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ABSTRACT: An efficient search for optimal solutions in Bayesian
optimization (BO) entails providing appropriate initial samples when building
a Gaussian process regression model. For general experimental designs
without compounds or molecular descriptors in explanatory variable x,
selecting initial samples with a larger D-optimality allows little correlation
between x in the selected samples, which leads to effective regression model
building. However, in the case of experimental designs with compounds, a
high correlation always exists between molecular descriptors calculated from
chemical structures, and compounds with similar structures form clusters in
the chemical space. Therefore, selecting the initial samples uniformly from
each cluster is desirable for obtaining initial samples with maximum
information on experimental conditions. As D-optimality does not work
well with highly correlated molecular descriptors and does not consider
information on clusters in sample selection, we propose an initial sample selection method based on clustering and apply it to the
optimization of coupling reaction conditions with BO. We confirm that the proposed method reaches the optimal solution with up
to 5% fewer experiments than random sampling or sampling based on D-optimality. This study makes a contribution to the initial
sample selection method for BO, and we are convinced that the proposed method improves the search performance of BO in various
fields of science and technology if initial samples can be determined using cluster information appropriately formed by utilizing
domain knowledge.

■ INTRODUCTION
The search for the optimal solution is one of the most important
issues in various fields of science and technology, such as
machine learning, neural networks, robotics, aerospace en-
gineering, and the design of experiments (DoE). In this context,
Bayesian optimization (BO)1,2 has been widely studied and
utilized as one of the solutions. For example, computational fluid
dynamics (CFD)-based optimal design for chemical reactors, in
which MO BO was utilized to reduce the number of required
CFD runs. The developed optimizer was applied to minimize
the power consumption and maximize the gas holdup in a gas-
sparged stirred tank reactor, which had six design variables. The
saturated Pareto front was obtained after 100 iterations and
comprised many near-optimal designs with significantly
enhanced performances compared to conventional reactors
reported in the literature.14 Further, BO has been utilized in
generating novel molecules with optimized properties. The
original scheme, featuring BO over the latent space of a
variational autoencoder (VAE), had a problem as it tended to
produce invalid molecular structures. Constrained BO was
demonstrated as a good approach for solving this type of training
set mismatch in many generative tasks involving BO over the
latent space of VAE.4 Additionally, BO has also been applied to
search for the most stable molecular conformers. Finding low-
energy molecular conformers was challenging because of the

high dimensionality of the search space and the computational
cost of accurate quantum chemical methods for determining the
conformer structures and energies. BO algorithms were
combined with quantum chemistry methods to address this
challenge. After only 1000 single-point calculations and
approximately 80 structure relaxations, which was less than
10% of the computational cost of the current fastest method, the
low-energy conformers were found to be congruent with
experimental measurements and reference calculations.5 By
contrast, although examples of application to the optimization of
reaction conditions were not many, in 2021, the development of
a framework for Bayesian reaction optimization and an open-
source software tool that allows chemists to easily integrate the
optimization algorithms into their laboratory practices was
reported.3 In the study, a large benchmark data set for a
palladium-catalyzed direct arylation reaction was collected by
using high-throughput experimentation (HTE). BO was applied
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to two real-world optimization efforts (Mitsunobu and
deoxyfluorination reactions) and found to outperform human
experts’ decision-making in both average optimization efficiency
and consistency.

Thus, adaptive DoE using BO has been examined and used in
various fields. An efficient search for optimal solutions
necessitates providing appropriate initial samples when
constructing a GPR model for BO. Generally, as information
on the data set of objective variables y and the relationship
between y and explanatory variables x are unknown before
performing experiments, selecting initial samples using only
information on x is necessary. As the optimal solution condition
is unknown, selecting initial conditions that are scattered as
widely as possible in the chemical space is commonly desirable.
Methods such as random sampling, sample selection based on
D-optimality, and Latin hypercube sampling are often employed
for initial sample selection.1,9,12,15,23−25

In the case of experimental designs without compounds as
explanatory variables, samples with low similarity, for example,
in samples selected by D-optimality-based sampling or
Kennard−Stone sampling,12 initial samples with little correla-
tion among them can be selected and initial experimental
samples for model construction can be efficiently obtained. D-
optimality is a commonly used initial sample determination
method. By contrast, in the case of experimental designs
including chemical compounds as one of the explanatory
variables, selecting an initial sample corresponds to choosing a
combination of compounds. As the explanatory variables for
compounds are often molecular descriptors calculated from the
chemical structure, the explanatory variables are always highly
correlated. Therefore, the method of selecting initial samples
based on samples with low similarity such as D-optimality with
little correlation among the explanatory variables may not be
appropriate. Furthermore, in experimental conditions including
compounds as explanatory variables, clusters are often formed
for each set of structurally similar compounds. Although
uniform selection from each cluster to obtain initial samples
that do not have similar experimental conditions is desirable, D-
optimality does not consider any information on clusters in
sample selection. Given that initial samples can be universally
selected from the chemical space, we believe that selecting initial
conditions from all clusters, rather than considering correlations
among experimental conditions, would improve search
efficiency in BO.

Therefore, in this study, we propose a method to select initial
samples based on clustering information, considering the
characteristics that form clusters for each set of structurally
similar compounds. Specifically, clustering is performed as a
preprocessing step, based only on the information on
explanatory variables, and at least one sample is selected from
each cluster after confirming that the samples have formed
clusters for each compound. Some clustering-based methods
have been proposed before. For example, three initial training
data selection methods based on fuzzy clustering were proposed
to improve the performance of active learning.26 On the other
hand, there are few cases that confirm the effectiveness of the
initial sampling method based on clustering in BO for
compound combinations. In this study, the optimization of
coupling reactions that include compound structures as
explanatory variables was selected as the target of BO
application, and after preprocessing,initial samples were
determined by random sampling, sample selection based on
D-optimality, and sample selection based on clustering, and the

number of experiments required to reach an optimal solution in
BO. The proposed method was validated by checking the
number of experiments required to reach the optimal solution in
BO.

■ METHODS
Bayesian Optimization. The GPR model was used in BO.

The Gaussian process GP(μ(x), k(x,x′)) represents a
distribution over functions characterized by a prior mean μ(x)
and a kernel function k(x,x′). The kernel function k(x,x′)
Matern52 was selected. Since the hyperparameters had already
been optimized in a reference paper,3 the same values were used
for the GPR and BO applied in this study.

(1)

(2)

(3)

where r is the distance between experimental conditions, α is the
output scale parameter, and l is the length scale parameter. The
Gaussian process posterior distribution mean μ under
experimental condition x is given by

(4)

where k(x) is the covariance vector between the experimental
condition x and the training conditions, K is the covariance
matrix between all training conditions, σn2 is the variance of the
estimated noise, I is the identity matrix, and y is a vector of
responses corresponding to the training data. The variance in
the posterior distribution of the Gaussian process at
experimental condition x is given by

(5)

In GPR, the predictions are normally distributed; therefore, the
hyperparameters can be calculated by the maximum likelihood
estimation. The hyperparameters are determined so that the
following log-likelihood function is maximized.

(6)

Expected improvement (EI), which is the expected value of
I(x), is generally selected as the acquisition function in BO. The
improvement I(x) represents the increase in the objective
function f(x) relative to the currently best observed outcome f+.

(7)

The expectation value of I(x), EI(x), for a given experimental
condition x has the form

(8)

where I(x) is the improvement of the surrogate mean prediction
μ(x) diminished by δ, an empirical exploration parameter, σ(x)
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is the surrogate standard deviation, and Φ and φ are the
cumulative distribution function and probability density
function of the standard normal distribution, respectively. The
parameter δ was set to the commonly used value of 0.01.

The next experimental condition is selected by the value of
EI(x). Given that the experimental conditions are expressed as a
combination of various compounds, the chemical space is finite,
and x can be selected such that the expected value of EI(x) is the
highest.

(9)

If the experiments are conducted parallelly, the Kriging
believer algorithm21 is used to iteratively compute x for which
EI(x) is the maximum. This is achieved by adding the Gaussian
process posterior mean μ(x) to the known data and updating the
GPRmodel. We pursued the following procedure for calculating
BO (Figure 1).

1. Define the experimental space (e.g., solvent, ligand, and
temperature) and select initial samples x. If the
information on samples x and corresponding y is already
available, proceed to step 3.

2. Perform the experiments based on the selected samples x.
3. Build a GPR model using the information on samples x

and the corresponding y and calculate the EI of all
samples. All x and y are normalized and used in the
calculation.

4. Select the sample with the largest EI as the next
experimental condition. If the experiments are conducted
parallelly, repeat the calculations.

5. Conduct the experiment based on the selected samples.
6. Repeat steps 3−5 until y reaches the target value.

Initial Sample Selection Based on D-Optimality. D-
optimality is commonly used when selecting initial experimental

conditions, such as in theDoE. A general linear regressionmodel
is expressed by the following equation

(10)

where y is the objective variable vector, X is the explanatory
variable matrix (design matrix), and w is the regression
coefficient vector, which can be calculated using the following
equation

(11)

For the same number of experiments, selecting samples in
which the variance of the estimated value is minimum and the
covariance is close to zero is desirable. Therefore, the samples
should be selected to minimize the elements of the covariance
matrix σ2(XTX)−1.

When designing an experiment, after defining the exper-
imental factors, such as the range of operation and type of
compounds, initial samples are generated by combining these
factors. Obtaining initial samples that do not have similar
experimental conditions entails that the initial samples are
uniformly selected from the chemical space. D-optimality
(determinant of XTX) is repeatedly calculated for the selected
samples, and the combination with the largest value is adopted
as the initial sample. We performed the following calculation
procedure (Figure 2a).

1. Create multiple samples by combining exploratory
variables within the defined chemical space.

2. Randomly select initial samples from the obtained
samples.

3. Calculate the value of D-optimality for the selected
samples and save the sample set with the maximum value
of the D-optimality.

4. Repeat steps 2 and 3 until the maximum value of D-
optimality is not updated.

There are other similar methods using similarity in
experimental space, such as Kennard−Stone sampling;12

however, in this study, sampling based on D-optimality was
used as a representative of those methods.
Clustering. In this study, clustering was utilized as a

preprocessing step during the initial sample selection.
Partitioning aroundmedoids (PAM)19 and density-based spatial
clustering of applications with noise (DBSCAN)20 were applied
as typical clustering methods.

In PAM, a cluster is represented by medoids, which are data
points in the cluster that minimize the sum of distances among
all other points in the cluster. When the clusters are Xi = {x} and
the distance between data is d(x,y), the medoids are described
by the following equation

(12)

Initially, k medoids are randomly selected, and each medoid is
exchanged with the other data point repeatedly to improve the
evaluation value. The process is terminated when the evaluation
value is no longer improved. The number of clusters k must be
given in advance.

DBSCAN is a density-based clustering in which an algorithm
assigns labels to each data point based on the following
conditions:

• Points with at least MinPts of neighbors within a radius ε
are considered as core points.

Figure 1. Procedure for Bayesian optimization.
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• Points such that the number of adjacent points within
radius ε is less than MinPts but located within radius ε of
the core point are considered border points.

• All other points are considered noise.
Clustering is performed by forming clusters for each core

point and assigning each border point to a cluster of the nearest-
neighbor core points. Unlike k-means and k-medoids, clustering
can be performed without specifying the number of clusters;
however, the radius distance ε used to determine clusters and the
threshold MinPts for the number of neighboring points
considered as core points must be given as hyperparameters in
advance.
Initial Sample Selection Based on Clustering Informa-

tion. In this study, we propose a method for selecting initial
samples based on clustering information. When designing
experiments including compounds, after defining the exper-
imental factors, such as the range of operation and type of
compound, initial samples are generated by combining these
factors. Obtaining initial samples that do not have similar
experimental conditions requires the initial samples to be
uniformly selected from the chemical space. After clustering
based on explanatory variable information and confirming that
the samples have formed clusters for each compound group, at
least one sample from each cluster is randomly selected to avoid
similar experimental conditions in the initial sample selection.
Domain knowledge should be utilized to perform clustering on
factors that have a large impact on the objective variable. The
number of clusters must be less than the number of initial
samples. As selecting at least one or more initial samples from
each cluster is desirable, the number of initial samples should be
n times the number of clusters (n = 1, 2, ...). Additionally, the
number of clusters can be automatically determined by applying
DBSCAN with appropriate hyperparameters. Methods such as
k-means and k-medoids are not suitable for this approach
because they may bias the number of samples belonging to the

clusters even if hyperparameters are appropriate. The type of
clusters depends on the system; however, in our experience,
clusters are often formed by one or two factors (e.g., solvent and
ligand). We employ the following calculation procedure (Figure
2b).

1. Create multiple samples by combining exploratory
variables within the defined chemical space.

2. Perform clustering method on the obtained samples.
3. Select at least one sample from each cluster to form the

initial sample set.
Instead of random sampling, a sampling method based on D-

optimality can also be selected. In that case, we perform the
following steps in addition to the above procedure (Figure 2c).

4. Calculate the value of D-optimality for the selected
sample and save the sample set with themaximum value of
D-optimality.

5. Repeat steps 3 and 4 until the maximum value of D-
optimality is no longer updated.

There are other similar clustering methods, such as k-means,
hierarchical clustering,13 DBSCAN, and PAM, which were used
as representatives of those methods in this study.

■ RESULTS AND DISCUSSION
Data Set. In this study, we utilized the experimental data

reported in a previous paper3 that employed HTE to collect a
large benchmark data set for a palladium-catalyzed direct
arylation coupling reaction. The experimental conditions were
fixed for the reaction substance, catalyst, and ligand equivalents,
and a total of 1728 combinations of 3 reaction temperatures, 3
substance concentrations, 12 ligands, 4 solvents, and 3 bases
were used. Only 10 conditions had yields of 95% or higher,
accounting for 0.58% of 1728 conditions in the data set. As
ligands, solvents, and bases are categorical data, not quantitative
variables, we utilized Mordred7,8 to convert the molecular

Figure 2. Procedure for initial sampling: (a) D-optimality-based sampling, (b) random sampling with clustering, and (c) D-optimality-based sampling
with clustering.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c05145
ACS Omega 2023, 8, 2001−2009

2004

https://pubs.acs.org/doi/10.1021/acsomega.2c05145?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05145?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05145?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05145?fig=fig2&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c05145?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


structures of the mol files into zero-, one-, and two-dimensional
molecule descriptors,10 and all resulting descriptors were used
for calculation. When dealing with compounds, the number of
explanatory variables is generally very large. As explanatory
variables comprising approximately 5800 variables are high-
dimensional data and difficult to interpret, thereby rendering the
confirmation of the validity of clustering complex, all values were
standardized to mean 0 and standard deviation 1 for
preprocessing, and latent variables were calculated by principal
component analysis (PCA) and t-distributed stochastic
neighbor embedding (t-SNE) methods.16 In PCA, the number
of variables was reduced to 20 principal components, whose
cumulative contribution ratio was approximately 1. Although
the perplexity in t-SNE was varied from 10 to 1000, the clusters
did not change significantly. Therefore, the result of perplexity
85 was used in this study for validation.

In Bayesian reaction optimization, as a combination of
discrete values such as compound species, temperature, and
concentration is optimized, experimental condition samples are
spatially discretely distributed, and each compound forms
clusters with an almost uniform number of samples. In this case,
12 clusters were constructed for each ligand, and samples with
high yields were concentrated in certain clusters (Figure 3).

Clusters formed by ligands are reasonable as they are one of the
most important factors in coupling reactions. The t-SNE
method maps high-dimensional data to points in low-dimen-
sional space. Learning is performed so that the similarity of
samples in the high-dimensional space is reflected in the
similarity of samples in the low-dimensional space. In this case,
the ligands were represented as relatively large distances
between compounds in the higher-dimensional space, which
may have led to the formation of clusters for each ligand.
Comparisons of Initial Sample Selection Methods. To

confirm the impact of the initial sample selection and clustering
methods on the search results in BO, we compared the search
performance when the initial samples were determined using the
following six sampling methods.

• Random sampling (Random)
• Sampling based on D-optimality (D-optimal)

• Random sampling from each cluster after clustering by
DBSCAN (DBSCAN + Random)

• Sampling based on D-optimality from each cluster after
clustering by DBSCAN (DBSCAN + D-optimal)

• Random sampling from each cluster after clustering by
PAM (PAM + Random)

• Sampling based on D-optimality from each cluster after
clustering by PAM (PAM + D-optimal)

The calculation procedures are illustrated in Figure 4. In all
cases, the number of experiments per round and the number of
samples from clusters were varied to check the effect on the
mean and standard deviation of the number of rounds required
to reach samples with a yield of 95% or higher. To obtain reliable
results, the calculations were repeated more than 10,000 times
until the mean and standard deviation for each condition
converged. The number of clusters for sampling using clustering
information was set to 12, the same number of clusters formed
by t-SNE.

To observe the differences among the initial samples
determined by each initial sample selecting method, the
clustering results were color-coded and visualized by t-SNE.
The color coding in Figure 5a−c describe different clusters, with
red dots indicating selected initial samples. As mentioned in the
Data Set section, t-SNE was performed multiple times with
different perplexities; however, the results did not change
significantly. Therefore, one of the multiple visualization results
was used to plot changes in the initial sample position. When
utilizing D-optimal, in some of the cases, two initial samples
were selected from one cluster, and in other cases, no initial
samples were selected from a cluster (Figure 5a). In the case of
DBSCAN + Random, initial samples were uniformly selected
from all clusters (Figure 5b). When using PAM + Random, the
clustering results were different from the visualization results in
t-SNE and included clusters where no initial sample was selected
at all and clusters where two samples were selected. In addition,
the number of samples in each cluster was not uniform and
biased (Figure 5c).

The number of experiments per round was varied to check the
mean and standard deviation of the number of rounds required
to reach experimental conditions with a yield of 95% or higher.
The results are depicted in Figure 6a−c. In the graph, the vertical
axis shows that the average number of rounds required to reach
95% yield and the horizontal axis shows the number of
experiments per round. Error bars in each figure represent
95% confidence intervals of standard error of the means. In all
cases, the differences in means were statistically significant.
DBSCAN+Random needed fewer rounds than Random andD-
optimal to reach a yield of 95% or higher because we could select
at least one compound from all ligands, which is one of the most
important factors in coupling reactions, as the initial samples.
We could cover all ligands as the initial conditions allowed us to
search for conditions with high yields at an early stage. This
effect was particularly large when the number of experiments per
round and the number of initial samplings were small in all cases.
The larger the number of rounds and the initial sampling, the
smaller the difference among sampling methods. We speculate
that this was because the larger the number of experiments per
round or the initial sampling, the fewer the clusters for which the
experimental condition was not selected. We confirm that the
proposed method reached the optimal solution with up to 5%
fewer experiments than random sampling or sampling based on
D-optimality. DBSCAN + D-optimal was not significantly

Figure 3. Meaning of each cluster on t-SNE (red dot: top 10 yield
conditions).
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Figure 4. Procedures for each initial sample selecting method.

Figure 5. Example of initial samples for different sampling methods on t-SNE. Different colors (blobs) mean different clusters. (a) DBSCAN + D-
optimal, (b) DBSCAN + Random, and (c) PAM + Random.

Figure 6.Number of experiments per round vs average number of rounds to achieve 95% yield. (a) 12 initial conditions, (b) 24 initial conditions, and
(c) 36 initial conditions.
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different from DBSCAN + Random. We suppose that the effect
of sampling based on D-optimality was relatively small in this
case because the initial conditions were fully selected with
DBSCAN clustering before utilizing sampling based on D-
optimality. D-optimal, DBSCAN + Random, and DBSCAN +
D-optimal provided better results than Random. By contrast, the
mean and standard deviation of the number of experiments
required for the search for optimal solutions using PAM +
Random and PAM + D-optimal was around 3−5% larger than
that using Random. This is mainly due to the random selection
of initial values, which causes bias among clusters in the
experimental conditions and number of experiments, so that
clusters are not formed for each ligand species and selecting one
sample from each cluster did not cover all ligand species.
Usually, the experimental budget is fixed, and the initial number
of experiments (number of clusters) tends to be fixed. However,
k-means-/k-medoids-based clustering have the issue described
above; therefore, these methods that must specify the number of
clusters beforehand should not be used in the clustering-based
initial sampling method.

Thus, even if the experimental conditions could be sampled
from the clusters with optimal conditions, the search perform-
ance could be better or worse depending on the clustering
results (e.g., number of samples belonging to a cluster and
sample species). In actual optimization, intentionally increasing
the probability of sampling experimental conditions that are
close to the optimal solution in the reaction space is difficult
because prior knowledge of the cluster in which the optimal
solution is located is not possible. However, by maintaining the
number of samples belonging to a cluster, the variation in the
number of experiments required for the search for an optimal
solution can be reduced.

In this study, 12 clusters were constructed for each ligand, and
the experimental conditions with high yields were concentrated
in specific clusters. However, clusters may be formed by other
factors (e.g., temperature, solvent, base, and catalyst) depending
on compound information, clustering method, and hyper-
parameters. In such cases, samples with high yields may not be
concentrated in a particular cluster and may be scattered over
several clusters, and search performancemay be poorer than that
in the condition where they are clustered by a factor with a large
impact on the target variable. For example, in the present case,
assuming clustering by solvent rather than ligand, one sample
from each cluster can be selected from all solvent species;
however, covering the ligand that is the most important factor in
the reaction may not be possible. An example of clustering
without ligand information is illustrated in Figure 7. Clusters are
formed by combinations of solvents and bases, and the
experimental conditions for top 10 yields are not concentrated
in a single cluster. In such a case, sampling the initial conditions
from each cluster would cover all base−solvent combinations,
but not all ligands, and the search efficiency improvement effect
could not be achieved.

The initial sample selection method proposed in this study,
which utilizes clustering information, can reduce the number of
experiments required to reach the optimal solution compared to
random sampling or sampling based onD-optimality if the initial
samples can be clustered appropriately. Appropriate clustering is
defined as a case in which the number of samples belonging to
the cluster is almost uniform, and clusters can be formed with
factors that have a large contribution to the target variable. In the
case of compound combination optimization such as reaction
condition optimization, experimental conditions are spatially

discretely distributed, forming clusters with an almost uniform
number of conditions. By contrast, to form clusters with factors
that contribute significantly to the target variable, knowledge of
organic synthetic chemistry is required. If the initial samples can
be determined using appropriately formed cluster information
by utilizing domain knowledge, the search performance of BO
can be improved further, although it is not easy because the
experimental results are unknown before the experiment. In
addition, as the number of explanatory variables in the reaction
condition optimization in this study was extremely large, the
clustering validity was considered to be difficult to confirm,
given the difficulty of interpretation with high-dimensional data.
Therefore, visualization using t-SNE and clustering using
DBSCAN were conducted. Although the hyper-parameters for
clustering and visualization methods seemed to need to be
determined through trial and error, the result of this study
indicated that these are not so significant issues. Appropriate
initial samples need to consist of at least one compound from the
factors that have a significant impact on the object variable. If
one only selects samples one by one from a particular factor, this
can be accomplished without using specific machine learning
methods (k-means, PAM, etc.). The method of determining
experimental conditions using clustering by factors is a
conventional method and is probably the most accessible to
experimenters. When BO is applied to experimental design with
composite descriptors, if we can utilize the wisdom of experts,
we can improve the search performance of BO by determining
initial conditions by sampling at least one factor that is likely to
have a significant impact on the objective variable, instead of
determining initial samples using the commonly used
uncorrelation approach.

■ CONCLUSIONS
An efficient search for optimal solutions in BO necessitates
providing appropriate initial samples when building a GPR
model. In the case of experimental designs with compounds, a
high correlation always exists between molecular descriptors
calculated from chemical structures and compounds with similar
structures form clusters in the chemical space. Therefore,
selecting the initial samples uniformly from each cluster is
desirable for obtaining initial samples with maximum
information on experimental conditions. As sampling methods
using similarity in experimental space, such as D-optimality,

Figure 7. Example of DBSCAN clustering without information for
ligand on t-SNE (perplexity 20).
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does not work well with highly correlated molecular descriptors
and does not consider information on clusters in sample
selection, in this study, we proposed an initial sample selection
method based on clustering information that covers the factors
with a large impact on the objective variable and applied it to the
optimization of coupling reaction conditions with BO. We
confirmed that when clusters were appropriately formed and
initial samples were selected from each cluster, the proposed
method reached the optimal solution with fewer experiments
than random sampling or sampling based on D-optimality.
Additionally, we also found that when the number of
experiments per round was small, the effect of the proposed
method was greater than that of other methods not including
cluster information, and the number of rounds required for the
search could be reduced. Appropriate clustering is defined as a
case in which the number of samples belonging to the clusters is
almost uniform and clusters can be formed by factors that
contribute considerably to the target variable. Clustering is
unsupervised learning, and we cannot know information about
the objective variable (experimental results) before experiments.
Additional information (knowledge of experts) is needed to
connect these pieces of information. In the laboratory, there are
many requests to use BO in combination with the knowledge of
experts. If we can form appropriate clusters and determine initial
conditions by utilizing domain knowledge, we can further
improve the search performance of BO in the case of compound
combinations such as reaction condition optimization. This
study makes a contribution to the initial sample selection
method for BO, and we are convinced that the proposedmethod
improves the BO search performance in various fields of science
and technology if initial samples can be determined using cluster
information appropriately formed by utilizing domain knowl-
edge. In the future, we plan to study the handling of cases in
which the number of factors is large (when the number of
combinations is huge), whenmultiple factors have a large impact
on the objective variable, to determine optimal parameters by
quantifying the diversity22 in clustering results, and in the case of
multi-objective optimization.
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