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Abstract: Biocompatible electrically conducting chitosan-based films filled with single-wall carbon
nanotubes were obtained. Atomic force microscopic studies of the free surface topography revealed a
change in the morphology of chitosan films filled with single-wall carbon nanotubes. Introducing
0.5 wt.% of single-wall carbon nanotubes into chitosan results in an increase in tensile strength of
the films (up to ~180 MPa); the tensile strain values also rise up to ~60%. It was demonstrated that
chitosan films containing 0.1–3.0 wt.% of single-wall carbon nanotubes have higher conductivity
(10 S/m) than pure chitosan films (10−11 S/m). The investigation of electrical stimulation of human
dermal fibroblasts on chitosan/single-wall carbon nanotubes film scaffolds showed that the biological
effect of cell electrical stimulation depends on the content of single-walled carbon nanotubes in the
chitosan matrix.

Keywords: chitosan; single-walled carbon nanotubes; film scaffolds; morphology; mechanical
properties; conductivity; electrical stimulation; human dermal fibroblasts

1. Introduction

In recent years, polymers have been widely used in cellular technologies, regenerative
medicine, manufacturing of medical devices for diagnostics, and treatment of various
diseases. Implementation of these technologies requires new materials, which should be
non-toxic for human cells and possess biocompatibility and conducting properties.

It has been demonstrated that electrical stimulation is especially efficient in regener-
ation of tissues of central and peripheral nervous systems [1]. This method can be also
used for treatment of a damaged myocardium [2], regeneration of skeletal muscles [3],
acceleration of wound healing [4], and bone tissue reconstruction [5].

Electric fields exert an influence on intracellular biochemical processes and determine
parameters of intercellular medium. These parameters, in turn, control the main cellular
processes: adhesion, migration, proliferation, differentiation, and cell apoptosis. At the
tissue level, electrical stimulation influences the rate and efficiency of cell communication
and regenerative processes.

To study the influence of the electric field on cellular processes, to provide efficient
stimulation of these processes, and to control them, it is necessary to prepare a scaffold
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that will be able to transmit electrical signals of various intensities and frequencies to the
cellular structures. The possibility of non-invasive cellular regulation increases efficiency
of regenerative technologies [6].

An example of electrical regulation of the regenerative processes is maintaining a
constant electric potential between outer and inner skin layers, which plays a certain role
in preservation of homeostasis and regeneration of damaged skin. Long-term disruption of
the electric potential between outer and inner layers of skin may result in the appearance
of chronic wounds [7,8].

The processes of regeneration of wounds and soft tissues involve dermal fibroblasts;
therefore, fibroblasts are frequently used as the model cells in development and optimiza-
tion of biocompatible conducting materials, biomedical devices, and electrostimulation
protocols. Wounds of various etiologies are treated with atraumatic wound dressings,
which undergo resorption under the action of biological media and stimulate cellular
processes that accompany regeneration of the wound surface [9,10].

The second important direction in the application of bioresorbable electrically conduct-
ing films is their use as the main components of conduits, the constructions intended for
stimulation of regenerative processes in peripheral nerves [1,11]. Therefore, development of
conducting films based on resorbable polymers is an actual problem in tissue engineering.

The composite materials used in tissue engineering should reproduce the properties
of the surrounding native tissues as accurately as possible, i.e., should mimic the properties
of natural tissues. These polymers include natural macromolecules: chitosan, polylactide,
gelatin, and alginate. To impart conductivity to a polymer, carbon materials or conducting
polymers are introduced into a scaffold. In particular, carbon nanotubes are used for
biomedical purposes, because they combine high electrical conductivity and high specific
surface area [12].

In order to provide good biocompatibility, it is essential that the electrical charac-
teristics of a material are close to the electrical characteristics of living cells and tissues.
Materials with high conductivity may cause cell death when the value of the applied current
strength exceeds cell survival threshold, whereas materials characterized by insufficient
conductivity may cause overheating upon applying voltage. Overheating, in turn, is also
harmful, because it induces denaturation of proteins and formation of toxic products in a
cultural medium in vitro or in tissue liquids in vivo [13].

The basic factor that should be taken into consideration in the development of conduc-
tive materials that have contact with living cells and tissues is a mechanism of combined
action of the electric signals caused by electron conductivity of the materials and the signals
of ionic conductivity that are received by cells. In addition to the type of conductivity of the
material and electrical properties of the scaffold, biological effect of electrostimulation on
this scaffold depends on electrochemical processes in the near-surface layer of the scaffold
material. Understanding of these processes allows one to select the parameters of currents
that act upon a cell membrane during electrostimulation.

In this work, chitosan-based composites modified with single-wall carbon nanotubes
(SWCNT) were used as biocompatible conducting scaffolds. Chitosan, a derivative of
polysaccharide chitin, possesses a set of useful biological properties, such as biocompat-
ibility, biological activity, bioresorbability, antibacterial, wound healing, and hemostatic
properties. In addition, it has been reported in several papers [14–17] that neither chi-
tosan nor the products of its biodegradation show cytotoxicity; thus, chitosan can be
recommended for application in skin regenerative technologies.

Carbon nanoparticles of various shapes have been widely used in medical purpose
materials [13,18,19]. It is expected that introduction of single-wall carbon nanotubes
into the chitosan matrix will provide the necessary level of conductivity; there is also
a high probability that the presence of SWCNT will improve mechanical properties of the
composite film.

Previously, in [20], a method for obtaining biocompatible electrically conducting
chitosan-based films was described and structural studies were given. This paper presents
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a detailed study of the electrically conductive and capacitive properties, morphology and
chemical composition of the surface, mechanical characteristics of electrically conducting
chitosan-based composite materials, as well as a study of the effect of electrical stimulation
on the adhesion and proliferative activity of human dermal fibroblasts using the prepared
chitosan/SWCNT matrix film.

The aim of the present work is a preparation of the composite films based on chitosan
and SWCNT with optimal mimicry and electrically conductive properties for in vitro stud-
ies of the effect of an electric field on the proliferative activity of cells. This research is
needed for the further development of biomedical devices based on the obtained electroac-
tive biocompatible composite materials.

2. Materials and Methods

Composite films were prepared on the basis of chitosan with molecular mass
Mm = (1.64–2.1) × 105 and deacetylation degree DD = 92% purchased from Biolog Heppe
GmbH (Germany).

The films were obtained from the mixture of the 4% solution of chitosan in 2%
acetic acid and an aqueous dispersion of SWCNT (Carbon Chg, Chernogolovka, Russia).
The diameter of SWCNT was equal to 1.4 ± 0.3 nm; their length was 1–5 µm [21].

Before preparation of the working solutions, the aqueous dispersion containing
SWCNT was subjected to ultrasound treatment with an IL10-0.63 dispersant (Russia)
for 15 min (25 kHz, 630 W).

Chitosan powder was gradually introduced into the aqueous dispersion; the mixture
was stirred for 1 h until the chitosan swelled and partially dissolved. Next, acetic acid
was gradually added to the mixture until its concentration in solution became equal to
2%. The suspension was stirred for 6 h, then filtered and deaerated in a vacuum chamber
for 24 h at a pressure of 10 kPa. The SWCNT content was equal to 0.1–3 wt.% with
respect to chitosan.

The chitosan–SWCNT films were produced by extruding the mixture of chitosan and
SWCNT through a slit die onto a glass substrate, followed by heating at 50 ◦C for 1 h.
The films on glass substrate were deaerated in a vacuum chamber for 24 h at 10 kPa and
dried in air at room temperature for 24 h. The obtained films were exposed to 10% aqueous
solution containing NaOH and C2H5OH (1:1) for 10 min, then washed with distilled water
and dried in air [22,23]. The films cast from the obtained solutions had a homogeneous
appearance and a uniform black coloring (Figure 1).
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Figure 1. Optical images of chitosan-based films containing 0, 0.5, and 3 wt.% of SWCNT ((a),
(b), and (c), respectively).

The surface of the composite films (free surface) was studied by atomic force mi-
croscopy (AFM) with the aid of a SOLVER PRO scanning probe microscope in the height
and lateral force contact modes. The AFM images were processed using a special software,
and, for each sample, the statistical parameter (the maximum ten-point height difference
RZ) and the measurement error for each point (the standard deviation) were calculated.

The X-ray photoelectron spectroscopy studies were conducted using a magnetic spec-
trometer (resolution: 10–4, spectrometer luminosity: 0.085% at excitation of the AlKα-line
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1486.5 eV [24]). The C1s photoelectron spectra of the internal levels of chitosan and the
composite films were obtained.

The structure of nanocomposite chitosan film in the basic form was investigated by
scanning electron microscopy (SUPRA-55VP instrument, Carl Zeiss, Germany).

Mechanical properties of the samples were studied with an Instron 5943 universal
testing machine; the base length was 10 mm, and the sample extension rate was 10 mm/min.
Before measurements, the tested films were kept in a desiccator at a relative air humidity of
66% for not less than 24 h.

Mechanical properties of the prepared composite films in physiological solution were
investigated using an Instron ElectroPulse E1000 setup equipped with a Biss Ligagen
bioreactor; the base length was 10 mm, and the temperature in the bioreactor was 37 ◦C.

Electronic absorption spectra of solutions of MTT and formazan in dimethylsulfoxide
(DMSO) were taken with an SF-256 spectrophotometer (LOMO Photonika, Saint Peterburg,
Russia) in the wavelength range from 250 to 900 nm at room temperature.

The in vitro studies were carried out with the use of the culture of human dermal
fibroblasts obtained from the Collection of Cell Cultures of the Institute of Cytology, RAS
(Saint Petersburg, Russia). The cells were cultivated in DMEM nutrient medium (PanEco,
Moscow, Russia) containing 1% of L-glutamine, 1% of antibiotics (penicillin 100 units/mL,
streptomycin 100 µg/mL), 1% of fungizone (amphotericin B, 25 µg/mL), and 12% of fetal
bovine serum (Gibco, New York, NY, USA). The cells were cultivated in a CO2 incubator at
37 ◦C; the CO2 concentration was 5%.

The prepared film samples were sterilized in an autoclave for 40 min (121 ◦C, 1.5 atm).
The circular fragments of the films were placed in the wells of a 24-well cultural plate, and
the suspension of cells (25 × 103) in the complete cultural medium was added to each well.
The cells grown on culture plastic supports were used as a control.

The MTT tests were carried out after cultivation of cells for 1 and 4 days; 100 µL of
MTT working solution was added into each well, and the samples were incubated for
2 h. The developed formazan crystals were extracted by adding 1 mL DMSO into each
well. Optical density of the resulting solution was measured with a SPECTROstar Nano
spectrophotometer at the wavelength of 570 nm. Optical density of the solution correlates
with the amount of the present viable cells.

3. Study of the Influence of Electrostimulation on Cell Vital Activity

Design of the cell used in the studies of influence of electrical stimulation on cell
vital activity is described in [13,20]. The cell consists of a Teflon bath and frame as well as
platinum wire electrodes that are 1 mm in diameter. The studied film sample was placed
onto the cell bottom and pressed with the frame. The distance between parallel electrodes
was 9 mm, and the electrode length was 2.5 cm. The leak-tight cell provided reliable fixation
of a film and the necessary gas exchange. Electrical stimulation of cells was performed
using an ELINS Potentiostat-Galvanostat with an operating current range of 10−9 to 2.0 A
and an operating voltage range from 8 × 10−6 to 15 V; the rate of signal registration was
1580 points/s.

The influence of electric field on adhesion and proliferative activity of human dermal
fibroblasts was studied in the cell described above. The suspension of fibroblasts (25 × 103)
in the complete cultural medium was applied onto the surface the preliminary sterilized
film. The control standard vial containing a similar number of dermal cells was used for
comparison. The electric cell and the control vial were placed into a CO2 incubator for
24 h. On the second day, electrical stimulation of cells was performed for 4 h by continuous
delivery of the U-shaped signal (amplitude: ±100 mV, period: 60 s) to the film.

One hour after completion of electrical stimulation, fibroblasts from the cell and the
reference vial were transferred to other vials (surface area 12.5 cm2) and kept in the CO2
incubator until a monolayer was formed on the surface.

When the monolayer was formed, the cells were removed from vials and placed
onto an 8-well plate of an RTCA iCELLIgence analyzer (5 × 103 cells per well). The cell
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growth rate was monitored in real time for 7 days by measuring electric impedance of the
sensors located at the bottom of the wells with fibroblasts. The measured value of electric
impedance corresponds to the value of cell index (CI) [25].

When no cells are present, or they are not attached to the film electrode, the CI value
is equal to the background value (which is close to zero). The CI values increase as cells
become attached to film electrodes.

In these experiments, time dependences of cell indices of the stimulated and reference
cells were obtained [26].

4. Results

The AFM studies of free surface topography demonstrated that morphology of the
chitosan films filled with carbon nanotubes (Figure 2) differs from that of the pure chitosan
sample. The two-dimensional images of the surfaces of the composite films and histograms
showing size distributions of the particles on them are presented in Figure 3. The obtained
images of the film surfaces were used to calculate statistical parameters of their topography:
the arithmetic average roughness (Ra) and the maximum 10-point height difference (RZ);
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Figure 2. Three-dimensional images of the surface of the chitosan film (a) and composite films
containing 0.5 (b), 1.0 (c), 3.0 (d) wt.% of SWCNT. Size of the studied surfaces: 1 × 1 µm.

It is seen that carbon nanotubes are uniformly distributed in the film plane; the roughness
increases with increasing SWCNT concentration from 0.1 to 3.0 wt.% (Figure 2). Histograms
of distribution of structural elements for the composite films filled with 0.1–3.0 wt.% of
SWCNT are almost similar, despite a considerable difference in amounts of the filler. When
0.1 wt.% of SWCNT is introduced, morphology of the composite film remains unchanged
as compared to that of the pure chitosan film; carbon nanotubes are localized between rigid
chitosan macromolecules (Figure 3).
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As indicated in Figure 3, chitosan macromolecules in the composite film containing
0.5 wt.% of carbon nanotubes are densely packed. These data are confirmed by the results
of the SEM studies of the structure of the composite films (Figure 4). The dimension range
of the observed structural elements (length: 10–140 nm, width: 5–50 nm) is narrower than
that found for similar films containing 0.1 and 3.0 wt.% of SWCNT (length: 25–300 nm,
width: 10–80 nm).
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Figure 4. Microphotographs of the fracture surfaces obtained in liquid nitrogen: chitosan film (a),
composite films containing 0.5 wt.% (b), 1 wt.% (c), and 3 wt.% of SWCNT (d).

Analysis of microphotographs (Figure 4) of the chitosan film and composite films
containing SWCNT reveals that introducing 0.5 wt.% of SWCNT into chitosan results in
the formation of a denser and homogeneous film. When the content of SWCNT increases
up to 1.0 wt.%, individual carbon nanotubes are seen on the fracture surface (Figure 4c).
The amount of nanotubes of the surface increases upon introduction of 3 wt.% of SWCNT
(Figure 4d).

Figure 5 presents the dependence of the maximum height difference on the samples’
surfaces on the SWCNT concentration. It is seen that surface roughness of the composite
film containing 3.0 wt.% of SWCNT is 10 times higher than that of the pure chitosan
film. The SEM data (Figure 4) imply that saturation of the chitosan scaffold with carbon
nanotubes (up to 3 wt.% with respect to chitosan) leads to formation of a network of carbon
nanotubes, which are located both in the film plane and perpendicularly to this plane.
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Chemical compositions of surface and near-surface layers of chitosan and composite
films were studied by X-ray photoelectron spectroscopy (XPS).

Figure 6 presents XPS spectra of C1s levels of chitosan and composite films. It is
seen that the C1s spectral line of the pure chitosan film consists of three components:
peak A—C-H (285.0 ± 0.2 eV); peak B—C-C (286.4 ± 0.2 eV); peak C—C-O-H, C-O-O-H
(288.4 ± 0.2 eV).

The C1s XPS spectra of the composite films containing 0.1, 0.5, and 1.0 wt.% of SWCNT
virtually coincide with the spectrum of the chitosan film. In the spectra of the samples
containing 2.5 and 3.0 wt.% of SWCNT (curves 5, 6), the maximum near 283.42 ± 0.2 eV
(peak A’) appears; this peak is attributed to bonds between sp-hybridized carbon atoms.
This result indicates the presence of SWCNT on the surface of composite films, which leads
to an increase in surface conductivity of the samples.

Note that, according to the data reported in [27], the presence of both types of con-
ductivity (ionic and electronic) in a medium is optimal for cellular processes (adhesion
and proliferation). When SWCNT are in the surface layer of a composite material (samples
containing 2–3 wt.% of nanotubes), the electronic component of conductivity in the surface
layer will be higher as compared to that of the samples containing 0.1–2 wt.% of SWCNT.

Table 1 gives mechanical characteristics of the pure chitosan film and the composite
films containing 0.1–3.0 wt.% of SWCNT. It is apparent that filling chitosan with carbon
nanotubes leads to an increase in tensile strength (by 27–45%) and tensile strain of the
chitosan-based films (by 28–57%). Good mechanical parameters of the composite film
containing 0.5 wt.% of SWCNT are related to high dispergation of nanotubes in the bulk
of the chitosan scaffold and denser packing of chitosan macromolecules (as compared
with that in pure chitosan); this is confirmed by the data of X-ray diffraction analysis [20],
scanning electron microscopy, and atomic force microscopy.

Polymeric scaffolds developed for cellular technologies operate in liquid biologically
active environments. Therefore, mechanical characteristics of the prepared composite
films were investigated in physiological solution at T= 37 ◦C. Table 2 presents mechanical
characteristics of the chitosan film and the composite film containing 3.0 wt.% SWCNT,
which were determined in physiological solution. It was shown that introducing SWCNT
results in an increase in the tensile strain and tensile strength values of the composite films
in physiological solution in comparison with those of the pristine chitosan film.
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Table 1. Mechanical characteristics of the chitosan-based composite films containing SWCNT.

SWCNT Content, Wt.
%

Tensile Strength,
MPa

Young’s Modulus,
GPa Tensile Strain, %

0 124.0 ± 5.42 2.62 ± 0.57 36.68 ± 4.84
0.1 157.74 ± 15.40 3.23 ± 0.24 46.09 ± 8.13
0.5 179.40 ± 5.40 3.22 ± 0.37 57.64 ± 3.57
1.0 161.04 ± 7.98 3.35 ± 0.27 47.14 ± 2.33
3.0 158.91 ± 17.23 3.57 ± 0.26 41.16 ± 5.82

Table 2. Mechanical characteristics of the pure chitosan film and the composite film containing
3.0 wt.% of SWCNT measured in physiological solution.

SWCNT Content, Wt. % Tensile Strength, MPa Tensile Strain, %

0 32.7 ± 11.9 139.22 ± 11.22
3.0 92.93 ± 3.26 183.44 ± 15.91

Figure 7 displays the dependence of specific conductivity of the chitosan-based films
on the SWCNT content.

It is evident from the plot that an increase in the SWCNT percentage from 0.5 to
1.0 wt.% leads to an increase in conductivity of the composite film (from 10−6 to 10−2 S/m).
This sharp rise in the material conductivity from a relatively small increase in filler content
indicates the formation of a conducting cluster consisting of SWCNT.
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Figure 7. Dependence of specific conductivity of the chitosan/SWCNT composite films on the content
of carbon nanotubes.

The increase in the filler content up to 3 wt.% results in further growth of conductivity;
however, the growth rate decreases slightly.

The scaffolds used in cellular technologies should possess a set of electrical properties
that facilitate the interaction between cells and the external liquid matrix and the cell–cell
interactions. These interactions determine the processes of adhesion, proliferation, and
differentiation of cells.

Figure 8 shows voltage–current relationships of dry composite films containing
0–3.0 wt.% SWCNT. It is seen that the voltage–current characteristics are linear, which
indicates predominantly electronic conductivity in dry films. Conductivity of the films
increases with increasing SWCNT concentration. The conductivity of the film containing
2.5 wt.% of SWCNT is more than six times higher than that of the film containing 2.0 wt.%
of SWCNT. This great difference in conductivity between the samples with close contents of
the conducting component indicates the formation of the developed percolation conducting
cluster.
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After exposure of the films to physiological solution for 1 min, a sharp change in their
conductivity is observed [28,29]. At similar voltages, the currents in the wet scaffold are
dozens of times lower than those in dry scaffolds, and the voltage–current relationships
are curves reaching a plateau (Figure 9). This is related to the fact that the hydrophilic
chitosan scaffold is saturated with electrolyte ions; in addition, chitosan contains ionogenic
NH3+ groups. In physiological solution, these ionogenic groups become hydrated, and
chitosan behaves as an ionic conductor.
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and in physiological solution (blue). The SWCNT contents: 2.0 wt.% (a), 2.5 wt.% (b).

Figure 9 illustrates the sweeps of currents for the samples containing 2.0 and 2.5 wt.%
of SWCNT (dry films and the films in physiological solution) obtained upon application of
saw-tooth-like potential ±100 mV, whose polarity was changed every 30 s. The current in
the dry scaffold is considerably higher than that in the scaffold containing physiological
solution. The current in the dry scaffold synchronously changes with a change in voltage;
the currents in physiological solution are inertial, and a delay is observed between the
applied voltage and the current.

The changes in the character of electric current in physiological solution are caused by
the appearance of ionic charge carriers in the sample and the formation of a double electric
layer in the bulk of composite film. The double electric layer is formed at the interface of
an electronic conductor, in our case, the SWCNT percolation network surrounded with the
chitosan scaffold. The formation of a layer of counterions on the SWCNT interface compen-
sates the external potential; as a consequence, the current value decreases. The higher the
SWCNT content, the higher the contribution of electronic current (in comparison with ionic
current). In the sample containing 0.1 wt.% of SWCNT, only ionic currents are observed, as
there is no SWCNT percolation, and electrical conductivity of the sample is similar to that
of pure chitosan (Figure 10).

The formation of a double electric layer is confirmed by the analysis of cyclic voltam-
mograms of the studied samples in electrolyte. The area enclosed by the curve is propor-
tional to capacitance of the double electric layer of the sample. Figure 10 presents cyclic
voltammograms of the chitosan/SWCNT films in physiological solution. The capacitance
of measurement cell electrodes in physiological solution is given for comparison. It is
seen that the sample containing 3.0 wt.% of SWCNT demonstrates the maximum electro-
chemical capacitance. Capacitance of the samples decreases with decreasing filler content.
The capacitance values of the pure chitosan sample and the film with minimal content of
nanotubes (0.1%) virtually coincide with that of cell electrodes in physiological solution
(aqueous solution of NaCl). The results suggest that capacitance characteristics of the
studied samples are determined by the formation of the percolation network of nanotubes
surrounded with the hydrophilic chitosan scaffold. Chitosan, which possesses its own
ionogenic groups and intercalates ions from physiological solution, creates the double
electric layer on the SWCNT interface. With a decrease in nanotube content, capacitance of
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the sample declines. The most noticeable drop in this parameter is observed in the range
of conducting component concentrations from 2.5 to 2.0 wt.%; here, the presence of the
developed percolation cluster is predicted. At lower contents of SWCNT, electronic current
in the film is lower than ionic currents of the electrolyte, and the capacitance component of
the film does not manifest itself against the background of these ionic currents.
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Note that applying cyclic potential to dry or wet composite scaffolds for 4 h causes no
decrease in the current flowing in these scaffolds. In addition, electrochemical characteris-
tics of the scaffolds are reproducible both in the dry state and in the physiological solution
after prolonged storage (for 1 year) under normal conditions. This indicates stability of the
studied materials and the possibility of long-term storage and reuse of the scaffolds, which
are important factors in cellular therapy.

To investigate biocompatibility of chitosan/SWCNT composite films, MTT tests of the
culture of human dermal fibroblasts were performed after growing cells on the composite
surfaces for 4 days. It is known [30] that optical absorption of a suspension containing
human fibroblasts at 570 nm is proportional to the amount of cells. Thus, it is possible to
estimate the influence of composition of nanotube-containing scaffolds and alternating
electric field on adhesion and proliferative activity of human fibroblasts.

Chitosan films are able to adsorb various substances and swell in solutions [31];
therefore, the possibility of application of the prepared composite films as substrates
for MTT tests was investigated. Intensity of accumulation of formazan crystals in cell
cytoplasm was studied using three types of substrates: a standard culture plastic, the
chitosan film, and the composite film containing 2.5 wt.% of SWCNT.

Figure 11 presents absorption spectra of aspiration liquid on the chitosan film, the
composite film containing 2.5 wt.% SWCNT, and the spectrum of the initial MTT solution.
Since the absorption maxima observed upon conversion of MTT reagent into formazan
on different substrates do not shift and are located at 555 nm, the wavelength of 570 nm
can be used for registration of optical density and estimation of intensity of accumulation
of formazan crystals when using chitosan as a substrate. The absorption peak at 378 nm
present in the spectra is also observed in the spectrum of the initial MTT reagent; apparently,
it is related to the presence of residual reagent in the aspiration liquid. The pure chitosan and
the composite films contain higher amounts of MTT that is caused by high sorption capacity
of these substrates. The intensities of absorption bands with the maximum at 378 nm are
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similar for pristine chitosan and the composite film; this parameter is considerably lower
for the culture plastic support. Thus, due to sorption activity of the chitosan films and
their tendency to swell, it is reasonable to perform comparative analysis of chitosan-based
supports before the MTT test.
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obtained after using a culture plastic (1), a pure chitosan film (2), and the composite film containing 
2.5 wt.% SWCNT (3) as substrates. 

Figure 11. Electronic absorption spectra of MTT reagent (curve 4) and formazan solutions in DMSO
obtained after using a culture plastic (1), a pure chitosan film (2), and the composite film containing
2.5 wt.% SWCNT (3) as substrates.

Biocompatibility of the prepared materials was analyzed using the results of the MTT
test obtained after cultivation of human dermal fibroblasts on the surface of the films for
1 and 4 days (Figure 12).
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(1) CS, (2) CS-0.5 wt.% SWCNT, (3) CS-2 wt.% SWCNT, (4) CS-2.5 wt.% SWCNT, (5) CS-3 wt.%
SWCNT. Control: the cells seeded on the surface of cultural plane (treated polystyrene surface).
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Introducing the amounts of the filler (SWCNT) necessary to prepare composites did
not have a noticeable influence on adhesion of cells to substrates 1 day after beginning
of cultivation. On the fourth day, the cells grown on the samples containing SWCNT
demonstrated lower proliferative activity than those cultured on the pure chitosan film
(Figure 12). This is possibly caused by changes in topography and chemical composition of
the film surface: its roughness increases 10-fold (Figure 5) as compared to pure chitosan,
and the maximum attributed to C-C bonds in carbon nanotubes appears in the energy
region of 283.42 ± 0.2 eV (Figure 6).

5. Electrostimulation of Human Dermal Fibroblasts

All tissues of a living organism are electrosensitive to a greater or lesser extent. Their
normal functions depend on electric signals delivered to cell membranes; these functions
can be modulated via exogenous electrostimulation. Parameters of electric impulses (volt-
age, amperage, frequency) regulate adhesion, proliferation, and differentiation of cells of an
organ or a tissue not only immediately after action, but also during the following passages.
In this work, the influence of parameters of electric field on cellular processes was studied
using human dermal fibroblasts.

The choice of the type of electric signal was based on the assumption that use of
alternating current would help avoid negative influence of prolonged action of direct
current (polarization and imbalance of electric charge, accumulation of toxic side products,
and electrochemical burns) [32].

Bioelectric currents with densities varying from 0.1 µA/cm2 to 100 µA/cm2 are critical
factors in launching and regulation of several important biological processes, including
regeneration of damaged skin and soft tissues [33,34]. Therefore, this range of current
densities, being the closest to physiological values, was selected for studying the influence
of electrostimulation on cell processes. In determining physiological ranges of voltage and
frequency of electric signals, the data reported in [35] were used; the authors demonstrated
that the optimal parameters for skin regeneration include voltage varying from 10 to
200 mV, with the frequency not exceeding 1 Hz.

Figure 13 shows real time dynamics of changing cell index (CI) of the cells cultivated
on RTCA iCELLIgence electronic microplates. These curves allow one to monitor dynamics
of adhesion and proliferation of human dermal fibroblasts of the passages following
electrical stimulation and to estimate the value of cell index at the moments corresponding
to efficient cell adhesion and the maximum proliferative activity on the surface of electronic
microplates.

It is clear from Figure 13a that electrostimulation of cells on the chitosan film results
in a certain decrease in the level of efficient adhesion of cells of subsequent passages on
electronic microplates. Even at higher proliferative activity (in comparison with that of
intact cells), the maximum parameter of proliferative activity remains comparable to that
of the control cells. Similar dynamics are typical of the cells stimulated on the composite
film containing 2 wt.% of SWCNT (Figure 13b). The cells stimulated on the composite films
containing 3 wt.% of SWCNT demonstrate a relatively low level of efficient adhesion on
electronic microplates (similar to that of the control cells). Their proliferative activity is
higher than that of the intact cells, and the maximum parameter of proliferative activity is
significantly higher than that of control cells (Figure 13c).

One of the reasons for the observed increase in proliferative activity of cells on the
scaffold with 3 wt.% SWCNT is most likely the presence of the developed percolation
network of carbon nanotubes. There is no percolation network in the pure chitosan film
(0% SWCNT), and in the scaffold with 2 wt.% SWCNT this network is probably insuffi-
ciently developed and cannot influence cell vital activities. Moreover, electronic currents
are suppressed due to formation of the double electric layer, and the total current in the
sample is only slightly higher than the currents in electrolyte (Figure 10).
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Figure 13. Dependences of the cell index (CI) value on the time of cultivation of human dermal
fibroblasts on chitosan-based films containing 0 (a), 2.0 (b), and 3.0 (c) wt.% of SWCNT.

The presence of the developed percolation network has a dramatic influence on
distribution of currents within the scaffold. When the film without SWCNT is stimulated,
no electronic conductivity is observed, and ionic currents flow mainly in the area near
electrodes. Change of polarity of the electric signal leads only to redistribution of currents in
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the vicinity of electrodes and does not affect the whole film surface. In this case, the amount
of cells subjected to the influence of the electric field is minimal. In the sample containing
2 wt.% of SWCNT with respect to chitosan, carbon nanotubes are uniformly distributed
in the bulk of the chitosan scaffold, but their amount is insufficient to form the developed
conducting structure. This is confirmed by low currents for the film with 2 wt.% SWCNT
(Figures 9 and 10), which are comparable with currents in electrolyte. As a consequence,
we observe the situation described above, when electrical currents are closed in the areas
near electrodes, and flow predominantly in physiological solution and not in the film.
Another picture is seen in the case of the sample containing 3 wt.% of SWCNT (with
respect to chitosan). The percolation network of nanotubes, which are homogeneously
distributed in the chitosan scaffold, causes appearance of electronic current in the bulk
of the film. Electronic current has an influence on ions localized in the near surface layer
of the chitosan scaffold, which results in appearance of ionic currents. Consequently,
ionic currents are no longer closed in the area around electrodes; they flow in the near
surface layer of the chitosan film over the whole surface of the material. In this case, the
amount of cells subjected to the influence of the electric field increases considerably, leading
to the pronounced biological effect of electrical stimulation.

6. Conclusions

Conducting films based on chitosan and single-wall carbon nanotubes were developed.
It was demonstrated that conductivity of the composite films increases from 10−7 to 10 S/m
with increasing SWCNT content from 0.1 to 3.0 wt.%.

The films containing 0.5 wt.% of SWCNT have enhanced strength (σ = 179.4 MPa) and
elastic modulus (E = 3.2 GPa) as well as high tensile strain (ε = 57.6%).

The high mechanical characteristics of the composite film with the introduction of
0.5 wt.% SWCNT are explained by the good dispersion of nanotubes in the volume of
the chitosan matrix and the formation of a denser packing of chitosan macromolecules in
comparison with a pure chitosan film, which is confirmed by the research results.

Analysis of XPS spectra of the composite films revealed the presence of SWCNT on
their surface, which leads to an increase in surface conductivity at filler content exceeding
2.0 wt.%.

Comparative study of the conductivity of the dry films and the films immersed in
physiological solution demonstrated that the chitosan scaffold filled with electrolyte forms
the double electric layer at the interface of the electronic conductor, which leads to a
decrease in the total conductivity of the scaffold. To maintain the currents that affect
cellular material in physiological solution, the composite scaffold should contain 3 wt.% of
SWCNT (in this case, the electronic component of conductivity is sufficiently high).

One of the reasons for the increase in the proliferative activity of cells for a matrix
of 3 wt.% SWCNT can be considered the presence of a developed percolation network of
carbon nanotubes. The percolation network of uniformly distributed nanotubes over the
chitosan matrix leads to the appearance of an electron current in the volume of the entire
film. The electron current affects the ions located in the surface layer of the chitosan matrix,
which leads to the appearance of ion currents. The number of cells exposed to the electric
field, in this case, increases significantly. This leads to a pronounced biological effect of
electrical stimulation of cells.

The performed in vitro experiments demonstrated that electrostimulation of human
dermal fibroblasts on the composite films for 4 h with alternating U-shaped voltage
(±100 mV, polarity changing every 30 s) does not cause cytotoxicity, whereas prolifer-
ative activity of the stimulated cells increases.
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