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Abstract

A number of epidemics, including the SARS-CoV-1 epidemic of 2002-2004, have been

known to exhibit superspreading, in which a small fraction of infected individuals is responsi-

ble for the majority of new infections. The existence of superspreading implies a fat-tailed

distribution of infectiousness (new secondary infections caused per day) among different

individuals. Here, we present a simple method to estimate the variation in infectiousness by

examining the variation in early-time growth rates of new cases among different subpopula-

tions. We use this method to estimate the mean and variance in the infectiousness, β, for

SARS-CoV-2 transmission during the early stages of the pandemic within the United States.

We find that σβ/μβ≳ 3.2, where μβ is the mean infectiousness and σβ its standard deviation,

which implies pervasive superspreading. This result allows us to estimate that in the early

stages of the pandemic in the USA, over 81% of new cases were a result of the top 10% of

most infectious individuals.

Introduction

The temporal growth of an epidemic is often characterized by either a time scale (such as the

doubling time) [1, 2] or by the reproduction rate R0, which indicates the average number of new

infections produced by each infected individual [3]. Estimates of R0 for the current pandemic of

SARS-CoV-2 range from 1.4 to 3.8 [4–7]. Neither of these numbers, however, gives any infor-

mation about the distribution of infectiousness among individuals—i.e., whether new infections

arise relatively uniformly from all infected individuals, or whether new infections are driven pri-

marily by a small number of highly infectious individuals. The latter case is commonly referred

to as “superspreading”, and different epidemics exhibit superspreading to different degrees. For

example, during the outbreak of SARS CoV-1 in 2002-2004, over 80% of cases were observed to

result from the top 20% most infectious individuals [8, 9]. Understanding the degree of super-

spreading in the current pandemic of SARS-CoV-2 is crucial for developing strategies to miti-

gate continued spread and informing an educated reopening procedure [10–13].

Here we present a simple and direct method to understand how the infectiousness (also

called the “reproduction rate” of the disease) varies among infected individuals. At late times

after the onset of an epidemic, the number of infected individuals is large, and consequently

any statistical fluctuations in the growth rate are relatively small, so that the growth rate is well

characterized by the mean infectiousness, μβ. However, at early times, when there are relatively

few cases, the growth rate is stochastic and the degree of randomness depends on the variance
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in infectiousness, s2
b
, between individuals (Fig 1a). By examining the variance in growth rate

across subpopulations at these early times (Fig 1b), we are able to infer the variation in the dis-

tribution of infectiousness. In our analysis we divide the US cases into counties and observe

how the variance in growth rate across them evolves as the number of cases increases.

Formalizing this idea, we present a derivation of the variance in the exponential growth

rate, or number of new cases per infected individual per day, ΔI/I, using an SIR framework

that incorporates a probability distribution for the infectiousness of a given individual. Our

result implies a simple method for estimating the mean, μβ, and variance, s2
b
, of the infectious-

ness β. We apply this method to data for COVID-19 cases in the USA, and find a mean infec-

tion rate of μβ = 0.18 cases/day and standard deviation of σβ≳ 0.59 cases/day. Since the

standard deviation is considerably larger than the mean, with σβ/μβ≳ 3.2, we conclude that

superspreading is prevalent. By our estimate, these results imply that at least 81% of new cases

are caused by the top 10% of most infectious individuals. Our method, which uses only a direct

measurement of variance in detected case data in the USA, is consistent with estimates of

superspreading using surveillance data [14], secondary-case data [15], and more complicated

estimates of cluster size distribution using Markov Chain Monte Carlo [16].

Results

Variance in growth rate in the SIR model

We derive a relation between the variance in the case growth rate and the variance in individ-

ual infectiousness between individuals in the population. We start with a standard discrete-

time SIR model [17], which is governed by the following difference equations:

DS ¼ � bI
S
N

DI ¼ bI
S
N
� rI

DR ¼ rI

ð1Þ

Fig 1. (a) Illustration of the variance in early-time growth rate of new cases. At early times, there is noticeable variance in the growth rate between

counties. As the number of cases grows, all counties stabilize towards the average growth rate I� (1+ μβ)t, (dashed black line) where t is the number of

days since the first case in a county. The counties shown are Boulder, CO (blue), St. Mary, LA (purple), Vanderburgh, IN (red), Mesa, CO (orange), and

Jones, GA (green). (b) The number of daily infections per infected individual as a function of total infections. In the main figure, each point

corresponds to a given county (across all US counties that never report ΔI< 0) at a given time point (within the first 14 days after the first infection

reported in that county). As the number of cases increase, all counties converge to the mean infection rate. The mean (points) and variance (bars) of ΔI/
I at a given I are shown in the inset. The variance decreases like ðmb þ s

2
b
Þ=I (black lines).

https://doi.org/10.1371/journal.pone.0248808.g001
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Here, N is the total population and S, I, and R are the time-dependent numbers of susceptible,

infected, and recovered individuals, respectively. The parameters β and r encode the infec-

tiousness and recovery rate of a disease within a population. The time is effectively discretized

into days by the available data, so we use ΔI rather than the usual time derivative, dI/dt. The

SIR description typically assumes fixed values for β and r across the population. However, in

superspreading contexts there is a substantial variance in the infectiousness within a popula-

tion [8, 9, 18, 19]. We account for this variation by introducing a probability distribution of

infectiousness, p(β), so that the probability for a randomly-selected individual to have infec-

tiousness in the range (β, β + dβ) is given by is given by p(β)dβ.

For an individual with a given infectiousness, β, the probability of infecting exactly n others

in a day follows the Poisson distribution, Pois(n;β). The probability that a randomly selected

individual will infect n others is given by combining the Poisson distribution with the distribu-

tion p(β), giving

PðnÞ ¼
Z 1

0

db
e� bbn

n!
pðbÞ: ð2Þ

The first two moments of P(n), μn and s2
n, can be calculated independent of the form of p

(β):

mn ¼
X1

n¼0

nPðnÞ ¼ mb ð3Þ

s2
n ¼

X1

n¼0

ðn � mnÞ
2PðnÞ ¼ mb þ s2

b ð4Þ

Eq (4) represents the variance, among all infected individuals, of the number of new

infections caused by a single person in a given day. When there are I active cases, the mean

number of new cases per infected person, Δ(I + R)/I, is given by the average of I random

variables drawn from the distribution P(n). By the central limit theorem, it follows that

VarðDðI þ RÞ=IÞ ¼ s2
n=I. Additionally, in the SIR model with a finite total population N, Δ(I+

R)/I = βS/N = β(1 − (I + R)/N) decreases as the susceptible population continually shrinks.

Effectively, p(β) is scaled by the factor (1 − (I + R)/N), which represents the fraction of

the population that remains susceptible. Consequently, μβ! μβ(1 − (I + R)/N) and

s2
b
! s2

b
ð1 � ðI þ RÞ=NÞ2. Therefore the total variance in Δ(I+ R)/I follows:

Var
DðI þ RÞ

I

� �

¼
mb 1 � IþR

N

� �
þ s2

b
1 � IþR

N

� �2

I
ð5Þ

This result becomes simpler in the limiting case where there is no significant change in the

susceptible population (N!1) and no recovery (R! 0). In this limit, we retrieve the case of

simple exponential growth, for which [20]

Var
DI
I

� �

¼
mb þ s

2
b

I
: ð6Þ

In the limit σβ! 0, where every infected individual has the same infectiousness μβ, the vari-

ance in the average infection rate is simply μβ/I, which corresponds to the variance in a Poisson

process with rate μβ.
In the case of SARS-CoV-2, it is well established that there are asymptomatic carriers [21–

23] who transmit the virus without being detected, as well as other infections that are
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undetected or unreported. Current estimates typically predict that only 10 − 25% [24–26] of

cases are detected. One can attempt to address this effect by assuming that there is a fixed

detection probability, pdet, and that the entire infected population, regardless of symptoms, fol-

lows the same infectiousness distribution p(β). In this case, there are many more infected indi-

viduals, I� Idet/pdet, than those detected, which reduces the statistical fluctuations in the

growth rate and makes our calculation of s2
b

a lower bound. The effect of undetected cases is

considered in more detail in the S3 Appendix. In order to be conservative (especially given the

possibility that asymptomatic cases have a lower rate of infection than symptomatic ones [27,

28]), the results we present here use pdet = 1.

Data for COVID-19 in the USA

We now turn our attention to data for total detected cases of COVID-19 in the USA, taken

from the publicly available data set at Ref. [29]. In the following analysis we limit our consider-

ation to only a short timescale (�14 days) after the first infection is detected in a given county.

This limitation in time scale serves three main purposes; first, it is likely that through changes

in policy, lockdown, social distancing, mask usage, etc., the average infectiousness within the

population is time-dependent. By restricting ourselves to a relatively small window of early

times, we may assume that there is a constant average infectiousness. Second, considering only

beginning stages allows us to neglect the possible saturation of the susceptible population,

effectively allowing us to take the N!1 limit. Finally, the recovery period for COVID-19

ranges from 7-14 days [30, 31] and so by considering this two week period, we can treat our

system as if there is limited recovery and R! 0. These restrictions allow us to treat the USA

data using the exponential case, Eq (6).

In our analysis, the population is divided into geographic regions and the variance is calcu-

lated across different trajectories I(t). The US cases are divided by county. For each county, we

calculate the average number of new cases per current case per day, ΔI/I, for the first 14 days

after the first infection is detected in that county. The variance in ΔI/I is then calculated among

all counties that have a given fixed value of I (we present data only for values of I that have at

least 250 corresponding counties). As shown in Fig 2, the US data generally follows the pre-

dicted�1/I trend. An unbiased fit of the data gives Var(ΔI/I)/ I−0.74. From Eq (6), we calcu-

late mb þ s
2
b

by averaging Var(ΔI/I) × I, weighted by the number of instances at each I value.

One might worry that the main source of variation comes from differing average growth rates,

μβ, in various counties (e.g. rural vs. urban). However, we show in the S2 Appendix that vari-

ance in μβ across counties is too small to explain the large observed variance in ΔI/I.
We calculate μβ from the entire USA population by averaging all values of ΔI/I weighted by

the current number of infections. Equivalently, we sum the number of cases caused each day

and then divide by the sum of the number of cases across those days. This procedure gives the

mean infectiousness, μβ, and thus from Eq (6) and the fitted slope in Fig 2, we can infer s2
b
.

This calculation yields μβ = 0.18 cases/day and σβ = 0.59 cases/day. The small value of

m2
b
=s2

b
¼ 0:096, equivalent to the dispersion parameter [16, 32, 33], provides clear evidence for

superspreading during early stages of the COVID-19 pandemic in the United States. (See S7

Appendix for discussion about defining the dispersion parameterin terms of the daily infection

rate).

These results for μβ and σβ can be used to further quantify the extent of superspreading

under the assumption that p(β) follows a gamma distribution (as in Ref. [18]). In the Methods

section we present a derivation of the cumulative share of infections, Y, caused by the top X
portion of most infectious cases. The corresponding “Lorenz curve” Y(X) is plotted in Fig 3.

This result implies (using our relatively conservative estimate of σβ) that 81% of new infections
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are produced by the top 10% of most infectious individuals, while only about 4.5% of cases

arise from the 80% of infected individuals with the lowest infection rates.

Discussion

As we have shown, a wide distribution p(β) in infectiousness β leads to large statistical varia-

tion in the early-time growth rate of a disease. By calculating the variance in growth rate

among different subpopulations one can infer the variance in p(β). Our result for COVID-19

cases in the USA suggests that σβ/μβ≳ 3.2, implying a relatively severe superspreading. If we

further assume that p(β) follows a gamma distribution (as in Ref. [18]), then we can produce a

more direct estimate of the extent of superspreading (Fig 3). Our relatively simple and direct

method, based on a calculation of variance in reported case data, can be contrasted with more

complicated methods for inferring the dispersion parameter that are based on maximum like-

lihood estimation (e.g., Ref. [33] develops such a method using simulated data), cluster size

distributions [16, 34], and surveillance or tracing data [14, 15]. These methods also tend to

yield a lower-bound estimate for σβ/μβ. While studies based on testing and contact tracing

(e.g., Refs. [18, 35–37]) remain the definitive method for assessing superspreading, the method

we present here may provide a much simpler way of estimating its prevalence across a much

larger population.

Fig 2. As the number of infections I in a given county increases, the variance in exponential growth rate, Var(ΔI/I), decreases as ðmb þ s
2
b
Þ=I. Each

data point at a given I is calculated by taking the sample variance in ΔI/I across all counties when they have I cases. We observe that the USA data (blue)

is inconsistent with a model of uniform infectiousness, or σβ = 0 (dashed red line). A fit to the data (solid black line) implies a large variance in

infectiousness, such that σβ/μβ≳ 3.2.

https://doi.org/10.1371/journal.pone.0248808.g002
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We emphasize that our analysis is unable to determine whether this large variance is a result

of differing biological symptoms, social behavior, or other possible explanations. Additionally,

this estimation is carried out for early times to minimize effects from a time varying p(β) and

therefore predominantly speaks to the infectiousness prior to widespread lockdown measures.

We close by commenting on a number of complicating factors that we did not include in

our analysis and which, one might suspect, could alter our primary finding of a large value of

σβ/μβ. For example, we have assumed a uniform value of μβ across different geographic loca-

tions; we have neglected undetected cases; we have ignored the possible variation in detection

Fig 3. An estimated Lorenz curve for SARS-CoV-2 infections in the USA, which displays the percentage of new cases that are caused by a given

cumulative percentage of most infectious individuals (solid black). A few points in the curve are highlighted (dashed grey lines): 61.7%, 81.4%, and

95.5% of new cases are caused by the top 5%, 10%, and 20% infectious cases, respectively. Accounting for undetected and asymptomatic cases would

apparently make this curve steeper, corresponding to more severe superspreading.

https://doi.org/10.1371/journal.pone.0248808.g003
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rate pdet among different counties; we have effectively treated each county as an isolated popu-

lation and have neglected cross-county interactions; and we have ignored the effects of the

incubation period as well as the potential variation in incubation periods between individuals.

In the Supplemental Information, we consider each of these mechanisms in turn and show

that none of them can explain our result, so that our conclusion of prevalent superspreading of

SARS-CoV-2 in the USA remains robust. In brief: the variation in μβ among different geo-

graphic locations is too small to explain the observed variance in growth rate [S2 Appendix];

neglecting undetected cases leads to an underestimate of the variance s2
b
, so that our result is

effectively a lower bound for the prevalence of superspreading [S3 Appendix]; variation in pdet

between counties does not directly affect the variance in the growth rate (ΔIdet)/Idet, other than

to provide an average of pdet < 1, which results in a lower-bound estimate of s2
b

[S4 Appendix];

cross county interactions tend to reduce the variance, so our result cannot be explained as a

consequence of such interactions [S5 Appendix]; and variations in incubation period can only

reduce the apparent variance in growth rate [S6 Appendix].

Methods

Data source

We use publicly available data taken from the data set provided by the Center for Systems Sci-

ence and Engineering (CSSE) at Johns Hopkins University [29] to estimate μβ. Knowing μβ
enables us to determine σβ by taking a best fit to Eq (6). Counties that recorded ΔI< 0 at any

point are discarded from the analysis due to the potential for recording error; such counties

comprise�20% of all counties.

Numerical simulation

We corroborate Eqs (5) and (6) using a numerical simulation of the trajectories of infection

growth, I(t), for a given distribution p(β). Reference 18 has suggested that infectiousness fol-

lows a gamma distribution, and consequently, PðnÞ ¼ NBðn;m2
b
=s2

b
; mb=ðmb þ s

2
b
ÞÞ where NB

is the negative binomial distribution [10, 16]. Using this assumption, we simulate the growth

of the epidemic by assuming that a given individual i, with infectiousness βi that is drawn ran-

domly from p(β), generates a number ni of new cases each subsequent day that is drawn from

Pois(ni;βi). The simulation results confirm Eqs (5) and (6), as shown in S1 Appendix. Numeri-

cal simulations were performed using Python; the primary analysis is publicly available [38]

and the simulations are available upon request to the corresponding author.

Derivation of the curve Y(X)

Following Ref. [18], we assume that the distribution of infectiousness, p(β), follows a gamma

distribution. This assumption also allows us to further quantify the degree of superspreading

by deriving a mathematical relation for the curve Y(X), where Y represents the proportion of

infections produced by the top X fraction of most infectious individuals. In particular, one can

calculate the fraction of individuals Xb0
with infectiousness larger than a given value β0, as well

as the fraction of secondary infections Yb0
that these individuals are expected to cause:

Xb0
¼

Z 1

b0

db pðbÞ ¼ Q
m2
b

s2
b

; b0

mb

s2
b

� �

ð7Þ

Yb0
¼

Z 1

b0

db pðbÞ
b

mb
¼ Q 1þ

m2
b

s2
b

; b0

mb

s2
b

� �

; ð8Þ

PLOS ONE Superspreading of SARS-CoV-2 in the USA

PLOS ONE | https://doi.org/10.1371/journal.pone.0248808 March 25, 2021 7 / 10

https://doi.org/10.1371/journal.pone.0248808


where Q is the Regularized Gamma function. By eliminating β0 we find

Y ¼ Q 1þ
m2
b

s2
b

;Q� 1
m2
b

s2
b

;X
� �� �

: ð9Þ

Fig 3 displays the cumulative share of infections, Y, caused by the top X portion of most

infectious cases.
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