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Abstract 

Background: DNA methylation has long been known as an epigenetic gene silencing 
mechanism. For a motivating example, the methylomes of cancer and non-cancer cells 
show a number of methylation differences, indicating that certain features character-
istics of cancer cells may be related to methylation characteristics. Robust methods 
for detecting differentially methylated regions (DMRs) could help scientists narrow 
down genome regions and even find biologically important regions. Although some 
statistical methods were developed for detecting DMR, there is no default or strongest 
method. Fisher’s exact test is direct, but not suitable for data with multiple replications, 
while regression-based methods usually come with a large number of assumptions. 
More complicated methods have been proposed, but those methods are often difficult 
to interpret.

Results: In this paper, we propose a three-step nonparametric kernel smoothing 
method that is both flexible and straightforward to implement and interpret. The 
proposed method relies on local quadratic fitting to find the set of equilibrium points 
(points at which the first derivative is 0) and the corresponding set of confidence win-
dows. Potential regions are further refined using biological criteria, and finally selected 
based on a Bonferroni adjusted t-test cutoff. Using a comparison of three senescent 
and three proliferating cell lines to illustrate our method, we were able to identify a 
total of 1077 DMRs on chromosome 21.

Conclusions: We proposed a completely nonparametric, statistically straightforward, 
and interpretable method for detecting differentially methylated regions. Compared 
with existing methods, the non-reliance on model assumptions and the straightfor-
ward nature of our method makes it one competitive alternative to the existing statisti-
cal methods for defining DMRs.
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Introduction
DNA methylation is a type of chemical modification of DNA nucleotides and is 
widely described as an epigenetic gene silencing mechanism. It has been discovered 
to affect changes in development, cell senescence, cancer, and other basic biological 
processes. Recently reported methods for whole-genome methylome have begun to 
clarify the importance of methylation location for gene transcription regulation [1, 
2].

Cancer methylation studies could be one good motivating example. Altered methyla-
tion is a hallmark of the destabilization of genome integrity and function, and there are 
many aberrations in the methylomes of cancer cells while comparing with normal cells. 
Replicative senescence is a stable and tumor-suppressive state that has been shown to 
have similar methylomes to that of cancer cells, presumably because cancer cells inherit 
a number of the methylation landscape even after bypassing the senescence prolifera-
tion barrier. Therefore, identifying differentially methylated regions (DMRs) between 
normal proliferative cells and senescent cells could help elucidate epigenetic mecha-
nisms that might promote malignancy, if the cells ultimately become cancerous by 
breaking through the proliferative barrier [3].

Bisulfite sequencing is the gold standard of whole-genome methylation sequencing, 
allowing for the measurement of methylation levels at the nucleotide resolution [4]. 
However, due to the complexities associated with whole-genome level data, the task of 
identifying differentially methylated regions remains one unresolved statistical problem. 
The main goal is to identify the possible statistically different methylation regions, taking 
into account the biological variation and controlling the false discovery rates. Such iden-
tified regions can later be compared against genome dictionaries to search for biological 
implications, or guide laboratory experiments.

Methods have been developed for different types of methylation data. Fisher’s 
exact test can be used if there are no biological replicates, but it is not insufficient 
for datasets with replications for its neglecting of taking common biological varia-
tion into consideration. Alternatively, regression-based methods make underlying 
assumptions about methylation levels and the associated variance, and subsequently 
perform statistical tests [5]. A popular package for performing pipeline analysis for 
defining differentially methylated regions is BSmooth. BSmooth applies a local-like-
lihood smoother to methylation data, and assumes that methylation counts follow a 
binomial distribution. A signal-to-noise statistic was developed, and tested for sig-
nificance [5].

Although regression-based methods like BSmooth are popular, they are imperfect 
solutions. Predictions based on regression models are usually out of range. To remedy 
this problem, logistic regression or Poisson regression could be used, but the data will 
then often suffer from issues of over-or under-dispersion that will have to be corrected 
for statistically. The stringent conditions associated with regression-based analyses 
limit the confidence of results extracted from these analyses. Even more recent meth-
ods assume beta-binomial distributions, and some use Empirical Bayes methods to 
make further adjustments [6]. However, each of these methods carries with it a host of 
assumptions and is suitable for specific datasets.
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Nonparametric model needs fewer or less stringent assumptions, and is more robust 
and not often seriously affected by extreme values, such as outliers. For example, Song, 
et  al. reported a nonparametric method for identifying putative replication origins in 
yeast microarray data [7]. We adapted the idea and made various adjustments to enable 
it to be suitable for methylation data that comparing two different kinds of cells, with 
each had one or more replicates. In this paper, we propose one completely nonpara-
metric, statistically straightforward, and powerful approach to identifying differentially 
methylated regions.

Results
After smoothing and differencing, we obtained multiple differential DNA methylation 
curves on the testing data from chromosome 21. We excluded boundary sites, we ana-
lyzed methylation sites from 11,000 to 723,000. We identified 2402 equilibrium points 
and got their corresponding confidence windows according to the method described in 
Song, et al. [7]. After refining, 1085 candidate methylation regions were included. Finally, 
after conducting a t-test at a Bonferroni-corrected level of 4.6E−5, we identified 1077 
differentially methylated regions.

The top panel of Fig.  1 presents a representative segment of the difference curve of 
chromosome 21. 12 peaks were identified within this window, and 95% confidence win-
dows were plotted. The middle panel in Fig. 1 shows the final list of differentially meth-
ylated regions post-refinement and t-test. with this window, approximately half of the 
peaks remained from the initial pool, and a majority of their confidence windows had 
been adjusted/narrowed. The bottom panel shows the corresponding predicted the first 
derivative plot of the difference curve. Equilibrium points that were selected by the local 

Fig. 1 A sample segment of analysis on chromosome 21. Top panel: Potential equilibrium points and their 
confidence windows that were found through nonparametric local quadratic fitting (grey bars). Middle panel: 
Final differentially DNA methylated regions post-refinement and t-testing with Bonferroni correction (blue 
bars). Bottom panel: An estimated first derivative curve with 95% confidence interval (CI)
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quadratic fitting method are represented by a closed circle. The stringent inclusion crite-
ria were involved in defining a DMR. Although demanding, this requirement provides a 
robust level of power in identifying differentially methylated regions (DMRs).

Discussion
In this paper, we identified a total of 1077 DMRs on chromosome 21 using proposed 
methods, which means that we could identify tens of thousands of DMRs on a whole-
genome basis, basing on that the proportionality of MDRs is roughly estimated by the 
length of the chromosome. This is consistent with the findings of Cruickshanks, et al. [3] 
in Fig. 1, they found about 25,000 hypomethylated regions and 20,000 hypermethylated 
regions using the same dataset in the whole genome. In addition, the top panel of Fig. 1 
shows an exclusively positive curve, confirming the previous observation that senescent 
cells, as compared to proliferative cells, are generally hypomethylated (stretches with 
negative difference curves exist, but were not shown).

As displayed in the top panel of Fig. 1, some local peaks were not chosen using this 
method. This is likely owing to our specific selection of smoothing bandwidth. Other 
choices of and smoothing kernels (i.e. tricube kernel, E-kernel) might identify a differ-
ent set of peaks and have additional advantages (i.e. clean boundaries). A comparison 
between the top and middle panels of Fig.  1 illustrates that our refinement and test-
ing method was successful in eliminating certain biologically infeasible regions, but it 
was not too stringent and still allowed the identification of a number of DMRs. Finally, 
although many equilibrium points were excluded in the process of refinement, the pro-
portional difference post-refinement and post-testing was relatively small. The possible 
reason is that we used strict inclusion criteria to define DMR, that is, ten or more meth-
ylation sites are needed. However, this requirement brings a robust level of power in 
identifying differentially methylated regions.

One natural extension after generating the list would be to reference it with genome-
wide data dictionaries with gene annotations, to see if any DMRs might have direct 
biologically meaningful indications. It could also be interesting to apply our method 
to other datasets in the literature and compare the performance with other reported 
analyses.

Our analysis was limited in some aspects, and we list the following areas for improve-
ment. To begin with, methylation level is the ratio of methylated counts to total counts. 
Ratios of methylation over total counts such as 10/20 as compared to 1/2 lead to the same 
methylation level, even though the former arguably contains more information. This means 
that the main data indicators may be adjusted to enrich more original data information. 
In addition, the identification of DMRs is fundamentally a balance between controlling 
false discovery rates and not being overly stringent and ignoring true DMRs. If FDR is con-
cerned, possible adjustments to decrease it could include requirements that all sites within 
the DMR meet minimum coverage (i.e. using total counts = 10), or requesting additional 
cutoffs (such as difference level > 25%) [8]. Finally, nonparametric methods are usually more 
expensive in terms of computation. We could reduce computational burden by running 
overlapping segments of chromosomes and processing segmental analyses downstream, 
but further work can be done to determine alternatives for faster computation. Finally, 
the proposed method is a nonparametric method that is generally more computationally 
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expensive. In this paper, we were able to reduce the computation burden by running over-
lapping segments (i.e., divided into multiple chunks) of the chromosome and processing 
segmental analyses downstream, but further work can be done to determine computation-
ally faster alternatives.

Conclusions
In conclusion, despite certain limitations, we present in this paper a completely non-
parametric, statistically straightforward and interpretable method for the detection of 
differentially methylated regions. Compared to existing methods, the lack of reliance on 
model assumptions and the straightforward nature of our method makes it a competi-
tive alternative to existing statistical methods for defining DMRs.

Methods of materials
Dataset

One genome-wide methylation dataset from the National Center for Biotechnology 
Information (NCBI) Gene Expression Omnibus (GEO; Accession ID: GSM1181642) was 
used in our study [3], which contained the genome-wide methylation counts of prolif-
erating and senescent cell types of the Coriell human fibroblast cell line (IMR90), with 
three replications of both two types. Sequencing data were obtained by whole-genome 
single-nucleotide bisulfite sequencing, and then aligned against a converted human ref-
erence genome (i.e., hg18), and the final methylated counts and total counts were deter-
mined by comparing with the reference genome.

Chromosome 21 was taken as the arbitrarily selected example in our analysis. A total 
of 724,212 methylation sites on this chromosome, after excluding 665 sites with a total 
methylation count of zero in all three replicates (leading to an uninterpretable meth-
ylation level), finally resulting in 723,547 total methylation sites for the downstream 
analysis.

Statistical methodology

Our method begins by using the normalized methylation data, i.e., the ratio of the meth-
ylated and total counts to calculate a methylation level at each sequencing site. The 
procedure of the proposed method can be divided into three steps: smoothing of the dif-
ference, finding candidate regions, and refining and testing candidate regions.

Smoothing of the difference

For each cell type (senescent vs proliferative), the site-specific weighted average meth-
ylation level (totaling all the methylated counts and dividing by the total counts at each 
site across replicates) was calculated. The difference in methylation level was obtained 
(proliferative minus senescent). The biological smoothness of the differential methyla-
tion levels is assumed, following examples in the literature [9, 10]  Therefore, we use 
a Gaussian kernel to smooth the difference of weighted averages (the difference curve) 
between groups in a nonparametric way. We consider the hypothesis testing at a single 
coordinate to test whether a suspected site is a true equilibrium point, i.e.,

H0 : θ̇ (x0) = 0 versus H1 : θ̇ (x0) �= 0



Page 6 of 9Sun et al. BMC Bioinformatics           (2022) 23:29 

where the rejection rule is that at this site x0 , we reject the null at 5% significance level.
Nonparametric smoothing depends on bandwidth selection. In our analysis, the 

standard deviation of the Gaussian kernel density is the same as its pre-specified band-
width, h. For example, h = 0.5 kb means that a 2 kb window would cover a 95% region 
surrounding our smoothing location center. However, in order to ensure a minimum 
number of influence sites, especially in data poor regions, we expanded the bandwidth h 
until we obtain at least 70 influence points within the 95% kernel window. Therefore, h is 
a moving bandwidth to adapt to the sparsity of data at each chromosome location.

Due to the limitation of computational complexity, we divided the chromosome into 
segments of 2000 methylation sites (original segments) and ran the smoothing of the 
difference curves within these segments. In order to accurately predict the boundaries 
of these original segments, we analyzed the additional segments (which also had 2000 
methylation sites) just centered exactly at the boundary between two original segments 
in the same way. The sizes and positions of the overlapping window were determined 
through sensitivity analyses, which analyzed the unbiasedness and accuracy of variance 
estimators. As a result, each additional segment overlapped 1000 methylation sites with 
the original segment on either side. The final predictions of the difference curve were a 
piecemeal combination alternating between predicted results of the original and addi-
tional segments, each contributing 1000 methylation site predictions from the center of 
its segment. The original segments from the boundary of the chromosome each contrib-
uted 1500 methylation site predictions on either side, but we discarded the analysis of 
the first and last 11,000 methylation sites to avoid inaccurate boundary estimations.

Candidate regions

Consistent with the process of Song et al., the preliminary selection process of a candi-
date region consisted of searching for local extrema in the difference curve. In our analysis, 
a local extremum signified a locally elevated level of methylation difference between the 
two cell types. Local extrema were identified using local quadratic fitting. More specifi-
cally, nonparametrically estimated derivatives were used to identify the set of equilibrium 
points where θ(1) = 0 . A local quadratic fit (instead of a local linear fit) was used to reduce 
the edge effect. In the majority of cases, at local extrema, the sign of θ(1)(x) will change 
from positive to negative. Because of the discreteness of our data, we will take the point 
whose first derivative is closest to zero and whose corresponding confidence interval con-
tains zero. At a small percentage of points, we cannot directly observe the change of sign of 
θ(1)(x) . However, we can infer a local peak from confidence intervals containing zero.

To perform the local quadratic fitting, we first minimize the following objective func-
tion in the form of kernel weighted least squares at a given x with respect to a quadratic 
function parameter vector α = (α0,α1,α2)

T.

where κh(u) = h−1κ(u/h) and κ(·) is the standard normal kernel. At a given target 

coordinate x, θ̂ (x) = α̂0,
ˆ̇θ(x) = α̂1 , we could estimate α = (α0,α1,α2)

T through:

U(α) =

n∑

i=1

κh(xi − x)(yi − α0 − α1(xi − x))
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If there are multiple confidence intervals in the sequence, the one whose first deriva-
tive is closest to zero will be chosen. Notably, for both of these cases, the selected site 
should have the largest p-value among the neighborhood potential equilibrium points.

Identifying local extrema by finding equilibrium points leads naturally to a way of con-
structing a confidence interval surrounding equilibrium points. Denote the confidence 
interval of the equilibrium point as (l,u) . For the majority of cases, we can invert the 
confidence intervals of the first derivative to find the corresponding positional bounds. 
That is, for each equilibrium point identified, we scan 10 methylation sites on either side. 
The upper confidence coordinate is the first location at which the first derivative is less 
than or equal to l, and the lower confidence coordinate as the first location at which the 
first derivative is greater than or equal to u. If we can only use this algorithm to find one 
position within our neighborhood, we appeal to the asymptotic symmetrical property, 
and define the other position by mirroring a number of sites on either side. We forego 
candidate regions where we cannot find either coordinate through this inversion method 
for further analysis (most of the cases are on the boundary).

Refining and testing for DMRs

Many candidate regions will be selected in the second step (i.e., finding candidate 
regions), but not all of them are useful in practice. Therefore, the candidate regions were 
further refined through biologically motivated criteria. Candidate regions with very 
dispersed methylation sites (no neighboring methylation sites within 0.3 kb) were dis-
carded. This was because it was recommended that each DMR should contain at least 
one CpG per  300bp4. Analogously, candidate regions with obvious clusters of methyla-
tion sites (where neighboring methylation sites were within 0.3 kb from each other) but 
were far between clusters were redefined as two or more candidate regions. Finally, can-
didate regions with less than 10 methylation sites were not analyzed further, adapting 
from methods that required at least 10 CpGs per candidate region [11].

All the candidate regions contained ten or more methylation sites, with all methylation 
sites less than 0.3 kb to their nearest neighbor. Each region was then tested for differen-
tial methylation status through a two-sided t-test, using the mean and standard devia-
tion of the difference in methylation level across the methylation sites. Such a region was 
considered to be DMR if the t-test was significant at an a-level of 0.05

# tested candidate regions . 
The significance levels of the t-test was determined conservatively through a Bonferroni 
correction to reduce false discovery rates.

Bandwidth selection

Bandwidth h is crucial for the smoothing algorithm as it determines the degree of 
smoothness. To determine the value of h, we adopted the minimum asymptotic mean 
integrated squared error method, which could choose the value of the bandwidth auto-
matically by the observed data under a certain optimality criterion.

α̂ = (α̂0, α̂1, α̂2)
T = arg min

α
U(α)
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