs are structurally re-
lated to nucleotide bases of infected cells [7]. Pyrimidine scaffold is of great interest for
researchers and versatile capability of potentials. Several biologically active functional moi-
eties contributed to the potential of pyrimidine derivatives. Based on the biologically active
functional groups, currently synthesized Pyrimidine-scaffold are shown in Figure 2 [8,9].
Due to this captivating biological and pharmaceutical utilizations, chemists are generally
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interested in the structural modification of the basic nucleus of DHPMs. Regarding the
above discussion we have synthesized a series of DHPMs having pyrido[2,3-d] pyrimidine
structural framework.
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Generally, in the past conventional methods for the synthesis of heterocyclic com-
pounds were applied which was less efficient, time consuming and provided less yield [10].
Following the inception of the green chemistry approach in 1991, it is highly recommend-
able to synthesize the compounds according to the principles of green chemistry [11].
Therefore, in order to minimize these losses, a fuel efficient, innocuous, having no byprod-
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uct or side reactions, eco-friendly Grindstone technique has been employed [10]. In
medicinal chemistry, fluorination of heterocyclic compounds has much impact on drug
stability as in the case of drug absorption, distribution and mechanism. Moreover, owing
to the small size, greater electrostatic interactions due to increased binding affinity, less
polarizability, and high dipoles C-bond act as good hydrogen bonding recipient and are
better involved in resonance [12]. Biological aspects of pyrimidine derivatives containing
fluorine as substituent have been advent from its commercially available drugs as these
drugs are included in the FDA approved drug list of 2018, shown in Figure 3 [13]. In
accordance with the above discussion, mono substituted fluoropyrimidine derivatives have
been synthesized.
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2. Results and Discussion

We have reported the synthesis of tetrahydrpyrimidine derivatives from the reaction
mixture of urea/thiourea, substituting benzaldehydes and ethyl acetoacetate utilizing
CuCl2·2H2O as catalyst. Under these conditions, excellent yield and rapid products were
obtained. Moreover, this synthetic method was advantageous over the conventional
methods owing to its less solvent, economic, less time consuming and possessing single
step properties [14,15].

Targeted synthesized compounds were characterized to confirm their structures
through the NMR spectral data (Spectra in Supplementary Materials).

The 1H- and 13C-NMR spectral data of all compounds 5a–h displayed characteristic
peaks by which we were able to identify the corresponding compounds (Tables 1 and 2).
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Table 1. 13C-NMR (DMSO, 25 MHz) δ values.
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Table 2. 13C-NMR (DMSO, 25 MHz) δ values.

Carbon Number Functional Group X = O, S Chemical Shift δ (ppm)

2-C O 152.48
2-C S 174.57

2.1. Computational and Experimental Evaluation
2.1.1. Rationalization of Biological Activities by IC50 Values

A series of synthetic compounds 5a–5h were subjected to radical scavenging antioxi-
dant, alpha-amylase inhibitory anti-diabetic and MTT cytotoxicity assay. It is manifested
from the activity results that all our target molecules 5a–h were observed to possess good
to moderate activity in comparison to standards used. These compounds have IC50 values
in the range of 6.261–2358 M for scavenging radicals, 6.539–11.27 µM for the enzymatic inhi-
bition of alpha-amylase and 5.351–18.69 µg/mL for suppressing the cytotoxicity of HepG2
cell line. Figures 4–6 represents the graphical data of IC50 values obtained by GraphPad
Prism 8. As it was evident from rational drug design scheme shown in Figures 7–9 that
the synthetic compound is comprised of pyrimidine derivative along with oxo and thio
groups, ester linkage with methyl moiety, benzyl ring with halogen group consisting of
fluoro- and chloro-substitutions at ortho, meta and para position with respect to pyrimidine
ring moiety. All these moieties play important role in regulating the biological potential,
especially the position of halogenated derivatives greatly affect the biological potential of
these compounds 5a–5h.
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Figure 7. Diagrammatic relationship of target molecules (5a–h) for their structure-activity relationship as anti-oxidant agents.

According to limited structure activity relationship, all the meta substituted chloro and
fluoro derivatives on benzyl ring attached to pyrimidine moiety showed good inhibitory
concentration values in comparison to other ortho and para substitution. Compound 5c
(IC50 = 6.261 µM) having fluoro substitution at para position with respect to pyrimidine
moiety having oxo group showed best radical scavenging activity [16]. Compound 5g
with (IC50 = 6.539 µM) having meta substituted chloro benzyl derivative attached with
pyrimidine ring with oxo linkage showed highest inhibitory potential for alpha amylase
of all synthesized compounds which is attributed to its electron withdrawing effect [16].
Overall conclusion showed by Figure 8. Cytotoxicity evaluations lead us to the conclusion
that compound 5e with meta substituted fluoro derivatives having thio linkage possessed
the highest IC50 compared to control, as shown in Figure 10. All this structure activity rela-
tionship provided us with the conclusion that meta substitution of halogenated derivatives
with either oxo or thio linkages provided promising results after in vitro analysis [16–20].
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2.1.2. Molecular Docking Analysis for Antioxidant Activity

Molecular docking studies revealed the best fit modes of compounds 5a–h by docking
with tyrosine kinase. Results obtained after docking analysis provide us with promising
compound 5c, based on the best binding affinity value in comparison to standard (all
data in supplementary materials) [21]. 3D and 2D interface of best fit poses as ligand into
receptor site of tyrosine kinase were visualized in Figure 10A–E [22–25].

2.1.3. Molecular Docking Analysis for Anti-Diabetic Activity

The most favorable and best fit binding modes of 5a–h with glucokinase showed
that their docking score range from −129.805 to −98.995 kcal/mol, while standard drug
docking score is −95.8957 kcal/mol. Glucokinase binding pocket showed best affinity with
chloro-substituted compound 5g, which revealed that compound 5g has the capacity for
enzymatic activity inhibition [24,26] (Figure 11A–E).
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Compound 5g, owing to its oxo substitution, has two hydrogen bonding interac-
tions, namely from the side 3-NH and with oxygen of ester linkage with residues such
as Asp409 and Ser411. MolDock score and number of hydrogen bonding interactions of
5g is in accordance with lowest IC50 value of this compound (all data in supplementary
materials) [24].

2.1.4. Molecular Docking Analysis for Anti-Cancer Activity

Compounds 5a–h showed significantly better MolDock scores than standard 5-fluorouracil
when docked with human serum albumin (3B9L), indicating a good binding affinity (all
data in supplementary materials). Results of docking revealed that compound 5c shows
the best MolDock score of −126.322 kcal/mol. Compound 5c forms hydrogen bonds from
oxygen of ester linkage with Ser454 and Arg197, respectively. Oxygen of ester linked
carbonyl form hydrogen bonds with Lys199 and Arg197 shown in Figure 12A–E [24,27].
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2.2. Redocking and RMSD Calculation

The average RMSD descriptor of all the docked compounds were calculated to cor-
roborate their stability in biological system [28–30]. As the justified threshold for RMSD
calculation is 2 Å, its mean average RMSD value of all the complexes less than this threshold
provides us with the proof that our docking process is validated, as having RMSD for anti-
cancer docking protocol 2.0 Å, for anti-diabetic 1.35 Å and for anti-oxidant 0.71 Å [31–34].
Redocked ligand and co-crystal structure’s native ligand superimposed images are shown
in Figure 13A–C [35–37].

2.3. DFT Studies in Scope of Quantitative Structure Activity Relationship (QSAR) and
Computational Description
2.3.1. Frontier Molecular Orbital Analysis (FMO) along with Optimized Structures

Contour diagrams of HOMO LUMO are significant for the determination of chemical
reaction mechanism. For this purpose, these parameters must be calculated precisely [38].
Contour diagrams of FMOs comprising the HOMO (highest occupied molecular orbitals)
and the LUMO (lowest unoccupied molecular orbitals) in studied compounds are calcu-
lated and optimized geometry of structures along with numbering system, and the vector
of the dipole moment is shown in Figure 14A,B and Table 3.
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Figure 13. Validation of docking protocol by superimposing native ligand to redocked ligand to their
respective co-crystal structure. (A) Redocked ligand (red) superimpose to native ligand (white) for
anti-cancer docking protocol validation; (B) redocked ligand (purple) superimpose to native ligand
(white) for anti-diabetic docking protocol validation; (C) redocked ligand (yellow) superimpose to
native ligand (white) for antioxidant docking protocol validation.
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Table 3. Quantum and geometrical-based computational parameters based on DFT calculations having 321-G basis set to facilitate SAR studies of compounds, where EHOMO (eV),
ELUMO (eV), Energy Gap “∆E = ELUMO-EHOMO (eV)”, Dipole Moment “µ(Debye)”, Global Hardness “η (eV)”.

Molecular Structure
Activity Relationship

Quantum Chemical Parameters

EHOMO (eV) ELUMO (eV) ∆E (eV) µ (Debye) η (eV) S (eV) χ (eV) CP N Ω I (eV) E (Hatree) ∆Nmax

5a −0.22048 −0.03624 0.18424 2.996 0.0921 5.427 0.128 −0.128 11.183 0.08942 0.22048 −972.22 1.389
5b −0.22885 −0.04199 0.18686 1.070 0.09343 5.351 0.135 −0.135 10.189 0.09814 0.22885 −972.22 1.444
5c −0.22736 −0.04226 0.1851 2.384 0.09255 5.402 0.134 −0.134 10.185 0.09818 0.22736 −972.22 1.447
5d −0.21054 −0.05760 0.15294 4.441706 0.07674 6.538 0.134 −0.134 8.510 0.1175 0.21054 −1293.64 1.753
5e −0.21363 −0.06264 0.15099 4.622320 0.07549 6.623 0.138 −0.134 7.917 0.1263 0.21363 −1293.64 1.829
5f −0.21332 −0.06257 0.15075 5.548142 0.07537 6.633 0.137 −0.137 7.930 0.1261 0.21332 −1293.64 1.829
5g −0.22984 −0.04474 0.1851 3.909035 0.09255 5.402 0.137 −0.137 9.842 0.1016 0.22984 −1330.91 1.480
5h −0.21602 −0.06456 0.15146 4.660382 0.07573 6.602 0.140 −0.140 7.710 0.129 0.21602 −1652.33 1.851
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Figure 14. (A) Contour diagrams of FMOs comprising the highest occupied molecular orbitals 
(HOMO) and the lowest unoccupied molecular orbitals (LUMO), along with energy gap (ΔE), opti-
mized geometry of structures with numbering system and the vector of the dipole moment for com-
pounds 5a–d. (B) Contour diagrams of FMOs comprising the highest occupied molecular orbitals 
(HOMO) and the lowest unoccupied molecular orbitals (LUMO), along with energy gap (ΔE), opti-
mized geometry of structures along with numbering system and the vector of the dipole moment 
for compounds 5e–h. 

According to Table 3, the first computational parameter is EHomo. High value of Homo 
predicts that the compound has good electron donor ability, and can give electrons to the 

Figure 14. (A) Contour diagrams of FMOs comprising the highest occupied molecular orbitals
(HOMO) and the lowest unoccupied molecular orbitals (LUMO), along with energy gap (∆E),
optimized geometry of structures with numbering system and the vector of the dipole moment
for compounds 5a–d. (B) Contour diagrams of FMOs comprising the highest occupied molecular
orbitals (HOMO) and the lowest unoccupied molecular orbitals (LUMO), along with energy gap
(∆E), optimized geometry of structures along with numbering system and the vector of the dipole
moment for compounds 5e–h.
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According to Table 3, the first computational parameter is EHomo. High value of Homo
predicts that the compound has good electron donor ability, and can give electrons to
the appropriate acceptor molecule, resulting in good biological activity associated with
increasing value of EHomo [39]. Thus, activity ranking with increasing EHomo value is
as follows:

Compound 5d > Compound 5f> Compound 5e > Compound 5h > Compound 5a >
Compound 5c > Compound 5b > Compound 5g

The second computational parameter is ELumo. The low value of a compound predicts
that it can easily accept electrons from a molecule, thus resulting in the increase of biological
activity with decreasing ELumo values. Thus, according to Table 3, the increase in biological
activity of compounds is as follows:

Compound5a > Compound 5b > Compound 5c > Compound 5g > Compound 5d >
Compound 5f > Compound 5e > Compound 5h

The third parameter is the energy gap ∆E between HOMO and LUMO. A smaller
energy gap is associated with a more reactive molecule that is kinetically less stable. Thus,
biological activity of synthesized compounds increases with decrease in the energy gap.
The order of ranking should be [38,40,41]:

Compound 5f > Compound 5e > Compound 5h > Compound 5d > Compound 5a >
Compound 5c ≈ Compound 5g > Compound 5b

Another property associated with FMOs is chemical softness and hardness. According
to HSAB approximation, hard molecules have large energy gaps and soft molecules have
smaller energy gaps. As the biological system consists of enzymes and cells which are
soft, soft molecules tend to coordinate more easily. Thus, increasing biological activity of
compounds according to the global softness criterion is as follows [38]:

Compound 5h > Compound 5b > Compound 5c ≈ Compound 5g > Compound 5a >
Compound 5d > Compound 5e > Compound 5f

2.3.2. Global Reactivity Descriptors

Electronegativity (X), electrophilicity index (ω), Dipole Moment (µ), Electronic energy
(E), Ionization Potential (I), Chemical Potential (CP), Nucleophilicity Index (N) and elec-
tronic charges (∆Nmax) are reactivity parameters. Table 3, E shows the calculated values.

A low value of electronegativity (X) or higher value of chemical potential (CP) refers
to the electron delocalization. This means that a molecule can easily coordinate with a
biological system by forming bonds. According to this criterion, increasing biological
ranking should be as follows:

Compound 5a > Compound 5c ≈ Compound 5d > Compound 5b > Compound 5f ≈
Compound 5g > Compound 5e > Compound 5h

The next parameters are electrophilicity (ω) and nucleophilicity (N) indexes. An
increase in biological activity is associated with an increasing value of nucleophilicity (N)
index and decreasing value of electrophilicity (ω), therefore these molecules showed best
binding affinities in case of alpha amylase protein interaction with these molecules for
screening anti-diabetic activity virtually. Owing to this property, as 5a has the highest
nucleophilicity and lowest electrophilicity, it therefore showed seven hydrogen bonding
interactions with highest MolDock compared to other compounds in case of protein ligand
interaction with alpha amylase binding site.
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The order of ranking should be:

Compound 5a > Compound 5b ≈ Compound 5c > Compound 5g > Compound 5d >
Compound 5f > Compound 5e > Compound 5h

∆Nmax is the charge of compounds. If ∆Nmax increases then biological activities also
increase. A high value of dipole moment of compound 5f is an indication of fine charge
distribution and bond distance adjusted well. This explains that the molecule showing the
process of oxidation reflects the best conductivity [38,42–44].

2.3.3. Molecular Electrostatic Potential (MEP)

Molecular electrostatic potential (MEP) helps us in assisting the inter and intra molec-
ular interactions like hydrogen bonding, nucleophilic and electrophilic interactions with
incoming molecules, and helps in recognition of biological interactions like molecular
docking, drug protein interactions, etc. The MEP of the compounds 5a–h is shown in
Figure 15 based on SCF energy. MEP shows the response and behavior of molecules toward
the binding sites in biological system. It acts as a visual scheme for accessing the polarity
of molecule. The positive (blue) part of MEP shows sites of attack of nucleophiles while
negative (red and yellow) areas show the sites of attack of electrophilic molecules. Thus,
all the synthesized molecules have blue, or positive, regions around all hydrogen atoms
and specifically more blue color around the hydrogen atoms linked to nitrogen moiety
indicating high electron density, and red or yellow regions around the oxygen atoms of
carbonyl group present between two nitrogen moiety of pyrimidine ring. The neutral
portion is of benzene molecules, having a green color in MEP. Localization of blue regions
over hydrogen atoms of benzene rings and localization of yellow or red color over oxygen
atom of pyrimidine moiety is responsible for the best radical scavenging activity [39,41,45].
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3. Methodology
3.1. Chemistry

The materials (chemicals and solvents) used for synthesis were 95% pure of the brand
Alfa Aesar Gemany and Daejung Korea, purchased from local vendor Musa ji Adam &
Sons in Faisalabad, Pakistan. These were used as such, with no need for further purification.
Aluminum pre-coated plates (Silica gel 60 F254 Merck KGaA, Darmstadt, Germany) were
used for analytical thin layer chromatography with ethyl acetate/n-hexane (7:3) as eluent.
The melting point of compounds was measured by Stuart melting point apparatus SP10.
1H-NMR spectra were recorded on Bruker 300 MHz NMR spectrometer, and 13C-NMR on
Bruker 25 and 175 MHz using DMSO-d6 as solvent and TMS as internal standard.
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3.2. General Procedure of Synthesis

For the synthesis of required compounds, ecofriendly, one-pot multi-component
methodology was used with some modifications (Figure 16). In this method, a mixture of
multi-component reagents, i.e., ethyl acetoacetate, urea/thiourea and aromatic benzalde-
hyde, was stirred together in a round bottom flask for about 10 min, adding a catalytic
amount of CuCl2·H2O so that aromaticity could be achieved. Then the mixture obtained
was left overnight for obtaining best results. After this the mixture was washed with cold
water to remove excess copper salt, dried and re-crystallized with hot solvents to achieve
pure products (5a–h). Progression of reaction was checked by TLC [46,47].

Molecules 2021, 26, x FOR PEER REVIEW 15 of 22 
 

amount of CuCl2·H2O so that aromaticity could be achieved. Then the mixture obtained 
was left overnight for obtaining best results. After this the mixture was washed with cold 
water to remove excess copper salt, dried and re-crystallized with hot solvents to achieve 
pure products (5a–h). Progression of reaction was checked by TLC [46,47]. 

 
Figure 16. General equation for synthesis of compounds (5a–h). 

3.2.1. Synthesis of Ethyl 4-(Fluorophenyl)-6-methyl-2oxo-1,2,3,4-tetrahydropyrimidine-5-
carboxylate (5a–f) 

The appropriate amounts, i.e., 0.2 M (6.2 g) of fluoro-benzaldehyde, urea (3 g), thio-
urea (3.8 g) and ethyl acetoacetate (6.5 g), were mixed by adding a catalytic amount of 
CuCl2·2H2O by grinding for 7–0 min. After adding a few drops of HCl, they were again 
mixed for about 10 min. The mixture was then allowed to stayed overnight. Products ob-
tained were purified by dissolving in methanol, by slightly heating the solution in a water 
bath. The solution was filtered off and allowed to re-crystallize. The fate of the performed 
reaction was determined with TLC. 

Spectral Data of 4-(Fluorophenyl)-6-methyl-2oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate 

4-(2-fluorophenyl)-6-methyl-2oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (5a): White 
shiny crystalline solid, soluble in DMSO, M.P = 230–233 °C; 1H-NMR (DMSO, 300 MHz): 
δ 9.26 (1H, s, NH), 7.70 (1H, s, NH), 7.30 (1H, m, H-4′), 7.26 (1-H, m, H-5′), 7.11 (1H, m, H-
3′), 7.17 (1H, m, H-6′), 5.44 (1H, s, H-4), 3.94 (1H, q, J = 6.9 Hz, CH2), 2.26 (1H, s, CH3), 1.05 
(1H, t, CH3); 13C-NMR (DMSO, 25 MHz): δ 165.3 (C-1″), 100.3 (C-5), 60.2 (C-3″), 14.4 (C-
4″), 17.6 (CH3), 146.1 (C-6), 54.07 (C-4), 152.0 (C-2), 143.9 (C-1′), 122.3 (C-2′), 161.3 (C-3′), 
112.5 (C-4′), 130.2 (C-5′), 113.8 (C-6′); EIMS: m/z 278.12 (cacld. For C14H15FN2O3). 

ethyl 4-(3-fluorophenyl)-6-methyl-2oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (5b): 
White shiny crystalline solid, soluble in DMSO, M.P = 210–213 °C; 1H-NMR(DMSO, 300 
MHz): δ 9.27 (1H, s, NH), 7.81 (1H, s, NH), 7.40 (1H, dd, H-5′), 7.36 (1H, d, H-4′), 7.28 (1-H, 
d, H-6′), 6.98 (1H, s, H-2′), 5.17 (1H, s, H-4), 4.03 (1H, q, J = 9 Hz, CH2), 2.50 (1H, s, CH3), 
1.10 (1H, t, CH3); 13C-NMR (DMSO, 25 MHz): δ 165.69 (C-1″), 152.41 (C-2), 149.19 (C-6), 
144.21 (C-1′), 132.26 (C-3′), 129.35 (C-5′), 128.88 (C-4′), 128.66 (C-2′), 128.66 (C-6′), 99.29 (C-

Figure 16. General equation for synthesis of compounds (5a–h).

3.2.1. Synthesis of Ethyl 4-(Fluorophenyl)-6-methyl-2oxo-1,2,3,4-tetrahydropyrimidine-5-
carboxylate (5a–f)

The appropriate amounts, i.e., 0.2 M (6.2 g) of fluoro-benzaldehyde, urea (3 g),
thiourea (3.8 g) and ethyl acetoacetate (6.5 g), were mixed by adding a catalytic amount of
CuCl2·2H2O by grinding for 7–0 min. After adding a few drops of HCl, they were again
mixed for about 10 min. The mixture was then allowed to stayed overnight. Products
obtained were purified by dissolving in methanol, by slightly heating the solution in a
water bath. The solution was filtered off and allowed to re-crystallize. The fate of the
performed reaction was determined with TLC.

Spectral Data of 4-(Fluorophenyl)-6-methyl-2oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate

4-(2-fluorophenyl)-6-methyl-2oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (5a): White shiny
crystalline solid, soluble in DMSO, M.P = 230–233 ◦C; 1H-NMR (DMSO, 300 MHz): δ 9.26
(1H, s, NH), 7.70 (1H, s, NH), 7.30 (1H, m, H-4′), 7.26 (1-H, m, H-5′), 7.11 (1H, m, H-3′), 7.17
(1H, m, H-6′), 5.44 (1H, s, H-4), 3.94 (1H, q, J = 6.9 Hz, CH2), 2.26 (1H, s, CH3), 1.05 (1H,
t, CH3); 13C-NMR (DMSO, 25 MHz): δ 165.3 (C-1”), 100.3 (C-5), 60.2 (C-3”), 14.4 (C-4”),
17.6 (CH3), 146.1 (C-6), 54.07 (C-4), 152.0 (C-2), 143.9 (C-1′), 122.3 (C-2′), 161.3 (C-3′), 112.5
(C-4′), 130.2 (C-5′), 113.8 (C-6′); EIMS: m/z 278.12 (cacld. For C14H15FN2O3).
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ethyl 4-(3-fluorophenyl)-6-methyl-2oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (5b):
White shiny crystalline solid, soluble in DMSO, M.P = 210–213 ◦C; 1H-NMR(DMSO,
300 MHz): δ 9.27 (1H, s, NH), 7.81 (1H, s, NH), 7.40 (1H, dd, H-5′), 7.36 (1H, d, H-4′), 7.28
(1-H, d, H-6′), 6.98 (1H, s, H-2′), 5.17 (1H, s, H-4), 4.03 (1H, q, J = 9 Hz, CH2), 2.50 (1H, s,
CH3), 1.10 (1H, t, CH3); 13C-NMR (DMSO, 25 MHz): δ 165.69 (C-1”), 152.41 (C-2), 149.19
(C-6), 144.21 (C-1′), 132.26 (C-3′), 129.35 (C-5′), 128.88 (C-4′), 128.66 (C-2′), 128.66 (C-6′),
99.29 (C-5), 59.77 (3”-CH2), 53.85 (C-4), 18.25 (CH3), 14.51 (4”-CH3); EIMS: m/z 278.12
(cacld. For C14H15FN2O3).

ethyl 4-(4-fluorophenyl)-6-methyl-2oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (5c):
White shiny crystalline solid, soluble in DMSO, M.P = 182–184 ◦C; 1H-NMR (DMSO,
300 MHz): δ 9.23 (1H, s, NH), 7.76 (1H, s, NH), 7.28 (1H, d, H-3′), 7.26 (1H, d, H-5′), 7.15
(1-H, d, H-6′), 7.14 (1H, d, H-2′), 5.15 (1H, s, H-4), 4.01 (1H, q, J = 6.9 Hz, CH2), 2.50 (1H, s,
CH3), 1.10 (1H, t, CH3); 13C-NMR (DMSO, 25 MHz): δ 165.70 (C-1”), 152.48 (C-2), 148.98
(C-6), 141.60 (C-1′), 128.66 (C-3′), 128.77 (C-5′), 115.70 (C-6′), 115.42 (C-2′), 160.17 (C-4′),
99.58 (C-5), 59.67 (3”-CH2), 53.81 (C-4), 18.23 (CH3), 14.49 (4”-CH3); EIMS: m/z 278.12
(cacld. For C14H15FN2O3).

ethyl 4-(2-fluorophenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (5d):
White shiny crystalline solid, soluble in DMSO, Decomposing temperature = 216–220 ◦C;
1H-NMR (DMSO, 300 MHz): δ 10.56 (1H, s, NH), 9.97 (1H, s, NH), 7.25 (1H, m, H-5′), 7.22
(1-H, m, H-4′), 7.19 (1H, m, H-6′), 7.17 (1H, m, H-3′), 5.55 (1H, s, H-4), 3.98 (1H, q, J = 6 Hz,
CH2), 2.33 (1H, s, CH3), 1.05 (1H, t, CH3); 13C-NMR (DMSO, 25 MHz): δ 165.02 (C-1”),
173.06 (C-2), 161.42 (C-6), 129.79 (C-1′), 115.24 (C-3′), 130.34 (C-4′), 125.24 (C-5′), 158.14
(C-2′), 130.52 (C-6′), 100.29 (C-5), 60.13 (C-4), 49.34 (C-3”); 17.56 (CH3), 14.24 (C-4”); EIMS:
m/z 294.02 (cacld. For C14H15FN2O2S).

ethyl 4-(3-fluorophenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (5e):
White shiny crystalline solid, soluble in DMSO, M.P = 202–206 ◦C; 1H-NMR (DMSO,
300 MHz): δ 10.43 (1H, s, NH), 9.75 (1H, s, NH), 7.44 (1H, dd, H-5′), 7.08 (1H, d, H-4′), 7.15
(1-H, d, H-6′), 6.97 (1H, s, H-2′), 5.21 (1H, s, H-4), 4.05 (1H, q, J = 6.3 Hz, CH2), 2.50 (1H, s,
CH3), 1.12 (1H, t, CH3); 13C-NMR (DMSO, 25 MHz): δ 165.43 (C-1”), 174.61 (C-2), 160.97
(C-6), 146.51 (C-1′), 164.21 (C-3′), 131.27 (C-5′), 113.73 (C-4′), 113.44 (C-2′), 122.87 (C-6′),
100.74 (C-5), 60.18 (3”-CH2), 53.99 (C-4), 17.67 (CH3), 14.46 (4”-CH3); EIMS: m/z 294.02
(cacld. For C14H15FN2O2S).

ethyl 4-(4-fluorophenyl)-6-methyl-2thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (5f):
White shiny crystalline solid, soluble in DMSO, M.P = 233–235 ◦C;1H-NMR (DMSO,
300 MHz): δ 10.43 (1H, s, NH), 9.77 (1H, s, NH), 7.27 (1H, d, H-3′), 7.24 (1H, d, H-5′), 7.18
(1-H, d, H-6′), 7.15 (1H, d, H-2′), 5.20 (1H, s, H-4), 4.04 (1H, q, J = 6.6 Hz, CH2), 2.30 (1H, s,
CH3), 1.11 (1H, t, CH3); 13C-NMR (DMSO, 25 MHz): δ 165.49 (C-1”), 174.57 (C-2), 163.60
(C-6), 140.23 (C-1′), 115.68 (C-3′), 115.68 (C-5′), 128.97 (C-6′), 128.86 (C-2′), 160.38 (C-4′),
101.95 (C-5), 60.09 (3”-CH2), 53.83 (C-4), 17.63 (CH3), 14.46 (4”-CH3); EIMS: m/z 294.02
(cacld. For C14H15FN2O2S).

Synthesis of Ethyl 4-(Chlorophenyl)-6-methyl-2oxo-1,2,3,4-tetrahydropyrimidine-5-
carboxylate (5g,h)

The appropriate amounts, i.e., 0.1 M (3.5 g) of chloro-benzaldehyde, urea (3 g),
thiourea (3.8 g) and ethyl acetoacetate (6.5 g), were mixed by adding a catalytic amount of
CuCl2·2H2O by grinding for 7–10 min. After adding a few drops of HCl, they were again
mixed for about 10 min. The mixture was then allowed to stayed overnight. Products
obtained were purified by dissolving in methanol, by slightly heating the solution in a
water bath. The solution was filtered off and allowed to re-crystallize. The fate of the
performed reaction was determined with TLC.

ethyl 4-(3-chlorophenyl)-6-methyl-2oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (5g):
White shiny crystalline solid, soluble in DMSO, M.P = 215–220 ◦C; 1H-NMR (DMSO,
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300 MHz): δ 9.34 (1H, s, NH), 7.86 (1H, s, NH), 7.37 (1H, s, H-2′), 7.31 (1H, d, H-4′), 7.31
(1-H, dd, H-5′), 7.24 (1H, d, H-6′), 5.21 (1H, s, H-4), 4.01 (1H, q, J = 6 Hz, CH2), 2.29 (1H,
s, CH3), 1.10 (1H, t, CH3); 13C-NMR (DMSO, 175 MHz): δ 165.6 (C-1”), 152.5 (C-2), 149.3
(C-6), 147.6 (C-1′), 133.4 (C-3′), 130.0 (C-5′), 127.6 (C-4′), 126.7 (C-2′), 125.3 (C-6′), 99.1
(C-5), 59.7 (3”-CH2), 54.1 (C-4), 18.2 (CH3), 14.4 (4”-CH3); EIMS: m/z 294.72 (cacld. For
C14H15ClN2O3).

ethyl 4-(3-chlorophenyl)-6-methyl-2thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (5h):
White shiny crystalline solid, soluble in DMSO, M.P = 182–188 ◦C; 1H-NMR (DMSO,
300 MHz): δ 10.41 (1H, s, NH), 9.71 (1H, s, NH), 7.73 (1H, s, H-2′), 7.39 (1H, d, H-4′), 7.36
(1-H, dd, H-5′), 7.16 (1H, d, H-6′), 5.19 (1H, s, H-4), 4.05 (1H, q, J = 6 Hz, CH2), 2.29 (1H,
s, CH3), 1.11 (1H, t, CH3); 13C-NMR (DMSO, 175 MHz): δ 174.5 (C-2), 165.3 (C-1”), 146.1
(C-6), 145.9 (C-1′), 133.5 (C-3′), 131.1 (C-5′), 128.1 (C-4′), 126.8 (C-2′), 125.5(C-6′), 100.6
(C-5), 60.2 (3”-CH2),54.0 (C-4), 17.6 (CH3), 14.4 (4”-CH3); EIMS: m/z 310.0 (cacld. For
C14H15ClN2O2S).

3.3. Biological Assays:
3.3.1. Antioxidant (Free Radical Scavenging Activity) Using DPPH

The potential of synthesized compounds to scavenge the free radicals were assessed
by using diphenylpicrylhydrazyl (DPPH) as free radical [48].

Preparation of Stock Solution

In order to perform anti-oxidant activity, stock solutions of compounds 5a–h having
concentration 200 mM (0.022 g) were prepared. These stock solutions were then subjected
to prepare their dilutions up to 250 µg, 200 µg, 150 µg, 100 µg, 50 µg and 25 µg respectively.
DPPH solution of 4% was prepared by mixing 0.004 g of DPPH in 100 ml methanol
(commercial grade). Ascorbic acid was used as control and its solution was prepared by
mixing 0.0017612 g into 100 ml of water having 100 µg concentration.

Protocol of Free Radical Scavenging Activity

In test tubes 1 mL of sample from each diluted solution and 2 mL of DPPH solution
was added. In the same way, 1 mL of the ascorbic acid was added along with 2 ml
of DPPH as control and allowed to stand overnight. The next day, using Hitachi U-
2900 spectrophotometer, readings at 517 nm were taken in triplicate and their inhibitory
concentration calculated using formula [49].

A =
Acontrol − Asample

Acontrol
× 100

3.3.2. Anti-Diabetic Activity

Synthesized compounds 5a–h were subjected to in vitro anti-diabetic activity using
starch as substrate and alpha amylase as enzyme. Acarbose was used as standard drug [50].

Protocol of Anti-Diabetic Activity

In a test tube 0.5 mL of compound of each specific dilution and 0.5 mL of enzyme
were added and kept in incubator at room temperature for 10 min, as done by our previous
method [51]. Readings were taken in triplicate at 540 nm and percentage for the inhibition
activity of target molecule was measured by the formula [52].

A =
Acontrol − Asample

Acontrol
× 100

3.3.3. Anti-Cancer Activity

The human HepG2 cells were cultured in Dulbecco’s Modified Eagle’s Medium
(DMEM) supplemented with 10% fatal bovine serum (FBS), 100 unit’s/mL penicillin and
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100µg/mL streptomycin, and maintained at 37 ◦C with 5% CO2 in humidified atmo-
sphere. Cells were treated with extracts/compound dissolved in DMSO with a final DMSO
concentration of 0.05%. DMSO treated cells were used as control in all the experiments [53].

Determination of Cell Viability

Cell viability was determined by MTT assay as described by us previously. Briefly,
HepG2 cells were treated with different concentrations of compounds for 48 h. Following
treatment, the MTT reagent was added (500 µg/mL) and cells were further incubated at
37 ◦C for 4 h. Subsequently, 150 µL DMSO was added to dissolve formazan crystals and
absorbance was measured at 490 nm in a microplate reader (Thermo Scientific, Waltham,
MA, USA). The percentage of cell viability was calculated [54].

3.4. Molecular Docking Studies
3.4.1. Ligand and Protein Preparation

All the synthesized compounds were drawn into 2D conformers by using ChemDraw
Professional (Version 19.1.0.8, Perkin Elmer, Waltham, MA, USA), then these structures
were imported to chem3D Ultra (Version 19.1.0.8, Perkin Elmer, Waltham, MA, USA).
All the energy minimizations and other structural conformations, such as bond order,
assigning missing bonds, explicit hydrogens and flexible torsional if absent in synthesized
compounds, were optimized by using MM2 force field-Steepest Descent Algorithm in
chem3D [27,55]. The crystal structure of target protein was downloaded from Protein
Data Bank (PDB) at the Research Collaboratory for Structural Bioinformatics (RCSB,
http://www.rcsb.org, accessed on 13–17 January 2021). PDB ID for anti-cancer activity is
human serum albumin having ID (3B9L) with resolution of 2.60 Å. For antidiabetic activity,
the crystal structure of human glucokinase having PDB ID (1V4S) with a resolution of 2.3 Å
was used as target receptor site. In case of anti-oxidant activity, quercetin complex kinase
having PDB ID (2HCK) with a resolution of 3.00 Å was used as target crystal structure. All
these crystal structures were downloaded as PDB Format (gz) and then, after importing
into MVD, their protein preparation was carried out before docking [22,56–59].

3.4.2. Molecular Docking

Molecular docking studies based on synthesized compounds 5a-c was conducted
by using Molegro Virtual Docker (MVD 2013 6.0.1, Molegro ApS, Aarhus, Denmark)
and Discovery Studio Visualizer 2020. As studies revealed that MVD showed the best
binding affinity in the form of Mol dock score as compared to other docking software like
Surflex, Glide, Autodock Vina and FlexX [22,60]. Pose comprising top docked conformation
was examined by using MolDock Score [GRID] algorithm, number of runs taken as 10,
maximum iterations were 1500, population size of 50, with energy threshold of 100 having
grid resolution 0.30 Å [23–27,58,61,62]. The MolDock score, length and number of hydrogen
bonds involved along with residues involved in hydrogen bonding are listed for all the
biological activities.

3.5. Density Functional Theory Studies of Target Molecules in Scope of QSAR

Density functional language is a universal approach for defining the molecular struc-
tures of organic compounds and their activity relationships by making use of quantum-
chemical descriptors and geometrical parameters [63]. The main objective is the correlation
of biological activities of compounds with molecular descriptors given by DFT calcula-
tions [64]. All computational calculations of compounds were carried through Gaussian
09W program supported by the Gauss View 6.0.16 interface [65]. The molecules are opti-
mized and its parameters calculated operating hybrid type B3LYP utilizing 321-G basis
set with DFT exchange, which provide HOMO-LUMO geometries, net charge, energy gap,
dipole moment and other computational descriptors [40].

http://www.rcsb.org
http://www.rcsb.org
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4. Conclusions

Eight new compounds were synthesized in one-pot multi-component strategy by
adopting solvent free methodology. All the compounds 5a–h was evaluated for their bio-
logical potential against diabetes, radical scavenge and cancer cell lines. After combinatorial
in vitro and in silico analysis, compound 5c was pharmacologically active for anti-oxidant
activity, 5e and 5c for cytotoxicity and 5g for combating diabetes. These potential leads had
the best biological potential, and their biological activity can be enhanced by further futural
derivatization, or by making their structural analogs. Hence, overall, the synthesized
target molecules were proved to be potential therapeutic agents against different classes of
inhibitor, thus opening new research interests regarding pyrimidine derivatives that may
lead to evolution in medicinal systems and in the field of synthesis. The conclusion is that
the synthetic pathway chosen here can be of primary interest for research communities and
pharmacists, and the novel compounds synthesized here can be used in future as effective
drugs due to their cell specificity, safety, inexpensiveness, sustainability, enhanced activity,
eco-friendly nature and less time consuming and cost-effective synthetic method.

Supplementary Materials: The following are available online: 1H and 13C-NMR spectra of 5a–h and
Molecular docking interaction results.
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