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Abstract: Influenza A virus is recognized today as one of the most challenging viruses that threatens
both human and animal health worldwide. Understanding the control mechanisms of influenza
infection and dynamics is crucial and could result in effective future treatment strategies. Many kinetic
models based on differential equations have been developed in recent decades to capture viral
dynamics within a host. These models differ in their complexity in terms of number of species
elements and number of reactions. Here, we present a new approach to understanding the overall
structure of twelve influenza A virus infection models and their relationship to each other. To this
end, we apply chemical organization theory to obtain a hierarchical decomposition of the models into
chemical organizations. The decomposition is based on the model structure (reaction rules) but is
independent of kinetic details such as rate constants. We found different types of model structures
ranging from two to eight organizations. Furthermore, the model’s organizations imply a partial
order among models entailing a hierarchy of model, revealing a high model diversity with respect to
their long-term behavior. Our methods and results can be helpful in model development and model
integration, also beyond the influenza area.

Keywords: chemical organization theory; influenza A; virus dynamics modeling; complex
networks analysis

1. Introduction

Influenza is an infectious respiratory disease, annually infecting 5–15% of the human population
and causing epidemics that result in 3–5 million severe cases with 300,000–500,000 deaths each year [1].
The annual recurrence of epidemics is caused by the continuous alteration of seasonal influenza
viruses, which enables them to efficiently escape the immune system even due to previous infections or
vaccinations [2]. The major burden of disease in humans is caused by seasonal influenza A (IAV) and
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influenza B viruses, causing symptoms varying from mild respiratory disease characterized by fever,
sore throat, headache and muscle pain to severe and in some cases lethal pneumonia and secondary
bacterial infections [3].

The long-term spread of influenza viruses in the human population and the acute nature of
influenza virus epidemics is driven by the global movement of these viruses. Differences in seasonal
epidemics caused by influenza viruses are mainly driven by differences in the rates of virus evolution.
The single-stranded RNA segments of influenza viruses, which are located inside the virus particle
(or virion), evolve rapidly and thus can escape the host’s immune response very efficiently.

Several ordinary differential equations (ODEs) models have been developed to provide insight
into within-host dynamics of influenza A virus infections (for reviews, see [4–8]). These models
work in a time scale of days and describe the concentration dynamics of target cells, immune
system components, viral load, and sometimes co-infecting pathogens. The models differ in terms
of complexity and state space dimensions, which are between 3 and 15 for the models examined
here. While the low-dimensional models can be analyzed completely and in a straightforward way
(e.g., by calculating their fixed points and stability analysis), the characterization of the entire behavioral
spectrum of complex models is more difficult (see for example [9]).

Here, we present an approach to understand the overall structure of these models that allows
them to be related to each other in a simple way. To this end, we apply chemical organization
theory [10,11] to obtain a hierarchical decomposition of each model into chemical organizations.
A chemical organization is a sub-set of species (i.e., dimensions or model components, like, uninfected
cells or viruses) that cannot generate any other species (property of closure) and that can self-maintain
its own species, i.e., any species consumed by a process within the organization can be regenerated
by a process within the organization. The organizations of an ODE model are rigorously related to
its long-term dynamics in the following way: Given a stationary state of the ODE model, the set of
species with strictly positive concentrations must be an organization [10]. The same is true for all
practically relevant periodic and chaotic attractors [12]. Note that the advantage of this approach is
that decomposition into organizations is based solely on the model structure (i.e., reaction rules) and
thus is independent of kinetic details, like rate constants. The relation between measured data, ODE
model, and organizations is depicted in Figure 1.
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Figure 1. Relation between measured data, ordinary differential equations (ODE) model, and hierarchy
of organizations.
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By applying the method to twelve models of influenza A virus infection, we found different types
of model structures ranging from two to eight organizations. Furthermore, the models’ organizations
imply a partial order among models. The resulting hierarchy of models can help to select a suitable
model for certain data or serve as a framework for further model development.

We provide reaction network files for all models and a software tool for computing their
organizations (https://github.com/stephanpeter/orgsflu).

2. Materials and Methods: Procedure for the Organizational Analysis

To illustrate our method, we follow a basic ODE model of influenza dynamics, namely the target
cell limited model by Baccam et al. [13], called Baccam Model in the following. Note that we refer
throughout this paper to a model by the first author’s name of the respective publication.

The Baccam Model is based on in vivo experimental data and contains three variables: the number
of susceptible and uninfected target (epithelial) cells T, the number of infected cells I, and the number
of infectious-viral titer V. The dynamical behavior of the variables is given by the ODEs shown
in Figure 2a. That is, target cells become infected and thus converted to infected cells at a rate
βTV, infected cells die spontaneously at rate δI, virus proliferates at a rate pI and dies at a rate cV.
The parameters β, δ, p and c are, as usual, positive real numbers (cf. [13] for actual values).

Ṫ = −βTV

İ = βTV− δI

V̇ = pI− cV

(a) ODEs model

R1 : T + V→ I + V
R2 : I→ ∅
R3 : I→ I + V
R4 : V→ ∅

(b) Reaction network (c) Network picture

OBa1
2 = {T}

OBa1
1 = {}

(d) Organizations

Figure 2. The Baccam Model [13] with three variables: uninfected (susceptible) target cells (T), infected
cells (I) and infectious-viral titer (V).

Throughout this paper, the following coloring scheme for particular classes of species is used to
improve readability:

• Uninfected (target) cells or those resistant/refractory to infection are marked in blue, e.g., T.
• Infected cells, partially or latently infected cells, and viruses are marked in magenta, e.g., I and V.
• Species belonging to the active immune response are marked in green. It is worth noting that the

first two models analyzed in this paper [13,14] do not explicitly have immune system components.
• Bacterial co-infection species are marked in orange. These species are only occurring in Smith’s

model [15].
• Text referring to any other species is marked in black, e.g., transient target cell states, passive

immune system, or dead cells.

For simplicity, the models’ variable names also denote the related species. For example, V
denominates not only the number of viruses in the ODE model (Figure 2a), but also the virus itself
(e.g., Figure 2b).

2.1. Deriving the Reaction Network from the ODE System

In a first step, we need to obtain the reaction network underlying the ODE model. A reaction
represents, for example, a cell infection by a virus, the generation of new viruses from an infected cell or
the spontaneous death of a cell. The reaction rules can be derived from the ODEs in a straightforward
way [16]. This step can also be performed by an online tool presented by Soliman and colleagues [16].
Note that in modeling one first creates the network and then derives the ODEs. For our analysis, we
have to take the other direction.

https://github.com/stephanpeter/orgsflu
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For this purpose, we have to investigate the kinetic terms (kinetic laws) of the ODE (Figure 2a):

• The term βTV represents the reaction R1 : T + V → I + V, which in turn denotes the
transformation of an uninfected target cell T to an infected cell I catalysed by the virus V.

• The terms −δI and −cV represent reactions R2 : I → ∅ and R4 : V → ∅ which are the outflow
of infected cells I resp. virus V.

• The term pI represents the reaction R3 : I → I +V which is the production of viruses V catalysed
by infected cells I.

The set of species S = {T, I, V} together with the set of reactionsR = {R1, R2, R3, R4} constitute the
so-called reaction network (S ,R) associated with the model. The set of reactions together with their
kinetic parameters are depicted in Figure 2c. Note that for clarity we use different types of underlining
to highlight certain recurring kinetic terms in the ODE:

• Single underline for the transformation of uninfected cells into infected ones by the action of
viruses.

• Double underline for kinetic terms involving interferon.

We call the species on the left-hand side (LHS) of a reaction R support of R and write supp(R), e.g.,
supp(R1) = {T, V} (see Figure 2d). Analogously, we call the set of species occurring on the right-hand
side (RHS) of a reaction R products of R and denominate this set by prod(R), e.g., prod(R1) = {I, V}.

Furthermore, let us recall the stoichiometric matrix N = (nij) of a reaction network [17]. The
element nij in the i-th line and j-th column of N denotes the net-production of the i-th species in
reaction Rj. The net-production nij is the difference between the number of occurrences (stoichiometric
coefficient) of species i in the RHS of reaction Rj minus the number of occurrences of species i in the
LHS of reaction Rj. For example, n21 = 1− 0 = 1 because the second species (I) appears in the first R1

once as a reactant in the support of R1 (LHS) but does not appear in R1 as a product (RHS). For our
example in Figure 2, the stoichiometric matrix becomes:

N =

−1 0 0 0
1 −1 0 0
0 0 1 −1

 . (1)

2.2. Computing the Organizations from the Reaction Network

From the reaction network, we can compute the (chemical) organizations of the model. Each
organization is a subset of species that is closed and self-maintaining [10,18]. In the following, let
S ⊆ S be a subset of species and n be the total number of reactions of the reaction network (n = 4 in
our example).

We call S closed if and only if all reactions R ∈ Rwith supp(R) ⊆ S fulfill prod(R) ⊆ S too [10,18].
This means that the products of a reaction R with support in S are also in S. In other words, no species
outside of S can be produced by the reactions “running on” S. As an example, we assume S = {T, I}.
The reactions with support in S are R2 and R3. However, R3 produces species V, which is not in S.
Thus, S is not closed.

We call a vector v ∈ Rn flux vector for S if and only if it fulfills

vj

{
> 0, if supp(Rj) ⊆ S,

= 0, if supp(Rj) 6⊆ S.
(2)

Thus, all flux vectors for S have in common that those components are strictly positive which
correspond to reactions that can run on S, while all other entries are zero. As an example, consider
SExample = {T, I} again. We know that the reactions R2 and R3 can "run on" it, i.e., they have support
in SExample. Thus, v1 = (0, 1, 3, 0)T or v2 = (0, 5, 2, 0)T are example flux vectors for SExample.
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We call S self-maintaining if and only if there exists (at least one) flux vector v ∈ Rn for S
that fulfills

N · v ≥ 0, (3)

i.e., (N · v)i ≥ 0 for all i = 1, . . . , n, where n is again the total number of reactions [10,19–21]. Roughly
speaking, if S is self-maintaining, it has the potential to sustain the amount of its species above a
certain level. Our example set SExample is not self-maintaining because (N · v)2 < 0 for all flux vectors
for SExample. That is, species number 2 (the infected cells I) can not be maintained by this set.

As mentioned in the beginning of this section, we call S an organization if and only if it is
both closed and self-maintaining. Clearly SExample is not an organization, as it has neither of these
properties. In Figure 2d, the so-called Hasse diagram of organizations of this model can be seen.
In it, two organizations are linked by a line if the lower one is a subset of the upper one and there
is no organization in between. The Hasse diagram for the Baccam Model contains only the two
organizations OB

1 = ∅ and OB
2 = {T} (see Figure 2d). The superscript “B” stands for Baccam Model

and with the subscripts we refer to the organizations within a model. The organization OB
2 represents

an organism without any influenza A virus infection. Note that there is no organization with all
species, i.e., representing the infected body.

2.3. The Role Organizations Play in the Dynamics

Given a fixed point x of an ODE describing a reaction system, the set of species with strictly
positive concentrations in x is an organization. This is shown in [10]. This in turn means that, if a subset
of species is not an organization, then the system does not have a fixed point with exactly the chosen
subset of species. This is not only true for fixed points but also for other attractors [12]. Attractors are
those states that a system approaches in the long-run and once reached never leaves anymore. Besides
converging towards a fixed point, the long-term behavior can be also periodic oscillations or chaotic
trajectories. In particular, it was shown that the long-term behavior of the system always tends at least
to one organization [12]. Thus, organizations rule the long-term behavior of such dynamical reaction
system. Note that the case of a system tending towards a fixed point is included in this statement as a
special case. For example, the simulation results of the Baccam model (Figure 2a and Ref. [13]) suggest
that after about two to three days the species begin to decay to finally arrive in an organization namely
the empty set.

3. Results and Discussion

In the literature, there exist several mathematical models of IAV dynamics that are derived from
experimental data, reviewed in Refs. [4–7]). These models differ in their complexity, e.g., the number of
reactions and the number of species, depending on the available experimental data used for parameter
fitting and questions to be answered. For example, models can include eclipse phases, an innate
immune response, or an adaptive immune response.

After having exemplified our method in Section 2 by an analysis of the basic target cell limited
model by Baccam et al. [13], we present now the full analysis for eleven additional more detailed
influenza models of IAV dynamics, with up to 15 variables (species) and 45 reactions (cf. Table 1
for an overview at the end). Note that for our analysis we abstract from kinetic details, that is, the
organizations are independent of particular settings of parameter values.

3.1. Target Cell Limited Model by Miao et al. (Miao Model, M, 2010)

The models by Miao et al. [14] are designed to fit experimental in vivo data from mice [6,7].
The first one ([14], Equation (1)) depends on measured time-series. The second one ([14], Equation (2))
is a simplified version of the first one, neglecting the terms depending on those time-series and still



Viruses 2019, 11, 449 6 of 26

leading to a good fit within the first five days after infection [14]. Thus, we analyze this second model
(Miao Model).

Compared to the basic Baccam Model, the Miao Model (Figure 3a) has the same three variables
(named differently) and one additional reaction, EP → 2EP. This reaction represents the self-replication
of target cells EP taking place at a rate ρEEP. The full set of reactions can be found in the Appendix A
(Figure A2).

In the Hasse diagram of organizations (Figure 3b), a new “full” organization OM
3 appears, which

contains all three species. Thus, organization OM
3 reflects the slight difference between the two models:

in the Baccam Model, uninfected target cells T are only the susceptible ones and can not increase in
number, but in the Miao Model uninfected cells EP are reproduced repeatedly by the organism. Thus,
in the Baccam Model, infection is limited inherently by the limited number of uninfected target cells,
while in the Miao Model the limitation of an infection in time and number of infected cells and viruses
depends on other mechanisms:

ĖP = ρEEP − βαEPV

Ė∗P = βαEPV− δE∗E∗P

V̇ = παE∗P − cVV

(a) ODE model

OM
3 = {all species} = {EP, E∗P, V}

OM
2 = {EP}

OM
1 = {}

(b) Hasse diagram of organizations

Figure 3. The Miao Model [14] with three variables: uninfected target cells (EP), productively infected
cells (E∗P) and free infectious influenza viruses (V).

3.2. Target Cell Limited Model with Delayed Virus Production (Baccam II Model, Ba2, 2006)

The Baccam II Model [13,22] contains one more species than the Baccam Model presented in the
methods section above. That is, there are now two types of infected cells: those which do not yet produce
viruses I1 and those which actively produce viruses I2. In addition, there is only one new reaction,
which transforms infected cells of type I1 into type I2 at rate kI1 (Figure 4a). However, the Hasse
diagram of organizations remains the same when compared with the basic Baccam Model [13].

Ṫ = −βTV

İ1 = βTV− kI1

İ2 = kI1 − δI2

V̇ = pI2 − cV

(a) ODE model

OBa2
2 = {T}

OBa2
1 = {}

(b) Hasse diagram of organizations

Figure 4. The Baccam II Model [13] with delayed virus production and four variables: uninfected
(susceptible) target cells (T), infected cells not yet producing virus (I1), infected cells actively producing
virus (I2) and infectious-viral titer (V).

3.3. Innate and (Simple) Adaptive Immune Response (Pawelek Model, P, 2012)

The Pawelek Model [23] contains 11 parameters and was designed to fit in vivo experimental
data of horses [6,7]. The model has five variables and nine reactions. Like the basic Baccam Model,
it contains uninfected target cells (T), infected cells (I), and viruses (V). Furthermore, there are two
new species: interferon (F) and uninfected cells that are refractory to infections (R) because of the
antiviral effect induced by interferons.
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Investigating the reaction network (Figure A4 in the Appendix A) derived from the differential
equations (Figure 5a), we can see that, like in the basic Baccam Model, self-replication of uninfected
cells T is missing. However, due to the two new species R and F, we have five new reactions, which are
neither included in the Baccam Model nor in the Miao Model. One of these five reactions is the
spontaneous decay of interferon F at a rate dF. The other four new reactions describe interactions
between different species:

• The rate term φFT represents the transformation of uninfected target cells to refractory cells
catalysed by interferon.

• The reverse shift back from refractory to simple uninfected cells is represented by the term ρR.
• Furthermore, infected cells are deleted by the action of interferon at a rate κ IF.
• Interferon is produced in the presence of infected cells at a rate qI.

Even though we have more species and more reactions, we get the same small pattern of
organizations as in the basic Baccam Model (Figure 5b). Both models have in common that there
is no self-replication of target cells. This might be one reason for the missing of other and bigger
organizations which could contain species related to infection and/or immune response. This in turn
means that, like the Baccam Model, this model implicitly treats infections and immune responses as
phenomena that can only appear in a limited (transient) time span. The Hasse diagram of organizations
(Figure 5b) tells us that the system necessarily tends towards a state of healthiness, which is represented
by the organizations OP

1 = {} and OP
2 = {T}, showing absence of infection and immune response.

Ṫ = −βVT− φFT + ρR

İ = βVT− δI− κIF

Ṙ = φFT− ρR

V̇ = pI− cV

Ḟ = qI− dF

(a) ODE model

OP
2 = {T}

OP
1 = {}

(b) Hasse diagram of organizations

Figure 5. The Pawelek Model [23] with five variables: (uninfected) target cells (T), productively
infected cells (I), uninfected cells refractory to infections (R), free viruses (V) and interferon (F).

3.4. A Model Including Bacterial Co-Infection (Smith Model, Sm, 2016)

The Smith Model [15] contains 15 parameters and compared to experimental in vivo data from
mice. It has five variables and 12 reactions. Like in the previous models, we have susceptible target
cells (T) and viruses (V). Note that T is only consumed in this model but not produced. Contrarily to
previous models, we have two kinds of infected cells (I1 and I2) here as well as bacteria (P). Bacteria P
represent bacterial co-infection during or after virus infection. Infection is modeled as a transformation
of susceptible target cells T into infected cells I1 catalyzed by viruses V (see underlined terms in
Figure 6a). Infected cells I1 in turn spontaneously transform into I2 at rate kI1. Only infected cells I2

produce viruses V at a rate pI2. Furthermore, infected cells I2 produce viruses V together with bacteria
P. Bacteria P are self-replicating (rate term rP). Viruses V are the only species influencing bacteria P.

Figure 6b shows the Hasse diagram of organizations. The smallest one is the empty set.
The biggest one is OSm

4 , which contains susceptible target cells T and bacteria P. It represents an
organism without viral but with bacterial infection. Between those two extreme organizations, we find
OSm

2 = {T} and OSm
3 = {P}. Thus, OSm

2 represents the healthy organism without any infection.
OSm

3 = {P} could mark the state after a viral-bacterial co-infection: after viral infection and because of
the death of all target cells as well as all viruses only bacteria remain.
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Ṫ = −βTV

İ1 = βTV− kI1 − µPI1

İ2 = kI1 − δI2 − µPI2

V̇ = pI2(1 + PZ)− cV

Ṗ = rP(1− P
KP(1 + ψV)

)

− γMA n2 MA

P2 + n2MA
M∗AP(1− φV

KPV + V
)

(a) ODE model

OSm
4 = {T, P}

OSm
3 = {P}OSm

2 = {T}

OSm
1 = {}

(b) Hasse diagram of organizations

Figure 6. The Smith Model [15] with five variables: susceptible target cells (T), two classes of infected
cells (I1 and I2), free viruses (V), and bacteria (P).

3.5. Innate and Adaptive Immune Response (Handel Model, Ha, 2009)

The Handel Model [24] contains eight parameters and was designed to fit experimental in vivo
data from mice [6,7,25]. It has seven variables (see Figure 7) and only 12 reactions (see Figure 7a):

• Infection is catalyzed by viruses V and transforms uninfected cells U to latently infected cells
E and viruses V are consumed thereby. Latently infected cells E transform into infected cells
I autonomously, which in turn transform into dead cells D autonomously too. Finally, the
transformation of dead cells D into non-infected cells U closes the circle.

• The remaining three species V, F and X form an almost totally separate subsystem since the only
interaction with the four species from the "circle" mentioned above is the catalysis of the infection
by viruses V.

• The interactions within the subsystem {V, F, X} consisting of viruses V and immune responses F
and X are as follows:

– Viruses V catalyze the proliferation of F and X. In the Hernandez model, proliferation of
interferon F is catalyzed by infected cells instead of viruses.

– There is no direct interaction between innate immune response F and adaptive immune
response X.

– The adaptive immune response X deletes viruses directly. Innate immune response F inhibits
the self-replication of the viruses which is represented by the denominator of the fraction

pI
1 + κF

. We ignore the inhibition because whether the rate is zero or not is independent of F.

The Hasse diagram Figure 7b shows five organizations. For the first time, it contains the empty set as
well as the set of all species at the same time. Between these extremes, we find OHa

2 = {U} representing
the healthy organism. The Baccam, Miao, and Pawelek models exhibit the same organization.
Structurally, the Hasse diagram of the Handel Model is very similar to that of the Smith Model
(Figure 6b). The first reveals an autonomy of the adaptive immune response X, whereas the latter does
this same for bacteria P.
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U̇ = λD− bUV

Ė = bUV− gE

İ = gE− dI

Ḋ = dI− λD

V̇ =
pI

1 + κF
− cV− γbUV− kVX

Ḟ = wV− δF

Ẋ = f V + rX

(a) ODE model

OHa
5 =

{all species} =
{U,E, I, D,V, F,X}

OHa
4 = {U,X}

OHa
2 = {U} OHa

3 = {X}

OHa
1 = {}

ad
di

ng
 v

iru
s

(b) Hasse diagram of organizations

Figure 7. The Handel model [24] with seven variables: uninfected cells (U), latently infected cells
(E), productively infected cells (I), dead cells (D), free viruses (V), innate immune response (F) and
adaptive immune response (X). The dotted arrows denote the projection of the dynamics shown in
Figure 8.

Temporal Dynamics

For the Handel Model, we perform dynamical simulation in order to show how the organizational
hierarchy helps also to understand transient short-term behavior. We start at t = −20d with an
uninfected state, i.e., 7× 109 uninfected cells. After 20 days, at t = 0, we add 104 virus particles.
The resulting seven-dimensional trajectory in state space is shown in Figure 8. Projecting this trajectory
to organizations results in a more abstract view of the dynamics, shown as a dashed curved arrow in
Figure 7b. The system starts in organization OHa

2 (uninfected organization), moves after adding virus
particles at t = 0 into organization OHa

5 (infected organization with immune response), and drops after
37 days into organization OHa

4 (immune response active, virus absent).
The projection of a state x to an organization O follows the procedure suggested by Dittrich and

Speroni d.F. [10]: First, we generate a set S of those species whose concentration is greater than a
particular threshold (here: 100 = 1). Then, we generate the closure of this set by adding all species
that can be produced from the set. Finally, we take the largest organization O that is a subset of that
closure. For example: At t = 0 by adding viruses to the system, we have S = {U, V}, whose closure
is the set of all species, which is also an organization, here; thus, the state at t = 0 is projected to
organization OHa

5 . At t = 60d, we have S = {U, X, D}, whose closure is again {U, X, D} and the
largest organization contained is OHa

4 = {U, X}. Thus, as can be seen in Figure 8, the system state is
projected to organization OHa

4 , in which it stays for t > 37d.
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Figure 8. Temporal dynamics of the Handel model. By projecting the seven-dimensional trajectory to
organizations (dotted arrows in Figure 7b) we find three phases: (Phase 1) Until day number 0, there are
solely 7× 109 uninfected cells U in the system represented by the organization OHa

2 = {U}. (Phase 2)
At day 0, infection is simulated by adding V(0) = 104 virus particles to the system. The resulting state
{U, V} is projected to organization OHa

5 (all species). (Phase 3) Lastly, at day t = 37d past infection the
system settles in the final organization, namely OHa

4 = {U, X}, which is generated by the set {U, X, D}
(see text). The values of the model parameters are (from [24]): λ = 0.25, b = 2.1× 10−7, g = 4, d = 2,
p = 5× 10−2, κ = 1.8× 10−2, c = 10, γ = 7.5× 10−4, k = 1.8, w = 1, δ = 0.4, f = 2.7× 10−6, and
r = 0.3. Note that the number of uninfected cells U is not constant after infection as it may seem
from the figure. In fact, after infection, the number of uninfected cells first decreases and than rises
again [24].

3.6. Innate Immune Response and Resistance to Infection (Hernandez Model, He, 2012)

The 13 parameters of the Hernandez Model [26] were fitted to data from many different sources.
The model contains seven variables and 16 reactions (see Figure 9). The species refer to viruses
(V), interferon (F) and natural killer cells (K) as well as four types of respiratory tract epithelial
cells: healthy/uninfected (UH), partially infected (UE), infected (UI) and resistant to infection (UR).
Compared to the Pawelek Model, there are two qualitatively new species: partially infected cells UE
and killers K.

Next, we state some remarks about the reactions:

• There is an infection reaction catalyzed by viruses like in all previous models but with one
difference: during infection, healthy cells UH first transform to partially infected cells UE and only
after that they transform spontaneously to infected cells UI at a rate keUE.

• Interferon catalyzes the transformation of healthy cells to resistant cells UR, like in the Pawelek
Model. However, in the Pawelek Model, interferon removes infected cells. Here, interferon’s
production is catalyzed by infected cells UI at a rate aIUI . There is no further influence of
interferon on any other species.
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• Infected cells are removed by natural killers K, which also delete partially infected cells in this
model. The production of killers K is catalyzed by infected cells UI at a rate ΦKUI .

• Note that here we have an constant inflow of healthy cells UH at a rate SH (first differential equation).
Thus, healthy cells cannot converge to zero.

The Hasse diagram of organizations consists only of two organizations (Figure 9b). For the first time,
the empty set is not an organization because the empty set is not closed due to a constant inflow
of healthy cells UH and killers K, represented by the reaction ∅ → UH and ∅ → K, respectively.
The smallest organization OHe

1 = {UH , K} can be regarded as a state of healthiness. Contrarily, the
second organization OHe

2 contains all species (as in the Miao Model) and therefore can be interpreted
as the infected organism exhibiting immune response to infection.

U̇H = SH − kIUHV− kRUHF− δHUH

U̇E = kIUHV− kEUE − qKUEK

U̇I = kEUE − δIUI − qKUIK

U̇R = kRUHF− δRUR

V̇ = ρVUI − δVV

Ḟ = aIUI − δFF

K̇ = SK + ΦKUI − δKK

(a) ODE model

OHe
2 =
{all species} =
{UH, UE, UI, UR, V, F, K}

OHe
1 = {UH, K}

(b) Hasse diagram of organizations

Figure 9. The Hernandez Model [26] with seven variables: healthy cells (UH), partially infected cell
(UE), infected cells (UI), cells resistant to infection (UR), virus particles (V), interferon (F) and natural
killers (K).

3.7. A Model with More Detailed Immune Response (Cao Model, C, 2015)

The Cao Model [27] consists of 20 parameters and has been derived by referring to experimental
data from ferrets. The model has seven variables and 26 reactions. Like in most of the previous models,
we have (uninfected) target cells (T), infected cells (I), viruses (V), resistant cells (R), and interferon (F).
Furthermore, there are B cells B and antibodies A.

According to the ODE shown in Figure 10a, B cells are only influenced by viruses: viruses support
the production of B cells (rate term m1V), but the more B cells that are present, the more of them are
destroyed by viruses again (term: m1VB). B cells influence only one other species, namely antibodies
B, which they produce. Antibodies A influence only one other species, namely viruses, which are
destroyed by this reaction at rate µVA. Antibodies in turn are influenced by B cells positively and by
viruses negatively.

There are three organizations in this model (Figure 10b): the empty set, the healthy organism
without any infection and without any immune response (OC

2 = {T}) and the organization OC
3

containing all species.
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Ṫ = g(T + R)(1− T + R + I
Ct

)− β′VT + ρR− φFT

İ = β′VT− δI− κIF

V̇ =
pI

1 + sF
− cV− µVA− βVT

Ṙ = φFT− ρR− ξR

Ḟ = qI− dF

Ḃ = m1V(1− B)−m2B

Ȧ = m3B− rA− µ′VA
(a) ODE model

OC
3 = {all species} =
{T, I, V, R, F, B, A}

OC
2 = {T}

OC
1 = {}

(b) Hasse diagram of organizations

Figure 10. The Cao Model [27] with seven variables: target cells (T), infected cells (I), viruses (V),
resistant cells (R), interferon (F), B cells (B), and antibodies (A).

3.8. Innate Immune Response and Eclipse Phase (Saenz Model, Sa, 2010)

The Saenz Model [28] requires 12 parameters and was designed to fit experimental in vivo data from
horses [6,7]. The model contains eight variables and 12 reactions (Figure 11a). There are no adaptive
immune response, no dead cells, and no natural killer cells. However, the model contains viruses V
and interferon F. There is an eclipse phase (E1 and E2) here as well as prerefractory and refractory cells.
In particular, epithelial cells are represented by six species: susceptible (T), eclipse phases (E1 and E2),
infectious (I), prerefractory (W), and refractory (R). Thus, the new features are the inclusion of two eclipse
phases and three steps for the transformation of uninfected cells to refractory cells.

Ṫ = −βVT− φFT

Ė1 = βVT− k1E1

Ẇ = φFT−mβVW − aW

Ė2 = mβVW − k2E2

Ṙ = aW

İ = k1E1 + k2E2 − δI

V̇ = pI− cV

Ḟ = nqE2 + qI− dF

(a) ODE model

OSa
4 = {T, R}

OSa
3 = {R}OSa

2 = {T}

OSa
1 = {}

(b) Hasse diagram of organizations

Figure 11. The Saenz Model [28] with eight variables: Epithelial cells in one of the states: susceptible
(T), eclipse phase (E1 and E2), prerefractory (W), refractory (R) and infectious (I). The further variables
are: virus cells (V) and interferon (F).

The Hasse diagram of organizations is composed by four organizations: OSa
1 = {}: the empty set;

OSa
2 = {T}: representing a healthy organism; OSa

3 = {R}: there is no consuming reaction for refractory
cells R; OSa

4 = {T, R}: also representing a healthy organism that contains refractory cells maybe as the
remains of a previous infection.

The Hasse diagram is very similar to that from of the Handel Model. There are only two differences:

• The “full” organization is missing here. For sure, one of the reasons is that there is no reaction
producing susceptible cells T. Thus, when viruses V or interferon F are present susceptible cells T
can not survive and the “full” organization neither.
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• Adaptive immune response is replaced by refractory cells in the organizations here.

3.9. Focusing on Innate and Adaptive Immunity (Hancioglu Model, Hcg, 2007)

The Hancioglu Model [29] contains 28 parameters, 10 variables, and 44 reactions. It has not been
mathematically fitted to data but has been designed to meet specific general criteria [6,7]. The ODEs
(Figure 12a) describe the dynamics of the following 10 species: viruses (V), healthy cells (H), infected
cells (I), interferon (F) and resistant cells (R). The remaining species are new: antigen presenting cells
(M), effector cells (E), plasma cells (P) antibodies (A) and antigenic distance (S). There are no species
for an eclipse phase in this model.

Looking at the reaction network (Figure A8), we can see again a reaction for infection,
i.e., the transformation of healthy cells H into infected cells I catalyzed by viruses V at a rate γHVVH
(single underlined in Figure 12a). Furthermore, interferon F is produced catalytically by antigen
presenting M and infected cells I, decays spontaneously at a rate aFF, and is additionally removed
when converting healthy cells H into resistant cells R by the reaction H + F → R at rate bHFFH (double
underlined in Figure 12a).

The Hancioglu Model has three organizations (Figure 12b):

• The smallest one is OHcg
1 , which contains all the species responsible for the immune response.

• OHcg
1 is a subset of OHcg

2 , which additionally contains species H and R, representing the healthy
organism without infection but with the immune response turned on.

• OHcg
3 is the “full” organization containing all the species of the models and thus representing the

organism with infection and immune response.

Thus, all the organizations represent meaningful states of the organism. However, there is no
organization that only consists of healthy cells without any infection and immune response. Note that
almost all the previous models except for Hernandez have such an organization.

Ḣ = bHD(1−H− R− I)(H + R) + aRR− γHVVH− bHFFH

İ = γHVVH− bIEEI− aII

V̇ = γVI− γVASAV− γVHHV− αVV− aV1V
1 + aV2V

Ṙ = bHFFH− aRR

Ṁ = (bMD(1−H− R− I) + bMVV)(1−M)− aM M

Ḟ = bF M + cFI− bFHHF− aFF

Ė = bEM ME− bEIIE + aE(1− E)

Ṗ = bPM MP + aP(1− P)

Ȧ = bAP− γAVSAV− aAA

Ṡ = rP(1− S)
(a) ODE model

OHcg
3 =
{all species} =
{H, I, V, R, M, F, E, P, A, S}

OHcg
2 = {H, M, F, R, E, P, A, S}

OHcg
1 = {M, F, E, P, A, S}

(b) Hasse diagram of organizations

Figure 12. The Hancioglu Model [29] with 10 variables: viral load (V), healthy cells (H), infected cells
(I), antigen presenting cells (M), interferon (F), resistant cells (R), effector cells (E), plasma cells (P),
antibodies (A) and antigenic distance (S).

3.10. Model with Delay Differential Equations (Bocharov Model, Bo, 1994)

The Bocharov Model [30] contains 49 parameters and was designed to fit experimental in vivo
data from humans [6,7]. It includes 10 variables and 51 reactions (Figure A9). Only here and in the Lee
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Model (below) we have differential equations with delay, i.e., some rates depend on variable values
from the past (Figure 13a). Because the delay does not matter in a steady-state, we can also neglect the
delay when analyzing the chemical organizations of a delay differential equation model.

V̇f = νC + nbCECE− γVFVfF− γVMVf − γVCVfU

Ċ = σVfU− bCECE− bmC

ṁ = bCECE + bmC− αmm

ṀV = γMV M∗Vf − αMMV

ḢE = bE
H [(1− m

C∗
)ρE

HMV(t− τE
H)HE(t− τE

H)−MVHE]− bHE
P MVHEE + αE

H(H∗E −HE)

ḢB = bB
H [(1− m

C∗
)ρB

HMV(t− τB
H)HB(t− τB

H)−MVHB]− bHB
P MHBB + αB

H(H∗B −HB)

Ė = bE
P [(1−

m
C∗

)ρEMV((t− τE))HE(t− τE)E(t− τE)−MVHEE]− bECCVE + αE(E∗ − E)

Ḃ = bB
P [(1−

m
C∗

)ρBMV(t− τB)HB(t− τB)B(t− τB)−MVHBB] + αE(B∗ − B)

Ṗ = bP
P(1−

m
C∗

)ρPMV(t− τP)HB(t− τP)B(t− τP) + αP(P∗ − P)

Ḟ = ρFP− γFVFVf − αFF

U̇ =
d
dt
(C∗ − C−m) = −σVfU + αmm

(a) ODE model

OBo
2 = {U, HE, HB, E, B, P, F}

OBo
1 = {HE, HB, E, B, P, F}

(b) Hasse diagram of organizations

Figure 13. The Bocharov Model [30] with 10 variables: infective IAV particles (Vf), IAV-infected cells
(C), destroyed epithelial cells (m), stimulated macrophages (MV), activated helper T cells providing
proliferation of cytotoxic T cells (HE), activated helper T cells providing proliferation and differentiation
of B cells B (HB), activated CTL (E), B cells (B), plasma cells (P), antibodies to IAV (F), and uninfected
epithelial cells (U). Note that, for clarity, we have added U as a state variable, which is only implicitly
represented as U = C∗ − C−m in the original model by Bocharov et al.

Note that this is by far the oldest model analyzed here. The names of the variables are a bit particular
when compared to those of the previously analyzed models. As in all the other models, we have viruses
Vf and infected cells C. Furthermore, there are destroyed epithelial cells m as in the Handel Model. All
other species belong to the immune response. Note that only in this model there is no state variable for
uninfected, healthy cells. Bocharov et al. represent these healthy cells implicitly by subtracting the amounts
of infected-cells C and destroyed epithelial cells m from the initial total amount of target epithelial cells C∗.
Since all the other models analyzed here have a related variable, we inserted the variable U = C∗−C−m
for uninfected cells together with its ODE to make the model comparable to the others.

Due to the fact that the majority of the species belongs to the immune response, this is the case for
most of the reactions too. These species of the immune response form exactly the organization OBo

1 ,
only macrophages MV are missing.

Similarly to the Hancioglus model, the smallest organization OBo
1 is an organization with immune

response but without infection (C, Vf ). There is only one further organization that contains only one
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more species than OBo
1 , namely uninfected cells U. This organization we already found in three of the

previous models. However, for the first time, there is no bigger organization in this model. Thus, virus
infection is necessarily transient.

3.11. Complex Dual-Compartment Model (Lee Model, L, 2009)

The Lee Model [9] is the most complex model considered here. It contains 48 parameters and was
designed with respect to experimental in vivo data from mice [6,7]. It has 15 variables and 37 reactions
(Figure A10). Like in the Bocharov Model, Lee et al. apply delay differential equations.

Note that this model is the only one analyzed here that distinguishes between lung compartment
and lymphatic compartment. There is one species representing uninfected (healthy) cells Ep and three
species for modelling infection: E∗P, D∗ and viruses V. The remaining species belong to the immune
response, colored black when naive to infection, while colored green when activated for infection.

Note that we write a species in the organizations in Figure 14b in bold text, if it is “new”, that is,
not contained in neither of its subset organizations. The Hasse diagram contains eight organizations.
The smallest one is OL

1 = {EP, D, HN , TN , BN} and contains exactly the uninfected cells as well as the
naive part of the immune response. The biggest organization contains all species. Between these two
“extreme” organizations are six further organizations containing different parts of the activated part of
the immune response.

ĖP = δE(E0 − EP)− βEEPV

Ė∗P = βEEPV− kEE∗PγTE(t− τT)− δE∗E∗P

V̇ = πVE∗P − cVV− kVVA(t)

Ḋ = δD(D0 −D)− βDDV

Ḋ∗ = βDDV− δD∗D∗

˙DM = kDD∗(t− τD)− δDM DM

ḢN = δHN (HN0 − HN)− πH1
DM

DM + πH2
HN

ḢE = πH1
DM

DM + πH2
HN + ρH1

DM
DM + ρH2

HE − δH1
DM

DM + δH2
HE

ṪN = δTN (TN0 − TN)− πT1
DM

DM + πT2
TN

ṪE = πT1
DM

DM + πT2
HN + ρT1

DM
DM + ρT2

TE − δT1
DM

DM + δT2
TE

˙BN = δB(BN0 − BN)− πB1
DM

DM + πB2
BN

ḂA = πB1
DM

DM + πB2
BN + ρB1

DM + hHE
DM + hHE + ρB2

BA − δBA BA − πSBA − πLHEBA

ṖS = πSBA − δSPS

ṖL = πLHEBA − δLPL

Ȧ = πASPS + π − ALPL − δAA

(a) ODE model

Figure 14. Cont.
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OL
8 = {all species}={EP, E∗P, V, D, D∗, DM, HN , HE, TN , TE, BN , BA, PS, PL, A}

OL
7 = {EP, D, D∗, DM, HN , HE, TN , TE, BN , BA, PS, PL, A}

OL
6 = {EP, D, HN , HE, TN , TE, BN , BA, PS, PL, A}

OL
5 = {EP, D, HN , HE, TN , BN , BA, PS, PL, A}

OL
4 = {EP, D, HN , HE, TN , TE, BN}

OL
3 = {EP, D, HN , TN , TE, BN}OL

2 = {EP, D, HN , HE, TN , BN}

OL
1 = {EP, D, HN , TN , BN}

(b) Hasse diagram of organizations

Figure 14. The Lee model [9] which contains 15 variables: uninfected epithelial cells (EP), infected
epithelial cells (E∗P), virus titer (EID50/ml) (V), immature dendritic cells (D), virus-loaded dendritic
cells (D∗), mature dendritic cells (DM), naive CD4+ T cells (HN), effector CD4+ T cells (HE), naive CD8+
T cells (TN), effector CD8+ T cells (TE), naive B cells (BN), activated B cells (BA), short-lived plasma
(antibody-secreting) B cells (PS), long-lived plasma (antibody-secreting) B cells (PL) and antiviral
antibody titer (A). Note that here we have colored green only those species representing the immune
system when activated.

3.12. Hierarchy of Influenza A Virus Models

In order to construct a hierarchical map of all investigated models, we characterize a model by
a signature of organizations, which is a set of organization types. For example, the signature of the
Handel Model (Figure 7b) is the set {∅, X, X, XX, XXX}. An organization type like XX means that
there is at least one organization that contains uninfected (target) cells (X) and species of the active
immune response (X). The deviation of the signatures for all models is shown in Table 1. Note that we
ignore species colored black. We include the empty set ∅ because this distinguishes models without
any inflow from those that possess an inflow of some species.

Now, we can obtain a partial order among models by defining that a model A is smaller or equal to
another model B (A ≤ B), if the signature of A is a subset of the signature of model B. For example, the
Hernandez Model is smaller than the Lee Model because {XX, XXX} ⊆ {X, XX, XXX}. This partial
order among models leads to a hierarchical map of models, which is visualized by a Hasse-diagram
in Figure 15. Note that a model A that is smaller than a model B according to this partial order can
possess more species and reactions than B.

In Figure 15, we can see that all models have organizations with uninfected, healthy cells (X). There
are models that furthermore have infection (X) and/or immune response (X) in their organizations.
There are exactly two models (Hancioglu and Hernandez Model) with immune response in all their
organizations which means that these models implicitly assume immune response to be active all the
time. Among the models neglecting immune response are those which have infection (Miao Model)
or bacteria (X) (Smith Model) in their organizations and also those that do not (Baccam and Baccam
II Model). For models involving immune response, the situation is more complex. There are those
that only have healthy cells in their organizations (Pawelek and Saenz Models). This means that these
models implicitly exclude infection and immune response from the long run and thus treat them as
transient phenomena a priori. The Bocharov Model is the only one that exhibits only healthy cells and
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immune response in its organizations but no infection. The remaining five models include all kinds of
species (except for bacteria of course) in their organizations.

Table 1. Overview of all models and organization types contained. An organization type like XX
denotes the type of species contained in an organization, according to our coloring scheme. The set of
organization types of a model is called its signature.

Model Number of
Variables

Number of
Reactions

Number of
Organizations Organizations & Signature

Baccam [13]
2006

3 4 2 OBa1
1 = ∅

OBa1
2

X

Miao [14]
2010

3 5 3 OM
1 = ∅

OM
2

OM
3

X
X X

Baccam II [13]
2006

4 5 2 OBa2
1 = ∅

OBa2
2 X

Pawelek [23]
2012

5 9 2 OP
1 = ∅

OP
2 X

Smith [15]
2016

5 12 4 OSm
1 = ∅

OSm
2

OSm
3

OSm
4

X
X
X X

Handel [24]
2010

7 12 5 OHa
1 = ∅

OHa
2

OHa
3

OHa
4

OHa
5 = {all}

X
X
X
X

X
X X

Hernandez [26]
2012

7 16 2 OHe
1

OHe
2 = {all}

X
X

X
X X

Cao [27]
2015

7 26 3 OC
1 = ∅

OC
2

OC
3 = {all}

X
X X X

Saenz [28]
2010

8 12 4 OSa
1 = ∅

OSa
2 , OSa

3 , OSa
4 X

Hancioglu [29]
2007

10 44 3 OHcg
1

OHcg
2

OHcg
3 = {all}

X
X
X

X
X X

Bocharov [30]
1994

10 45 2 OBo
1

OBo
2

X
X X

Lee [9]
2009

15 37 8 OL
1

OL
2 , OL

3 , OL
4 , OL

5 , OL
6

OL
7 , OL

8 = {all}

X
X
X

X
X X

By looking at the hierarchy of models, it becomes evident that there is space for more models.
Above the Smith and Handel Model, there could be one in which virus infection as well as bacterial
coinfection can be simultaneously persistent (“fully persistent models” denote such hypothetical
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models in Figure 15). Another extreme case would be a “fully-transient model” in which we have only
transient dynamics and all species would finally tend to zero. Such a model would be the smallest one
in our partial order of models (Figure 15).

The derived hierarchical map of models might be used to choose the most appropriate model for
a particular domain and data set: The model should contain at least one organization for each set of
species that were experimentally observed to survive in the long run. If there are several models with
such organizations, the one with the smallest organizations might be chosen to provide maximum
efficiency in modeling. Table 1 as well as Figure 15 might guide the selection process, complementing
established quantitative selection methods, such as those using the area under the viral load curve [31].

"Fully-persistent models"
∅, . . . , XXXX

Handel(7)
∅, X, X, XX, XXX

Smith(5)
∅, X, X, XX

Hancioglu(10)
X, XX, XXX

Lee(15)
X, XX, XXX

Cao(7)
∅, X, XXX

Miao(3)
∅, X, XX

Bocharov(10)
X, XX

Hernandez(7)
XX, XXX

Baccam(3) Pawelek(5)
Baccam(4) Saenz(8)

∅, X

"Fully-transient
models" ∅

Models without
immune response Models including immune response

Figure 15. Hasse-diagram of the hierarchy of IAV models with respect to their long-term behaviour.
In brackets (), we added the number of species of each model. Underneath (marked by colors) the kinds
of species contained in the organizations belonging to each model. The meaning of the four colors is
as follows: Species belonging to the healthy state of the organism are colored blue, those belonging
to the immune response are colored green, those belonging to infection like infected cells and viruses
are colored magenta, and bacteria from bacterial co-infection are colored orange. Horizontally, the
diagram consists of four lines. The models in the lowest line contain organizations with exactly two
different kinds of species (colors) (including the empty set). In the second line above, there are three
different combinations of species (colors) to be found in each model. There is only one model in each of
the highest two lines: The Smith model [4] is the only one with bacteria and contains four different
combinations of colors. In the Handel Model, there are even five different combinations of colors out of
24 = 16 possible combinations.
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4. Conclusions

By analyzing twelve published IAV immune system models, we have shown that we can compute,
independently of quantitative kinetic data like rate constants or kinetic laws, all chemical organizations
of a typical IAV model, which provides a hierarchical decomposition of the model and an overview of
its potential long-term behavior.

It turned out that the derived organizations are meaningful with respect to the model’s domain.
That is, the composition of species inside an organization can be related to a particular state of the
organism, like “healthy”, “infected”, or “virus controlled by active immune response”, and it is possible
to annotate organizations accordingly.

By deriving an organizational signature from a model’s organizations, we obtained a novel
classification scheme and a hierarchy of models with respect to their qualitative long-term behavior.
Although the classification via organizational signature is quite coarse-grained, the analysis revealed
still a high diversity of models. That is, the models have different potentiality with respect to which
variables persist in the long turn and which vanish. Furthermore, the hierarchy map of models contains
various empty territories, suggesting space for potential future models.

We envision as a practical use that our method and results can help to select the right model
for a particular situation, to relate other models to the present ones, to obtain an overview of the
potential long-term dynamics of complex models, and to support model development, for example, by
providing a rapid consistency check. Note that measured long-term as well as transient data can be
explained with respect to organizations, by defining a projection from a system state to an organization,
as demonstrated for the Handel model (Figures 7 and 8).

In addition, our approach is not limited to IAV models, but can be directly applied to other viruses
in the same way since their dynamics are similarly modeled by ODEs [32]. Furthermore, our approach
is open to include other dynamically relevant components like treatment and vaccination strategies.
Another task for future work would be to study the transient virus immune system in more detail, for
example, by mapping the basin of attraction of each organization or by systematically analyzing the
transition dynamics in-between organizations [33,34].
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Appendix A

Here you find the sets of reactions for all example models presented in this paper. Written in
brackets behind each reaction is its corresponding term from the differential equations:

R1 : T + V → I + V (βTV)

R2 : I → ∅ (δI)
R3 : I → I + V (pI)
R4 : V → ∅ (cV)

Figure A1. Reactions of Baccam model [13].
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R1 : EP → 2EP (ρEEP)

R2 : EP + V → E∗P + V (βαEPV)

R3 : E∗P → ∅ (δE∗E∗P)
R4 : E∗P → E∗P + V (παE∗P)
R5 : V → ∅ (cVV)

Figure A2. Reactions of Miao model [14].

R1 : T + V → I1 + V (βTV)

R2 : I1 → I2 (kI1)

R3 : I2 → ∅ (δI2)

R4 : I2 → I2 + V (pI2)

R5 : V → ∅ (cV)

Figure A3. Reactions of Baccam model [14] with delayed virus production.

R1 : T + V → I + V (βVT)
R2 : F + T → F + R (φFT)
R3 : R→ T (ρR)
R4 : I → ∅ (δI)
R5 : I + F → F (κ IF)
R6 : I → I + V (pI)
R7 : V → ∅ (cV)

R8 : I → I + F (qI)
R9 : F → ∅ (dF)

Figure A4. Reactions of Pawelek model [23].

R1 : D → U (λD)

R2 : U + V → E + V (bUV)

R3 : E→ I (gE)
R4 : I → D (dI)

R5 : I → I + V (
pI

1 + κF
)

R6 : V → ∅ (cV)

R7 : U + V → U (γbUV)

R8 : V + X → X (kVX)

R9 : V → V + F (wV)

R10 : F → ∅ (δF)
R11 : V → V + X ( f V)

R12 : X → 2X (rX)

Figure A5. Reactions of Handel model [24].
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R1 : ∅→ UH (SH)

R2 : UH + V → UE + V (kIUHV)

R3 : UH + F → UR + F (kRUH F)
R4 : UH → ∅ (δHUH)

R5 : UE → UI (kEUE)

R6 : UE + K → K (qKUEK)
R7 : UI → ∅ (δIUI)

R8 : UI + K → K (qKUIK)
R9 : UR → ∅ (δRUR)

R10 : UI → UI + V (ρVUI)

R11 : V → ∅ (δVV)

R12 : UI → UI + F (aIUI)

R13 : F → ∅ (δFF)
R14 : ∅→ K (SK)

R15 : UI → UI + K (ΦKUI)

R16 : K → ∅ (δKK)

Figure A6. Reactions of Hernandez model [26].

R1 : V + T → V + E1 (βVT)
R2 : F + T → F + W (φFT)
R3 : E1 → I (k1E1)

R4 : V + W → V + E2 (mβVW)

R5 : W → R (aW)

R6 : E2 → I (k2E2)

R7 : I → ∅ (δI)
R8 : I → I + V (pI)
R9 : V → ∅ (cV)

R10 : E2 → E2 + F (nqE2)

R11 : I → I + F (qI)
R12 : F → ∅ (dF)

Figure A7. Reactions of Saenz model [28].
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R1 : I → I + V (γV I)
R2 : S + A + V → S + A (γVASAV)

R3 : H + V → H (γVH HV)

R4 : V → ∅ (αVV)

R5 : V → ∅ (
aV1V

1 + aV2V
)

R6 : H → 2H (bHD H)

R7 : R→ R + H (bHDR)

R8 : H → ∅ (−bHD H2)

R9 : R + H → R (−2bHD HR)

R10 : R + H → R (−bHDR2)

R11 : I + H → I (−bHD IH)

R12 : I + R + H → I + R (−bHD IR)
R13 : R→ H (aRR)
R14 : V + H → V + I (γHVVH)

R15 : F + H → F + R (bHFFH)

R16 : E + I → E (bIEEI)
R17 : I → ∅ (aI I)
R18 : ∅→ M (bMD)

R19 : M→ ∅ (−bMD M)

R20 : H + M→ H (−bMD H)

R21 : H + M→ H + 2M (bMD HM)

R22 : R + M→ R (−bMDR)
R23 : R + M→ R + 2M (bMDRM)

R24 : I + M→ I (−bMD I)
R25 : I + M→ I + 2M (bMD IM)

R26 : V → V + M (bMVV)

R27 : V + M→ V (−bMVVM)

R28 : M→ ∅ (aM M)

R29 : M→ M + F (bF M)

R30 : I → I + F (cF I)
R31 : H + F → H (bFH HF)
R32 : F → ∅ (aFF)
R33 : M + E→ M + 2E (bEM ME)
R34 : I + E→ I (bEI IE)
R35 : ∅→ E (aE)

R36 : E→ ∅ (−aEE)
R37 : M + P→ M + 2P (bPM MP)
R38 : ∅→ P (aP)

R39 : P→ ∅ (−aPP)
R40 : P→ P + A (bAP)
R41 : S + A + V → S + V (γAVSAV)

R42 : A→ ∅ (aA A)

R43 : P→ P + S (rP)
R44 : P + S→ P (−rPS)

Figure A8. Reactions of Hancioglu model [29].
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R1 : C → C + Vf ()

R2 : C + E→ C + E + Vf ()

R3 : Vf + F → F ()

R4 : Vf → ∅ ()

R5 : Vf → ∅ ()

R6 : Vf + C → 2Vf + C ()

R7 : m + Vf → m + 2Vf ()

R8 : Vf + U → Vf + C ()

R9 : Vf + C → Vf + U ()

R10 : m + Vf + C → m + Vf + U ()

R11 : C + E→ E + m ()

R12 : C → MV ()

R13 : m→ U∅ ()

R14 : Vf → Vf + MV ()

R15 : MV → ∅ ()

R16 : MV + HE → MV + 2HE ()

R17 : m + MV + HE → m + MV ()

R18 : MV + HE → MV ()

R19 : MV + HE + E→ MV + E ()

R20 : ∅→ HE ()

R21 : HE → ∅ ()

R22 : MV + HB → MV + 2HB ()

R23 : m + MV + HB → m + MV ()

R24 : MV + HB → MV ()

R25 : MV + HB + B→ MV + B ()

R26 : ∅→ HB ()

R27 : HB → ∅ ()

R28 : MV + HE + E→ MV + HE + 2E ()

R29 : m + MV + HE + E→ m + MV + HE ()

R30 : MV + HE + E→ MV + HE ()

R31 : C + E→ C ()

R32 : ∅→ E ()

R33 : E→ ∅ ()

R34 : MV + HB + B→ MV + HB + 2B ()

R35 : m + MV + HB + B→ m + MV + HB ()

R36 : MV + HB + B→ MV + HB ()

R37 : ∅→ B ()

R38 : B→ ∅ ()

R39 : MV + HB + B→ MV + HB + B + P ()

R40 : m + MV + HB + B + P→ m + MV + HB + B ()

R41 : ∅→ P ()

R42 : P→ ∅ ()

R43 : P→ P + F ()

R44 : Vf + F → Vf ()

R45 : F → ∅ ()

Figure A9. Reactions of Bocharov model [30].
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R1 : ∅→ E ()

R2 : E→ ∅ ()

R3 : E + V → V + E∗p ()

R4 : E∗p + TE → TE ()

R5 : E∗p → ∅ ()

R6 : E∗p → E∗p + V ()

R7 : V → ∅ ()

R8 : V + A→ A ()

R9 : ∅→ D ()

R10 : D → ∅ ()

R11 : D + V → V + D∗ ()

R12 : D∗ → D∗ + DM ()

R13 : D∗ + DM → D∗ ()

R14 : DM → ∅ ()

R15 : ∅→ HN ()

R16 : HN → ∅ ()

R17 : DM + HN → DM + HE ()

R18 : DM + HE → DM + 2HE ()

R19 : DM + HE → DM ()

R20 : ∅→ TN ()

R21 : TN → ∅ ()

R22 : DM + TN → DM + TE ()

R23 : DM + TE → DM + 2TE ()

R24 : DM + TE → DM ()

R25 : ∅→ BN ()

R26 : BN → ∅ ()

R27 : DM + BN → DM + BA ()

R28 : DM + BA → DM + 2BA ()

R29 : HE + BA → HE + 2BA ()

R30 : BA → ∅ ()

R31 : BA → PS ()

R32 : HE + BA → HE + PL ()

R33 : PS → ∅ ()

R34 : PL → ∅ ()

R35 : PS → PS + A ()

R36 : PL → PL + A ()

R37 : A→ ∅ ()

Figure A10. Reactions of Lee model [9].
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