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Characterizing metagenomes via kmer-based, database-dependent taxonomic classification has yielded
key insights into underlying microbiome dynamics. However, novel approaches are needed to track com-
munity dynamics and genomic flux within metagenomes, particularly in response to perturbations. We
describe KOMB, a novel method for tracking genome level dynamics within microbiomes. KOMB utilizes
K-core decomposition to identify Structural variations (SVs), specifically, population-level Copy Number
Variation (CNV) within microbiomes. K-core decomposition partitions the graph into shells containing
nodes of induced degree at least K, yielding reduced computational complexity compared to prior
approaches. Through validation on a synthetic community, we show that KOMB recovers and profiles
repetitive genomic regions in the sample. KOMB is shown to identify functionally-important regions in
Human Microbiome Project datasets, and was used to analyze longitudinal data and identify keystone
taxa in Fecal Microbiota Transplantation (FMT) samples. In summary, KOMB represents a novel graph-
based, taxonomy-oblivious, and reference-free approach for tracking CNV within microbiomes. KOMB
is open source and available for download at https://gitlab.com/treangenlab/komb.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Metagenomes are known hot spots for genomic diversity [1–3].
Communities in metagenomes consist of individual organisms
whose genomes are dynamic because of Structural Variants (SVs)
such as gene duplication, gene loss/gain, horizontal gene transfer,
and gene rearrangements [4–7]. These dynamic events are a results
of complex interactions that underpin the microbiome [8,9]. There-
fore, characterizing metagenomic samples from diverse environ-
ments and sample types is essential to understanding
community structures, interactions, and underlying functional
information [10–14]. The main approaches to analyze metagen-
omes include functional characterization and taxonomic classifica-
tion pipelines [15–17]. These approaches, while informative, do
not necessarily capture structural variation events such as
sequence-level gene duplication, gene loss/gain or transfer activity
found in metagenomic samples over time.

1.1. SVs are important markers for microbial adaptation

Structural Variation, and specifically Copy Number Variation
(CNV), has been shown to impact microbial phenotypes. Intra-
species CNV in the gut microbiome have been previously linked
to specific adaptive functions associated with obesity and inflam-
matory bowel disease [18]. A recent study found multiple associa-
tions between CNV in the gut microbiome and host disease risk
factors [19]. Further, several metagenome-wide association studies
(M-GWAS) also underscored the effect of host genetics and host
environment on the composition and functional potential of the
gut microbiota [20–22]. This complex interplay of the microbial
and host environments based on gene copy numbers have
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indicated the need to look beyond taxonomy-based approaches
and additionally focus on microbial functions that are unique,
enriched, or depleted [23]. The identification and analysis of CNV
in microbiomes is imperative to furthering our understanding of
microbial dynamics and functional diversity in complex metagen-
omes [24].

1.2. Metagenomic assembly is not optimal to track SVs in samples

While metagenomic assembly algorithms that generate meta-
genome assembled genomes (MAGs) have made great strides and
are a natural choice for analyzing microbial communities, there
are existing challenges to recovering SVs, and especially CNV, accu-
rately [25]. Much of this stems from the complexity of gene dupli-
cations and/or repeats within a same organism (intra-genomic
repeats), or shared between distinct organisms (inter-genomic
repeats). The shorter relative length of the sequencing reads com-
pared to the length of the repeats, particularly in the intra-genomic
case, prohibits fully resolving these repeats [26,27]. Repeats longer
than sequencing reads lead to a computational explosion in the
number of possible paths through the assembly graphs. Therefore,
most assemblers tend to use heuristics to try and simplify traversal
and circumvent the complexity, which ultimately leads to loss of
SV information [28]. Although it is possible to tease out variants
with a metagenomic short-read scaffolder, such as Bambus2 [29],
MaryGold [30] and MetaCarvel [31], and while longer reads can
help to resolve repeats within metagenome assembled genomes
(MAGs), to the best of our knowledge no method is able to accu-
rately track both CNV and shared genomic content using short-
read data alone [4].

1.3. Need for variant-aware methods to track metagenomic SVs

While certain metagenomic communities, including the human
microbiome [32–34], are well studied in different pathological
conditions, there exists limited biological insight for a plethora of
different microbiomes, including environmental microbial com-
munities [35–38]. The difficulty in analyzing these metagenomes
can often be attributed to the paucity of curated databases and
library of reference genomes often required to identify SVs in the
sample [39]. The sheer diversity of organisms in these samples that
are yet to be identified and annotated further exacerbates this
challenge [40,1].

In order to deal with high-volume metagenomic data from
many sample types that may lack an adequate reference, previous
efforts have focused on reference-free approaches to quantify
structural variants and diversity. Short read assemblers mostly rely
on De Bruijn graphs (DBG), assembly graphs, or scaffold graphs to
identify structural variation through extraction of specific graph
topologies [29,30,41,31]. An overview of the construction of these
various graph types including the contributions of this work are
illustrated in Fig. 1. These approaches characterize samples by
relying on popular graph algorithms like betweenness-centrality
to identify repetitive contigs (containing segments with high copy
number), or finding 2-vertex cuts to extract end points of bubbles
(which represent polymorphic regions), or both. For example, four
node bubbles denote the variation between very similar sequences
while three-node bubbles potentially represent gene gain/loss
events and horizontal gene transfers. In order to reduce the
OðVEÞ complexity of betweenness-centrality [42–44], approxima-
tion algorithms have sometimes been employed. Another recent
approach has focused on allowing end-users to efficiently query
neighborhoods of interest in metagenomic–compacted DBGs,
specifically by an indexing approach that approximates minimum
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r-dominating sets [45]. Though the approximation schemes, espe-
cially in the case of betweenness centrality, make this calculation
more tractable on large metagenomic datasets its sample wide
accuracy and sensitivity may still be sub-optimal [41]. Another
recent tool, MetaFast [46] compares unitigs in DBGs to find unique
regions by comparing a set of ‘‘positive” and ‘‘negative” samples. To
the best of our knowledge, MetaCarvel is the only existing graph-
based approach able to track SVs and CNV de novo from metage-
nomic short read data, which we compare to in this work.
1.4. KOMB: a novel approach for identifying CNV in metagenomes

Before we describe our approach, it is important to define what
we mean by variation in the context of a broader view of SV detec-
tion in metagenomes. Similar to the definition used by Zeevi et al.
(2019) [19], we define SVs as genomic segments present in differ-
ing copy numbers across a subset of microbial genomes within the
community, as well as segments in close proximity to these dupli-
cated regions that may be inserted/deleted (indels) compared to
other bacteria in the sample. In our work, we show that through
careful graph construction and algorithmic choices, it is possible
to retrieve and characterize CNV in metagenomes from a func-
tional perspective.

Previous methods have used DBG types with embeddings or
support for efficient repeat retrieval, such as Breakpoint graphs
[47,48], A-bruijn graphs [49,50], Linked DBGs [51] and SIGAR
graphs [52]. But these graph types have been limited in their use
for detecting SVs in complex microbial community containing
multiple closely-related genomes.

One novelty in the method presented herein is that we add an
additional set of edges to the compacted DBG (cDBG). These are
called repeat edges, and they allow KOMB to track both intra-
genomic and inter-genomic repeats across a given sample. We call
the combination the ‘‘hybrid unitig graph”, though it retains the
canonical adjacency edges that track indels. This leads to formation
of densely connected, clique-like regions that can be efficiently
recovered in OðEþ VÞ complexity using the K-core decomposition
algorithm [53,54,94]. We show through validation on simulated
datasets that KOMB is able to partition unitigs into shells (bins)
based on the copy number of repeats contained as well as the rel-
ative proximity of these repeats, which enables capturing a com-
munity wide profile of different shared repeats in the sample.
Table 1 summarizes the features of previous tools and highlights
the contribution of KOMB towards characterization of subtle but
previously hidden properties of a metagenome.

We outline three main results in our work. First, we show that
compared to MetaCarvel we can recover a higher number of
repeats based on appropriate shell thresholds as well as recover
higher number of unitigs that repesent variation (clique-like
regions vs bubbles) in a synthetic metagenome. Second, we show
that sample-specific difference in Human Microbiome Project
(HMP) microbial community structures can be recovered by KOMB
repeat profiles. Additionally, KOMB is able to find a statistically sig-
nificant number of ‘‘anomalous” unitigs (high coreness and low
degree) that are functionally unique in each HMP body-site.
Finally, we also show that KOMB profiles can be used to track
changes in longitudinal samples and show that ‘‘anomalous” unit-
igs are representative of keystone taxa required for FMT recovery.
Though a more thorough theoretical treatment towards wider
applicability and intepretability of these repeat profiles and distin-
guishing intra- and inter-genomic repeats is an active research
question, KOMB shows significant utility in identifying function-
ally and taxonomically important CNV in metagenomes.



Fig. 1. Different graph types for metagenomic analyses and their construction. Graphs construction based on a set of five reads are shown. A. Overlap graph [Directed]:
built directly from read with an overlap size of 3 base pairs(bp) and transitive edges are removed. B. De Bruijn graph (DBG) with kmer size (k) = 4 bp [Directed]: joins
successive kmers obtained from reads having overlap size of length k-1. The kmers in blue represent repeated kmers. C. Unitig scaffold graph [Directed]: joins unitigs
according to their relative positions in a DBG D. Hybrid Unitig Graph [Undirected]: An extension of the Unitig scaffold graph but is also repeat-aware and joins unitigs
containing repeats of size k-1 where k is the kmer size used to build the DBG. Edge carried forward from the unitig scaffold graph are marked in black and called paired-end
edges whereas newly added edges are marked in red and are called repeat edges. 3-mers marked in bold (GTG, GCT and TAA) are the repetitive regions connected by the
repeat edge.

Table 1
Comparison of KOMB to previous tools developed for CNV detection in Metagenomes. KOMB utilizes a fully connected hybrid unitig graph based on repeat linkage to track
CNV across samples. Only the central algorithms for repeat detection and/or SV detection are listed as some tools use a combination of algorithms. Abbreviations:
BinEM = Bernoulli Mixture Model (BMM) estimated through the Expectation–Maximization (EM), NEM = Neighboring Expectation–Maximization algorithm, Bet. Centrality
= Betweenness Centrality

Tool Algorithm Linear Reference Detect Works Anomaly
Time free CNV on Detection

Complexity Raw Reads

PPanGGOLiN [55] BinEM/NEM No No Yes No No
Bambus2 [29] Bet. Centrality No Yes Yes Yes No
MetaCarvel [31] Approx. Bet.Centrality Approx. Yes Yes Yes No
KOMB (this work) K-core Decomposition Yes Yes Yes Yes Yes
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2. Methods

2.1. KOMB algorithm

An overview of the KOMB pipeline is given in Fig. 2. The main
steps are as follows. First a DBG is constructed from reads in the
sample and unitigs are identified from this graph. The reads can
be subject to an optional k-mer filter as a preprocessing step. Sec-
ond, reads are mapped back to unitigs and a graph is constructed
on the unitigs by linking them together in two different ways using
the read-mapping data (called a ‘‘hybrid” graph herein and
described in additional detail below). Only unitigs with a GC con-
tent between 10% and 90% are considered as nodes for the graph.
Finally, the hybrid unitig graph is partitioned using the K-core
decomposition into an ordered group of bins (called ‘‘shells”),
where unitigs in higher shells have a higher copy number. This
set of shells along with the unitigs contained in each one is called
the KOMB profile, and in what follows we show that it captures a
meaningful property of the community.

KOMB incorporates several widely-used bioinformatics tools as
part of its workflow. Raw paired-end reads are input to ABySS [56]
for efficient DBG creation and unitig construction, as well as Bow-
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tie2 [57] for fast and accurate read mapping. In addition to this, our
tool also relies on the igraph C [58] and OpenMP [59] libraries for
the K-core implementation and the fast parallel construction of the
hybrid unitig graph, respectively. A k-mer based read filtering tool
[60] is also available for use as part of the software for optional
pre-processing of reads.

2.1.1. Hybrid unitig graph construction
KOMB constructs a novel hybrid unitig graph to efficiently mine

repetitive topologies using K-core graph decomposition. The work-
flow consists of DBG construction, read mapping, and the KOMB
core module as shown in Fig. 2. All reads are initially input to
the DBG constuctor ABySS to obtain unitigs. A unitig is a maximal
consensus sequence usually obtained from traversing a DBG. By
definition, unitigs terminate at branches caused by repeats and
variants and, unlike contigs, are non-overlapping. Subsequently,
all of the reads are mapped to unitigs using Bowtie 2. We then con-
struct our hybrid unitig graph with two distinct set of edges. First,
for each read we create a set of all unitigs that mapped to that read
and connect them. We denote these edges as repeat edges, which
capture repeats in unitigs. Second, for a given forward and reverse
read pair, we check if each individual read in the pair mapped to



Fig. 2. Overview of the KOMB pipeline. 1. As an optional pre-processing step users can use k-mer filtering to discard low-quality erroneous reads. 2. KOMB uses ABySS for
memory efficient DBG construction and unitig generation. 3. Paired-end reads are mapped back to the unitigs obtained in 2 in order to connect unitigs. Paired-end reads with
just one read mapping are discarded. 4. The hybrid unitig graph is constructed. Edges connecting unitigs mapped by the same read are termed as repeat edges whereas edges
between unitigs mapped by paired-end reads are called paired-end edges. The latter are similar to edges in a scaffold graph. 5. The obtained unitig graph is partitioned into K-
shells using the K-core decomposition algorithm. Anomalous unitigs are marked using the CORE-A anomaly score algorithm.
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different unitigs, which would represent potentially adjacent unit-
igs in the genome. We call these adjacency edges.

2.1.2. K-core decomposition
K-core decomposition is a popular graph-theoretical concept

used in network science to identify influential nodes in large net-
works [61–63]. The K-core of a graph is defined as the maximal
induced subgraph where every node has (induced) degree at least
K. A node belongs to the K-shell if it is contained in the K-core but
not in the ðK þ 1Þ-core. For any given graph, one can iteratively and
efficiently decompose it into shells with a complexity proportional
to the size of the graph, which is significantly faster than the com-
putation of most exact centrality measures [54]. The shells output
as a result of K-core decomposition on the hybrid unitig graph
reveal unitigs that are connected either to a similar number of
unitigs as a result of their repeat content (via repeat edges) or
are adjacent to unitigs with the same properties. At higher shells
we observe clique or clique-like behaviours that capture unitigs
containing repeats with very high copy number and in some cases
appearing very close to each other (e.g., tandem duplications). Both
adjacency edges and repeat edges are weighted equally in the
graph. A more detailed description of K-core decomposition as well
as theoretical analysis of the KOMB K-core profile can be found in
Supplementary Figures S1 and S2.

2.1.3. Identifying anomalous unitigs
Identification of biologically important unitigs in a given sample

is done through ranking the nodes with a CORE-A anomaly score
[64]. The CORE-A anomaly score calculates the deviation from mir-
ror pattern (dmp) as given in Eq. 1 where rankd and rankc denote
the rank of degree and coreness (shell that a vertex belongs to).
This has been shown to reveal nodes of interest in real-world
graphs like social and information networks [64].
3211
CORE� AðvÞ ¼ j logðrankdðvÞÞ � logðrankcðvÞÞj ð1Þ
2.2. Datasets

We tested KOMB on four different datasets to illustrate various
properties of KOMB and underline different use cases while analyz-
ing metagenomes. The datasets and their use cases are briefly
described as follows:

1. Simulated data: Reads of length 100 base pairs were simulated
using wgsim [65] with no errors, substitutions or indels. The
random backone was created with equal probability of observ-
ing each base (i.e A, T, G, and C) and validated by running Abyss
[56] and obtaining only a single unitig. E.coli and B.cereus refer-
ence genomes were downloaded and used as a backbone for
validation of inter and intra-genomic repeats.

2. Shakya synthetic metagenome: A well-characterized synthetic
metagenome consisting of 64 organisms (48 bacteria and 16
archea)[66]. This dataset is a simple test case to demonstrate
how KOMB operates in practice, how to interpret the results,
and how the higher shells reflect the structure of repeated
regions in the metagenome.

3. Multi-site HMP samples: This dataset contains 50 samples
each from four body sites drawn from the Human Microbiome
Project (HMP)
[67]. These samples are a useful test case for KOMB because
they demonstrate a) that the KOMB profile for samples within
a given site are broadly similar to one another, and b) that the
overall profile for each body site is characteristic and distinct
from other body sites in much the same way that the taxonomic
profile is. In other words, it suggests that the KOMB profile is
both reproducible and is consistent with what might be
expected on highly dissimilar communities. This dataset is also
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used as an example of how the KOMB profile specifically recov-
ers functionally rich sequences.

4. Longitudinal gut microbiome samples: This data is also from a
previous study [68] and contains samples taken from 6 subjects
over two years, including one subject that was exposed to
antibiotic and bowel cleanse disruption in that time. This is
meant to go one step further by showing that the KOMB profile
can capture both subject-specific differences at a common body
site and variations in an individual community over time as it is
subject to perturbations.

5. Fecal microbiota transplantation (FMT): This data has not
been previously published and includes samples from two
patients undergoing (FMT) from a common donor. Specifically,
the samples include both pre- and post-FMT from each patient
as well as one sample from the donor. Anomalous unitigs iden-
tified in KOMB profiles capture specific taxa that are known to
be contributurs to recovery and transition to a disease-free
state in Post-FMT samples when compared to both Pre-FMT
and Donor samples.

2.3. Running KOMB

The following sections contain detailed descriptions of how
KOMB was run on each of the four datasets as well as any steps
required for additional analyses discussed in Results below.

2.3.1. Shakya synthetic metagenome
Reads from the Shakya et al. (2014) study were obtained from

NCBI Sequence Read Archive (SRA) (SRR606249). Reads were fil-
tered using the kmer-filtering tool packaged as part of Stacks
[60] since the dataset contains well characterized contaminants
such as Proteiniclasticum in the data [45]. Ground truth for repeti-
tive unitigs was established by using nucmer [93] to map the unit-
igs to the reference genomes with parameters -c 50 -l 50 as the
hybrid unitig graph was built on matching 50 bp exact matches.
KOMB was run with the parameters -k (kmer-size) 51 and -l (read
length) 101. Fraction of repeat unitigs were calculated by dividing
the number of unitigs marked as repetitive by nucmer to the total
number of unitigs in the shell. KOMB repeat density calculated for
each shell is given by the formula outlined in Eq. 2. We calculate
the sum of copy numbers of each repetitive unitig and then divide
it by the number of reference genomes these unitigs map to (num-
ber between 1–64). This number is then averaged over the number
of repetitive unitigs in a shell given by N.

KOMB Repeat DensityShell

¼

XN

i¼1

Copy numberi=Number of reference genomes mappedi

Number of repeat unitigs in shell
ð2Þ
2.3.2. Multi-site HMP samples
HMP 1 data consisting of 50 samples each from four different

body sites (anterior nares, stool, supragingival plaque, and buccal
mucosa) was downloaded from the HMP website https://www.
hmpdacc.org/HMASM/. Prior to running KOMB, we implemented
a homogenizing step where only reads having length equal to the
longest read length per sample were kept (mostly 100 bp) and
the rest were discarded. Functional characterization of unitigs
obtained and marked from the anomaly detection stage is done
through SeqScreen [69,70]. Anomalous unitigs are determined by
considering all unitigs whose dmp score (see Eq. 1) is above a cut-
off score as determined in Eq. 3. In this equation, Q3 represents the
third quartile and IQR is the inter-quartile range which is the dif-
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ference between the third and first quartiles (Q3 - Q1). For the anal-
ysis, we combined the anomalous unitigs from each individual
sample and, separately, we combined the rest of the unitigs from
each of the samples to obtain the set of unique GO terms and set
of anomalous GO terms for each body site. Anomalous GO terms
refers to the GO terms found in unitigs marked as anomalous by
KOMB. Unique GO terms refers to a subset of GO terms found only
in the anomalous unitigs but not found in other unitigs in a given
body site. Consequently, anomalous GO terms are a superset of
unique GO terms. All GO terms are filtered for bacterial specific
GO terms using the https://github.com/AstrobioMike/CoV-IRT-
Micro python package. Only GO terms belonging to the Biological
Process branch were considered for the analysis.

Cut off score ¼ Q3 þ 1:5 IQR ð3Þ
2.3.3. Longitudinal gut microbiome samples
Reads for the dataset were obtained from the European Nucleo-

tide Archive (ENA) website (ID: ERP009422). The reads were fil-
tered using the kmer filter tool packaged as part of Stacks [60].

2.3.4. Fecal microbiota transplantation (FMT) samples
Sample Collection: Two pediatric patients with a recurrent

Clostridium Difficile Infection (CDI) diagnosis received FMT under
IRB-approved informed consent (#H-31066) at Baylor College of
Medicine. The investigational nature of FMT was highlighted dur-
ing consenting in accordance with current U.S. Food and Drug
Administration (FDA) regulations. CDI diagnosis was based on
toxin PCR positivity along with clinical complaints of 3 or more
diarrheal stools per day. Patients reported recurrent (return of
symptoms within 2 months) or ongoing diarrheal symptoms
despite completing at least two courses of CDI-directed antibiotics
that included at least one course of metronidazole and van-
comycin. Patients received filtered, frozen-thawed fecal prepara-
tions from a standardized donor (38–40 year old male during
donations) via colonoscopy. The donor screening and fecal prepa-
ration procedures were approved by the U.S. FDA (IND#15743).
Fecal samples were collected from patients the day prior to FMT
and 8–9 weeks following treatment on a follow-up visit. All sam-
ples were frozen and kept at �80�C until simultaneously thawed
for bacterial DNA extraction using the PowerSoil DNA isolation
kit (MO BIO Laboratories, Carlsbad, California, USA). Shotgun
metagenomic sequencing was performed with > 200 ng of input
DNA as previously described in [71] and the sequence was submit-
ted to NCBI BioProject database: PRJNA743023.

Analysis: Reads were mapped to GRCh38p12 using bowtie 2.3.5
to filter out human sequences with preset options bowtie2 –local.
Read pairs were extracted from resultant Sequence Alignment Map
(SAM) file using samtools 1.9 [72] using flags samtools fastq -f 13
and then run through KOMB. Taxonomic analysis of the anomalous
unitigs was done by running the unitigs through Kraken2 [73].
Kraken2 was run with the miniKraken2 database v1 (8 GB). Unitigs
that were successfully classified at genus level or below were con-
sidered for the analysis. All unitigs classified at species level were
assigned to their corresponding genus. For each sample, anomalous
unitigs are obtained by selecting those whose dmp score (Eq. 1) is
above the cutoff score in Eq. 3. For each genus present in anoma-
lous unitigs, we calculate the Ratio of Ratios score for each genus
as given in Eq. 4, where numag and numog are the number of unitigs
classified at genus g in the set of anomalous unitigs and other
(background) unitigs, respectively. The denominators refer to the
sum of all unitigs of all genus present in the set. The total number
of unique genus present in both the sets (anomalous and other) are
Na and No, respectively. For the analysis, we selected those genera
with the ratio of ratios greater than or equal to one (P 1) which we
term as over-represented genus in the anomalous unitigs.

https://www.hmpdacc.org/HMASM/
https://www.hmpdacc.org/HMASM/
https://github.com/AstrobioMike/CoV-IRT-Micro
https://github.com/AstrobioMike/CoV-IRT-Micro


A. Balaji, N. Sapoval, C. Seto et al. Computational and Structural Biotechnology Journal 20 (2022) 3208–3222
Ratio of Ratios scoreg ¼
numag=

XNa

i¼1

numai

numog=
XNo

i¼1

numoi

: ð4Þ
2.4. Calculating the L1 distance between KOMB Profiles

In order to calculate the distance between two KOMB profiles,
we use the L1 norm of the difference between their normalized
coreness profiles. More precisely, we first divide the size of each
shell by the total number of unitigs in each profile. The shorter
of the two profiles is then padded with zeros to equalize the num-
ber of shells, i.e., we can represent each profile as a vector of the
same size. We then compute the distance between the profiles as
the L1 norm of the difference between these two vectors.
3. Results

3.1. Validating KOMB on CNV in simulated data

We tested KOMB ability to recover segments containing CNV
through two simulated experiments. First, we embedded two fam-
ilies of repeats 200 � 400 bp and 400 � 200 bp identical repeats in
a randomly generated DNA backbone and simulated error-free
reads from the genome. We inserted the repeats in the backbone
in three different ways to see how the relative placement of
repeats effects the identification of CNV. The repeats were inserted
(i) randomly over the length of the read (ii) each family of repeats
at a different end and (iii) both families at the same end. As the
backbone is completely random we expect the unitgs to branch
at repeats by definition. We plot the KOMB profile for each of these
cases which is the shell number on the x-axis vs the number of
unitigs on the y-axis. We see in Fig. 3 that the relative position of
the families of repeats in backbone influences the shell number
where the repeats are found. In the case where the repeats are
inserted at different ends we observe the peaks of unitigs co the
repeat families at 201 and 401 which is almost exactly the copy
number of the families respectively. The small deviation was
caused due to the imperfect unitig output of abyss. When the
repeats are interleaved as in (i) or (iii), the peaks were shifted
towards the right due to the presence of unitigs with mixed repeats
as discussed in Supplementary Figure S2 which increase the shell
number of the repeats due to the extra edges.

The second experiment dealt with validation of simulated
repeats in a real genomic backbone. We embedded 400 � 400 bp
intra-genomic and 500 � 500 bp inter-genomic repeats in an E.coli
backbone. Another 200 � 400 bp intra-genomic and 500 � 500 bp
inter-genomic repeats were inserted into B.cereus backbone and
reads were simulated error-free. The unitigs in the peaks on the
KOMB profile were mapped back to genomes to ascertain if they
originated from a given family of repeats for validation. Similar
to the case with a random backbone, we observed shift in the peaks
and additional fragmented peaks around the CNV region. The frag-
mentation is caused by presence of inherent repeat elements in
each of the organisms. We found that the unitigs in the peak
around 200 and 400 do indeed correspond to the intra-genomic
repeats while the peak around 1000 did indeed correspond to
inter-genomic repeats (Fig. 4 and Fig. 5). Under a controlled envi-
ronment, the KOMB profile allowed for separation and identifica-
tion of different repeat families in the sample based on their
copy number. In addition to these experiments, we also tested
KOMB on simulated repeats with low copy numbers (Supplemen-
tary Figure S3) that were closer in count to each other (10x400bp
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and 25x400bp repeats) and we were able to achieve similar results
as seen in the previous validation experiments.
3.2. KOMB profile example and interpretation

The Shakya synthetic community was used as a simple example
to demonstrate the KOMB profile and provide additional evidence
to support the assertion that it captures the pattern of repeated
regions in the community.

An input to the DBG construction is k: the exact k-mer size used
to join reads. The shells in the KOMB profile are labeled incremen-
tally as they are produced in the K-core decomposition. The num-
ber of a given shell is approximately the copy number of a family of
exact repeats of size k� 1, either within a single genome or across
multiple organisms. This is shown in some additional detail below
using a simulated example from a community of two microbes.
The correspondence between shell number and copy number is
not perfect, however, as there are some circumstances where a
unitig can wind up in a higher shell for other reasons, also dis-
cussed below.

First, Fig. 6(A) shows how the full set of unitigs is distributed
according to each shell, with a total of 320 K-core shells obtained
after decomposition (for simplicity, we exclude shell 0 which rep-
resents isolate unitigs). Early shells (i.e. 1–4) contain the majority
of the unitigs and overall the density declines steeply as the shell
number grows, similar to what we might expect in a random
graph. However, by contrast with a random graph there are a num-
ber of small peaks occurring at higher shells after the initial drop-
off (marked with red triangles). Most of these peaks are followed
by regions of empty cores indicating that these peaks mark dense
cliques that all share the 50 bp exact match (as 51 was the k-mer
size used). These peaks in higher shells are endemic to the nature
of the KOMB profile, and the number and size of the peaks cap-
tured in this figure are a simple summary of the KOMB profile
for a given community.

Beyond simply showing the KOMB profile for this community, it
is worth verifying that higher shells do indeed represent regions
with more repeats and of higher repeat-number. Here, we have
used nucmer to quantify the repeat number of each unitig, and
the stacked bar charts in Figs. 6(B) and 6(C) show how shells com-
pare to one another according to the fraction of unitigs considered
a repeat and average repeat density, respectively. The nucmer
repeat quantification is imperfect and the shells are grouped by
quartile, but nonetheless the third and fourth quartiles are skewed
to the right in each graph, indicating that indeed the higher shells
contain unitigs with a heavier density of repeats. This is a funda-
mental property of the shells in a KOMB profile. Nucmer analysis
of repeat unitigs also revealed that the repeats in the higher shells
mapped only to a few organism in the sample but had relatively
high copy numbers resulting in a higher density. Combining these
observations with those from the KOMB profile, we can infer that
the majority of shells containing clique/clique-like regions (i.e.,
repeats and sequences adjacent to similar branching paths in the
graph) are likely to lie beyond shell 161. It is important to note
here that the topology of the hybrid unitig graph allows KOMB to
capture unitigs that are adjacent (as defined by adjacency edges)
to repetitive unitigs across copy numbers, in addition to repeats.
This is a non-obvious phenonmenon, but the expected result that
a small number of the unitigs in higher shells will be there not
because of copy number, rather due to their adjacency to a high-
copy region.

To evaluate the results obtained by KOMB we compared the
repeat unitigs obtained to MetaCarvel [31]. In Supplementary Fig-
ure S4 (A), we observe that the contigs marked as repetitive by
MetaCarvel have low True Positive Rate (TPR) and False Positive



Fig. 3. Validation of KOMB on simulated data. KOMB profiles on a random backbone with 200�400 bp and 400�200 bp identical repeats when randomly inserted (L),
inserted at different ends (M), and inserted in the same end (R). The x-axis represents the shell number and the y-axis represents number of nodes (unitigs). In the ideal case
(M) where the unitigs have the same repeats at its end we observe peaks at 201 and 401 respectively. Interleaving repeats randomly (L) causes a shift in the peaks towards
higher shells to 326 and 449, respectively. Further, inserting both kinds of repeats at the same end (R) results in a similar shift with peaks occurring at 329 and 451.

Fig. 4. Validation of KOMB on simulated data with a real genomic backbone. Combined KOMB profile of E. coli (intra: 400�400 bp, inter 500�500 bp) and B. cereus (intra:
200�400 bp, inter 500�500 bp) repeats (Left), E. coli single genome (Middle), and B. cereus single genome (Right). For the combined profile of both bacteria (L), there is a clear
formation of peaks close to position 1000 (984 and 979), which indicate the inter-genomic repeats, and peaks at shell numbers 277, 396 and 540. We also plot the individual
profiles of E.coli and B.cereus. For E.coli (M) we see three peaks at 396, 496 and, 539 given its higher copy number of intra-genomic repeats (400). For B.cereus, we observe
peaks at 276 and 492 signalling its intra- and inter-genomic repeats, respectively.

Fig. 5. Validation of repeat types in E. coli + B. cereus sample via mapping unitigs back to the reference using nucmer. Unitigs are labelled based on the repeats they
overlap with. Based on ground truth nucmer mapping, the last shell (close to 1000) contains unitigs overlapping exclusively with inter-genomic repeats (FI) whereas the
shells around 200 are overlapping B. cereus simulated intra-genomic repeats (F1) and shells around 400 are overlapping E. coli simulated intra-genomic repeats (F2). Finally,
the first shells contain background noise (colored black).
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Rate (FPR) of 0.14 and 0.03 respectively. While the low FPR of
MetaCarvel is desirable the low TPR can be a bottleneck for analy-
sis. In contrast, KOMB provides higher (TPR) rates at unitig level
(with some increase in FPR) going to a maximum of 0.49 (TPR)
and 0.14 (FPR) at the cutoff of 20 shells and above. We also
observed in Supplementary Figure S4 (B), that KOMB captures far
more unitigs as variations in the sample through identification of
peaks or K-cores (2229) and high anomaly unitigs (7860) as com-
pared to bubbles (8) and high-centrality (555) contigs provided by
MetaCarvel. Here the bubbles from MetaCarvel correspond to the
seqments that share the same source and sink node that are repre-
sentative of variation in the sample while high centrality nodes are
contigs marked by the Approximate betweenness centrality algo-
rithm (Pmean + 3�standard deviation). Similarly, the peaks refer
to the Clique/Clique like regions found in the KOMB profile above
3214
shell 70 (marked in red in Fig. 6 (A). The high anomaly nodes were
identified by the anomaly detection algorithm. To ensure that this
is not just an artifact of comparing smaller unitigs to contigs we
also aligned these peak and anomalous unitigs to the contigs
reported as bubbles and high-centrality using nucmer and we
observed very little overlap as seen in Supplementary Figure S4
(C). We also compared the runtimes and memory usage of these
tools and found that they were comparable with KOMB having a
slightly better runtime while MetaCarvel having a slightly better
memory efficiency (Supplementary Figure S4 (D)). To further ana-
lyze how shell thresholds affect KOMB’s TPR and FPR we plotted a
Receiver Operating Curve (ROC) and see that below shell 25 KOMB
shell contain low copy number repeats as well as high number of
non-repeat unitigs which increased the FPR as observed in Supple-
mentary Figure S5.



Fig. 6. Characterization of a synthetic metagenome sample using KOMB. A. KOMB profile of the Shakya et al. (2013) dataset representing the shell number on the x-axis
and the number of unitigs in the y-axis. Red triangles indicate higher shells with greater than 200 nodes, which represent clique or clique-like regions in the hybrid unitig
graph. B. Histogram representing the fraction of unitigs in each of the shells that are repeats as determined by comparing with the nucmer output. C. KOMB repeat density is
defined as the average copy number per number of genomes for the repeat unitigs in the shell (see Eq. 2). Larger shells have repeats with high copy number and more specific
to a single (or group of related) organisms. For figures B. and C., shell 0 (disconnected nodes) and shells that contained no unitigs are not considered. Shells are split into four
different groups (1–80, 81–160, 160–240, 241–320) for visualization.
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3.3. KOMB vis-a-vis beta-diversity and functional annotation

A key test for a novel descriptive profile is whether it is repro-
ducible and whether it shows broad differences where they would
intuitively be expected. A key insight about the human micro-
biome is that the bacterial communities differ substantially by
body site, and that communities from the same body site across
different individuals are more similar than across body site. We
would therefore expect KOMB profiles to follow this same pattern.
We considered 50 samples from four different body sites to ana-
lyze differences in their KOMB profiles. Supplementary Figure S6
shows the median shell numbers of all samples in a body site
and Supplementary Table S1 contains the average and sttandard
deviation of the number of reads per body site. Fig. 7(A) shows
the same distribution of unitig density by shell number as in the
previous dataset, but here it is presented as a violin plot. Specifi-
cally, the plots for all 50 samples from the same site are overlaid
to visualize their variability. Each site has its own evident shape,
3215
and notably the anterior nares site appears to have the largest
range of variability for individual samples. We also analyzed the
site-specific profiles for intra-site and inter-site distances which
are discussed in Supplementary Data SD1.

This dataset also served as a test case for a hypothesis that the
KOMB profile could be used to identify highly ‘‘biologically impor-
tant” segments. The K-core decomposition has been useful for this
in other contexts, specifically by identifying anomalous nodes in a
social network graph [64]. Here, we hypothesize that ‘‘importance”
of a unitig could be represented by functional richness.

We utilize the anomaly detection algorithm as proposed by
[64]. Fig. 7(B) shows the Coreness vs Degree graph of the unitigs
for each body site. The color gradient indicates the CORE-A score
with the unitigs having high CORE-A score mainly being high core-
ness and low degree or low coreness and high degree. Unitigs were
separated into those marked as anomalous and those not, then we
functionally annotated the unitigs marked as anomalous by assign-
ing GO terms. Then, GO terms occuring only in anomalous unitigs



Fig. 7. Characterizing community shifts in Human Microbiome Project (HMP) samples. A. KOMB profiles from 4 different body sites containing 50 samples each obtained
from HMP datasets. The y-axis of the violin plots represent shell number (cutoff at 1000 for visualization) and the width represents the number of unitigs in each shell. B.
Anomaly profiles for each body site (50 samples overlaid), x-axis represents the degree of unitigs and y-axis represents the coreness (or shell number) of the unitigs. The
gradient on the color bar represents the CORE-A anomaly score with the white and red representing higher scores within the samples. C. Bar plot showing the percentage of
unique GO terms from the set of unitigs marked as anomalous. Black dots represent median of 100,000 random split simulations of GO terms obtained per body site, the
whiskers represent 95th (top) and 5th (bottom) percentile indicating significance of the bar plot. D. Jaccard similarity between the set of unique GO term (y-axis) and the entire
set of GO terms from the unitig marked as anomalous for each pair of body sites. E. Jaccard similarity between the entire set of anomalous GO terms for each pair of body sites.
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(‘‘unique GO terms”) were expressed as a percentage of all GO
terms. For comparison, we conducted simulations in which GO
terms were randomly assigned to contigs and ran the same calcu-
lation of ‘‘unique GO terms”.

Fig. 7(C) shows the results: the bar for each body site is the
overall % unique, while the black line (and error bars) represent
3216
the values obtained by simulation. The actual values are well above
the error bars for all body sites, indicating that anomalous unitigs
contain a disproportionate share of gene functions that are found
only in these unitigs. Furthermore, previous studies [74–76] have
described the relative evenness and low diversity of the buccal
mucosa community especially in comparison to other oral commu-
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nities like supragingival plaque which is reflected in our functional
analysis of anomalous unitigs.

Further, we analyzed how the unique GO terms in a given body
site compare with the GO terms found in anomalous unitigs from
other body site. We then calculated the jaccard similarities of these
sets. We hypothesized that samples from similar regions (eg. oral)
would be more similar functionally than others which we recapit-
ulate in a taxonomy-oblivious manner through KOMB. In Fig. 7(D),
we see that the jaccard similarities are overall low (< 0:2) indicat-
ing that these unique GO terms are generally specific to the micro-
biome in a given body site. The GO terms in stool were the most
dissimilar to those found in anomalous unitigs in other samples
(average jaccard similarity = 0.05). The similarity scores of unique
GO terms in anterior nares and supragingival plaque had greater
similarity with the anomalous GO terms buccal mucosa (0.19).
Fig. 7(E) shows the jaccard similarities of anomalous GO terms
(but not necessarily unique to anomalous unitigs) between each
body site. The oral sites, buccal mucosa and supragingival plaque,
had the most similar anomalous GO terms (0.43). Similar to the
case with unique GO terms, anterior nares had a higher similarity
with buccal mucosa (0.35) than supragingival plaque (0.26). We
also observed that anomalous unitigs in stool had the lowest func-
tional similarity to other body sites (average jacaard similarity = 0.
186). The GO term ID and names can be found in Supplementary
Data SD2.

3.4. KOMB characterizes community shifts in longitudinal samples

3.4.1. Longitudinal gut microbiome samples
To demonstrate KOMB’s ability to derive insights from large

scale metagenomic analysis, we considered a temporal gut meta-
genome study. This study contains gut microbiome samples col-
lected from 7 subjects (5 male and 2 female) at different time
points spread over two years. Fig. 8(A) shows the KOMB profiles
of each of the 6 analyzed subjects (one subject was excluded
because of a missing data point) from the initial three time points
(Days 0, 2, 7), each labeled by an alias given in the original study.
These violin plots show that the gut samples from the six subjects
all have relatively similar KOMB profile distributions, although
some idiosyncrasy does appear in subjects Daisy and Bugkiller.
To quantify these profiles, the intra-subject and inter-subject sam-
ple distances were analyzed and are discussed in Supplementary
Data SD3.

To get a more quantitative understanding of the data and the
effects of external disruptions on the gut microbiome, we focus
our attention on the subject Alien who was the only subject
exposed to an antibiotic intervention and bowel cleanse procedure
during the course of the study.

Fig. 8(B) outlines the entire longitudinal trajectory of Alien’s gut
microbiome over the course of 14 time points spread across two
years. The KOMB profiles as displayed focus on the first 200 shells
at each time point. We observe a significant change of shape in the
profile on Days 376, 377, 378, and 380 which coincides with sam-
ples taken after antibiotic intake and which correspond to a signif-
icant perturbation community composition as reported in the
study. This is also mirrored by the unitig counts in the samples,
which decreases by an order of magnitude. Importantly, the total
number of reads in the samples from each time point are similar
and, hence, the change in unitig count is most likely caused by a
shift in the community composition. Thus, antibiotic intervention
causes not only a reduction in the total number of shells but also
alters the unitigs present in the initial shells, though this tends
to recover slightly towards the end of the antibiotic cycle on Day
380. The distribution of unitigs to shells has returned to form
twelve days after the last post-antibiotic sample (Day 392), and
the raw number of unitigs has returned to earlier levels by Day
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600. We observe similar but less drastic shell compression and
quick recovery after a bowel cleanse (Days 630, 632) indicating
that antibiotics cause a far greater disruption in microbiome com-
munity structure, a finding corroborated by the authors in [68] as
well as an earlier study [77]. We also quantified distances between
groups of samples at pre, post and during antibiotic treatment time
points using L1 distances of KOMB Profiles Supplementary Fig-
ure S7. We found that Alien post-antibiotic had greatest pairwise
distance to all other samples indicating that antibiotic intervention
does in fact cause significant perturbation in KOMB profiles.

3.4.2. FMT samples pre, post, and donor
We analyzed two patient samples at two different time-points

namely, Pre-FMT and Post-FMT using KOMB to understand shift
in microbiome communities after an FMT procedure. We also com-
pared the KOMB anomaly profiles of Pre-FMT and Post-FMT sam-
ples to the Donor sample to track common patterns between
them. The Pre-FMT samples were collected from the patients post
vancomycin treatment. In Fig. 9(A), we observe that the anomaly
profiles of Pre-FMT samples are distinctly shrunk (less coreness)
compared to the Post-FMT and Donor samples indicating similar
trends previously observed after the antibiotic treatment in the
gut microbiome study [68]. We also see that Patient 1 shows some
partial recovery towards the Donor profile whereas Patient 2
shows a higher similarity to the Donor in terms of coreness and
anomaly score.

The unitigs obtained after KOMB analysis from one of the Post-
FMT samples were too short and fragmented to annotate function-
ally using SeqScreen. In lieu of this, we examined the taxa repre-
sented by anomalous unitigs with the thinking that they may
indicate important organisms driving the change in host micro-
biome post-FMT. For unitigs identified as anomalous (and which
could be classified at the genus level, see Methods), over-
represented taxa were determined by the score defined in Eq. 4.
In Fig. 9(B) we see that, in general, there is a low similarity
between over-represented taxa across the samples. We still
observe that for both Patients 1 and 2, the Post-FMT samples have
a higher taxa similarity to Donor compared to the Pre-FMT samples
(highlighted by the black box in Fig. 9(B) as captured in the anoma-
lous unitigs despite a substantial difference in their anomaly
profiles.

As seen in Fig. 9(C), Pre-FMT samples had three genera in com-
mon; Akkermansia, Selenomonas and Lactobacillus whereas Post-
FMT had eleven: Lactobacillus, Blautia, Veillonella, Paeniclostridium,
Ruminoccocus, Oscillibacter, Paenibacillus, Turicibacter, Actinomyces,
Dialister, Faecalibacterium in common. We compared the relative
levels of these taxa in Pre-FMT and Post-FMT and Donor. The val-
ues in the heatmap represent the average of the Ratio of Ratios
score in both patients. Compared to Pre-FMT levels, we saw a sub-
stantial increase in two taxa Akkermansia and Lactobacillus in the
Post-FMT anomalous unitigs. Interestingly, previous studies have
shown that higher levels of some species belonging to Akkermansia
and Lactobacillus were helpful to combat Clostridium difficile infec-
tions [78,79]. In contrast to Pre-FMT and Post-FMT Akkermansia,
Selenomonas and Lactobacillus were also present in the anomalous
unitigs in the Donor sample but were not over-represented com-
pared to the other (background) unitigs.

Among the taxa common in Post-FMT samples, roughly half
(6/11) were similarly over-represented in Donor sample anoma-
lous unitigs, though the levels were much higher in the former.
However, Turicibacter and Dialister had a higher level of over-
representation. This is noteworthy because Turicibacter is a well-
characterized taxa and is one of the most abundant in other
reported studies on FMT inoculums and Post-FMT communities
[80–82] whereas the presence of Dialister has been found to be
essential in Post-FMT recovery and non-disease states [83,84]. Kra-



Fig. 8. Characterizing community shifts in longitudinal gut microbiome samples. A. KOMB profiles from 6 different subjects from samples collected Days 0, 2 and 7. The
y-axis of the violin plots represent shell number (cutoff at 100 for visualization) and the width represents the number of unitigs in each shell. Alien, Bugkiller, Peacemaker,
and Scavenger are male subjects while Daisy and Tigress are female subjects. B. KOMB profile for subject Alien over the course of the 14 different time points in the study. The
y-axis (cutoff at 200 for visualization) represent shell number and x-axis represents the day of sample collection. Days 376, 377, 378, and 380 represent profiles during which
the subject was exposed to antibiotics, causing compression in the total shell count as well as a significant change in the unitig distribution of the initial shells. Days 630 and
632 indicate time points when the subject underwent a bowel cleanse procedure with a similar but less prominent effect on unitig count and distribution.
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ken 2 outputs and unitig classifications can be found in Supple-
mentary Data SD4.

Supplementary Figure S8 (A,B,C) show the different taxa (at
genus level) and their average relative abundances in our Pre-
FMT and Post-FMT samples. The taxa shown in bold denote taxa
identified as overexpressed in the anomalous unitigs. We observe
that KOMB was able to identify sequences belonging to taxa at dif-
ferent abundance levels and thereby not being biased to just the
most abundant taxa. To corroborate whether this property of
KOMB could help identify keystone species in FMT samples, we
compared against RECAST [85] which is a tool specifically targeted
to studying sequence-level differences in Pre-FMT and Post-FMT
samples. We considered two main outputs from RECAST for com-
parison. First, we considered those sequences that were marked
by RECAST as being absent in the Post-FMT samples. Supplemen-
tary Figure S9 (A) shows that KOMB identified 5/7 taxa in this
group. Second, we analyzed the output that were indicated by
RECAST as being in Post-FMT but derived from Donor. KOMB was
able to identify 8/21 genera reported by RECAST including 4/5 of
the most abundant in this group (Supplementary Figure S9 (B)).
It also important to note here, that some of the taxa found through
KOMB but not reported by RECAST are indeed found to be impor-
tant like Turicibacter as indicated above as well as Actinomyces [86],
Oscillibacter [87] and Lactobacillus [88] we found to be keystone in
Post-FMT. Relative abundances of FMT samples and RECAST out-
puts were calculated using MetaPhlAn3 [89].
3.5. Performance

KOMB is written in C++. It uses the igraph C graph library [58]
for the unitig construction and K-core decomposition implementa-
tions. Table 2 shows the runtime and memory usage of KOMB on
the datasets used in our study. The experiments were run on a ser-
ver with 64 Intel(R) Xeon(R) Gold 5218 CPU @ 2.30 GHz processors
having 372 GB of RAM. While analyzing the runtimes of specific
stages of the KOMB pipeline we observed that the ABySS unitig
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generation is the most memory intensive step in the pipeline while
read mapping using Bowtie2 is the most computationally intensive
step in the pipeline. As KOMB is also extremely memory efficient,
one can process multiple metagenomic samples simultaneously
on any modern workstation to reduce the runtime on entire data-
sets even further. Comparison of KOMB’s performance to MetaCar-
vel can be found in Supplementary Table S2.
4. Discussion

KOMB is an attempt at a novel strategy for meaningful charac-
terization of a microbial community. Namely, it amounts to a set of
summary statistics that together characterize the broad pattern of
gene-sharing within and across the microbes in a microbial com-
munity. It goes beyond previous methods both by using a hybrid
graph containing both repeat and adjacency signal and by general-
izing the graph features to a set of community-level descriptive
statistics. This also leads to other open questions about this
approach which need further exploration as part of future work.
For example, obvious algorithmic questions include additional
experimentation with the graph type, graph construction parame-
ters, and other graph decomposition algorithms. Related to the
output, further characterizing the repetitive elements in higher
shells and anomalous nodes is a clear next step, as well as applying
it to environments hypothesized to contain interesting gene-
sharing/ horizontal gene transfer (HGT) patterns. Previous studies
have shown that CNV and HGT in microbial communities is impor-
tant to community’s response to stresses as well as dynamics
within the ecosystem [90,91]. In spite of these open questions,
KOMB offers advantages over tools requiring reference genomes
and coverage analysis in that it avoids any effect of coverage bias.
Futhermore, KOMB doesn’t require de novo assembled MAGs,
opening the door to CNV detection across a wider range of abun-
dance profiles while avoiding the potential propagation of assem-
bly errors.



Fig. 9. Characterizing community shifts in fecal microbiota transplantation (FMT) samples. A. (Left) Anomaly profiles of two patients undergoing FMT therapy at two
different time points namely Pre-FMT and Post-FMT. (Right) Anomaly profiles of the donor sample, which is common for both patients. The x-axis represents the degree of
unitigs and y-axis represents the coreness (or shell number) of the unitigs. The gradient on the colorbar indicates the CORE-A anomaly scores of unitigs in the sample. B.
Jaccard similarity between sets of taxa over-represented at the genus level found in unitigs marked as anomalous in each of the 5 samples. The row highlighted in black
indicates the jaccard similarities of each patient across time points as compared to Donor. C. Common taxa over-represented in anomalous unitigs for Pre-FMT, Post-FMT and
Donor samples. The numbers indicate the ratio of ratios of counts of taxa, indicating the relative level of presence of the corresponding taxa in the anomalous unitig compared
to the other unitigs in the sample. The numbers in the figures have been averaged for Pre-FMT and Post-FMT samples from both Patients. The first three genus Akkermansia,
Selenomonas and Lactobacillus were common in Pre-FMT while Lactobacillus, Blautia, Veillonella, Paeniclostridium, Ruminoccocus, Oscillibacter, Paenibacillus, Turicibacter,
Actinomyces, Dialister, Faecalibacterium were common in Post-FMT samples.

Table 2
Time and memory usage for KOMB. Shakya: Shakya et al. (2013); HMP (Av); average across HMP samples, TGM(Av); average across Temporal Gut Microbiome samples and FMT
(Av); average across FMT samples. Read filtering is treated as a pre-processing step, therefore the time and memory usage for it is not reported in this table.For the average,
samples having approximately the average number of reads were chosen as representatives for benchmarking. KOMB was run with 20 threads.

Dataset Performance metrics

Reads Nodes Edges Wall clock CPU time RAM

Shakya 53,997,046 96,901 1,080,012 77m50s 1296m21s 25.29 GB
HMP (Av) 16,872,599 303,171 2,414,541 17m44s 293m8s 9.59 GB
TGM (Av) 26,520,076 776,058 7,286,158 15m17s 264m4s 13.22 GB
FMT (Av) 34,173,634 323,431 22,994,009 57m3s 971m34s 13.65 GB
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Our experimental analysis of KOMB focused on threemain prior-
ities. The firstwas to show that KOMBprofiles behave as expected in
cases that are well-studied and as a set of community-level descrip-
tive statistics it is capable of telling very different communities
apart. Fig. 7(A) shows that the profile distributions for different body
3219
sites appear to have a characteristic general shape. Fig. 8 provides
twomore sanity checks: for a singlehumansubject theKOMBprofile
is stable across time,with the notable exception ofwhen the subject
is taking antibiotic medication where a significant perturbation in
the KOMB Profile is observed.
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The second priority was to show that, as asserted, the shell
numbers in the KOMB profile do indeed reflect the copy numbers
of the unitigs they contain. This was done first by simulation with
a simple case of two community members and fixed levels of gene-
sharing, then by looking at a biological dataset and comparing
basic measures of repeat-level to the shell numbers (Fig. 6). One
outstanding question is under what conditions unitigs can appear
in higher shells without reflecting higher copy numbers, and what
that might imply.

The final priority was to show that the statistical description of
gene-sharing, as hypothesized, correlates with a measure of func-
tional importancewithinagivenenvironment. Thechallengeof test-
ing this hypothesis is in defining, let alone measuring, functional
importance. Here we have used uniqueness of gene function as a
proxy for this, and indeed the measure of this turns out to be over-
represented in anomalous unitigs versus simulation of no correla-
tion. This observation is intriguing but also unsatisfying without a
deeper exploration of what functions these are and whether the
same observations would be reflected by large-scale assembly. But
it is central toKOMBsusefulness in the futureas it suggests that, pos-
sibly, CNV captured by anomalous unitigs might be a way to screen
for gene functions that are crucial to species in an environment and
thatmight be specific to it aswell. It is important to note here that, in
our HMP analysis, anterior nares had the lowest average number of
readsper sample andstoolhad thehighestwhichcould influence the
number of unique GO terms we observed in the anomalous unitigs.
As observed by Lloyd-Price et al. [92] individual anterior nares sam-
ples had a very poor clustering compared to other sites when
observed using PCoA using Bray–Curtis distances among all
microbes at the species level. Also, similar to the observation from
KOMB anomalous unitigs, anterior nares had the lowest number of
GO terms shared between single and co-assemblies in the samples
which could indicate its high degree of variability amongst individ-
ual samples compared to other body sites.

Finally,wealso investigatedKOMBprofilesby analyzing commu-
nity shifts and disruption events in longitudinal samples through
results from a FMT study. The small number of samples limit our
ability to make generalised conclusions from this study but the
graphics suggest how it might be helpful. For one, the comparison
in Fig. 9(A) suggests that KOMB profiles may be effective at distin-
guishing the C. difficile-afflicted and healthymicrobiomes. Addition-
ally, the recovery reflects a return to a bi-modal ‘‘hourglass” shape,
similar to theHMP stool samples in Fig. 7. Comparing the taxonomic
representation inanomalousunitigspre- andpost-FMTshowsapos-
sible over-representation of taxa known to be associated with
healthy and diseased states, although a formal statistical compar-
ison over a large number of samples would be needed. To analyze
KOMB’s ability to identify biologically relevant CNV at scale we also
ran KOMB on 258 experiments obtained from Greenblum et al.
(2015) [18]. Preliminary results from our analysis showed that
KOMBwas able to identify highly variable Inflammatory Bowel Dis-
ease (IBD) associated and Obesity associated Kegg Orthologs that
were reported in the study (Supplementary Data SD5). We leave as
future work to further investigate how the results obtained from
KOMB generalize to other datasets with similar disease phenotypes.

In summary, KOMB can be thought of as a CNV "sensor" for large-
scalemetagenomicanalyseswhere referencegenomesare limitedor
unavailable. Further characterization of individual CNV and seg-
ments output by KOMB and their sample-specific biological signifi-
cance offers a promising avenue for future research in this space.
5. Conclusions

KOMB enables de novo, reference-free CNV characterization,
which captures repetitive DNA contained in microbiomes stem-
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ming from gene transfer, gene duplication, and mobile genetic ele-
ments. KOMB incorporates a novel hybrid unitig graph and
anomaly detection based on K-core decomposition to efficiently
identify functionally unique CNV, which may serve as drivers of
microbial function and adaptation. As the need to analyze large
environmental metagenomes that are scarcely annotated
increases, KOMB may open the door to further advances specific
to the detection and characterization of CNV in metagenomes.
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