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Cholesterol-laden, foam macrophages constitute the most characteristic component of

human atherosclerotic plaques. Persistent uptake of oxLDLs results in accumulation of

lipid bodies inside the cells and determines their phenotype and subsequent functions. In

this work, we describe the phenotype of human monocyte-derived foam cells obtained

by differentiation in the constant presence of oxLDLs for 30 days (prolonged-hMDFCs).

Although neither the total cellular nor the cell surface expression of Toll-like receptors

(TLR) was regulated by oxLDLs, the prolonged-hMDFCs changed dramatically their

responsiveness to TLR ligands and inactivated bacteria. Using multiplex technology,

we observed an acute decline in cytokine and chemokine production after surface

and endosomal TLR stimulation with the exception of TLR2/6 triggering with agonists

Pam2CSK4 and MALP-2. We also noted significant reduction of some surface receptors

which can have accessory function in recognition of particulate antigens (CD47, CD81,

and CD11b). In contrast, the prolonged-hMDFCs responded to inflammasome activation

by LPS/nigericin with extensive, necrotic type cell death, which was partially independent

of caspase-1. This pyroptosis-like cell death was aggravated by necrostatin-1 and

rapamycin. These findings identify a potential contribution of mature foam cells to

inflammatory status by increasing the immunogenic cell death burden. The observed

cross-talk between foam cell death pathways may lead to recognition of a potential

new marker for atherosclerosis disease severity. Overall, our study demonstrates that,

in contrast to other cellular models of foam cells, the prolonged-hMDFCs acquire

a functional phenotype which may help understanding the role of foam cells in the

pathogenesis of atherosclerosis.
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INTRODUCTION

Atherosclerosis is clinically manifested as cardiovascular diseases, which are the number 1 cause of
death globally (1). Although clinically relevant lesions become evident in middle-aged adults, it has
been demonstrated that fat accumulation (known as fatty streaks) begins in early childhood (2).
The latency period is long, and clinical manifestations become evident in middle-aged and older
adults (3).
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GRAPHICAL ABSTRACT

The hallmark of atherosclerosis is the low-grade, chronic
inflammation of the arterial wall. One of the key processes
responsible for atherosclerosis is the accumulation of
monocyte/macrophage lineage cells within the lipid-rich
subendothelial space of the affected artery (4). Consecutive
formation of foam macrophages is a pivotal process in the
development of the atherosclerotic plaque (5). Lipid-rich
macrophages outnumber other cells in early plaques and are the
main source of modulatory proteins present in the atheroma (6).
Whereas, foam cell formation is a beneficial process in the early
atherosclerotic lesion, in advanced lesions the foam cells die
easily and release their contents (damage-associated molecular
patterns, DAMPs) to the extracellular space (7, 8).

Abbreviations: DAMPs, damage-associated molecular patterns; hMDFCs,
human monocyte-derived foam cells; hMDMs, human monocyte-derived
macrophages; HS, human serum; IFN-α, interferon alpha; IL, interleukin; IL-
1RA, interleukin-1 receptor antagonist; IL-2R, interleukin-2 receptor; IP-10,
IFN-γ-Inducible Protein 10, CXCL10; LDL, low-density lipoproteins; LOX-1,
lectin-like oxidized low-density lipoprotein (LDL) receptor-1; LTA, lipoteichoic
acid; MALP-2, macrophage-activating lipopeptide 2; MARCO, macrophage
receptor with collagenous structure; MCP-1, monocyte chemotactic protein-1;
MFI, mean fluorescence intensity; MIP-1, macrophage inflammatory protein-
1; oxLDLs, oxidized low-density lipoproteins; Pam2, synthetic lipopeptide,
Pam2CysSerLys4; Pam3, synthetic lipopeptide, Pam3CysSerLys4; PAMPs,
pathogen-associated molecular patterns; PBMCs, peripheral blood mononuclear
cells; PG, Porphyromonas gingivalis; Poly (I:C), polyinosinic-polycytidylic acid;
PRR, pattern recognition receptor; RANTES, Regulated on Activation Normal
T-cell Expressed and Secreted; stLPS, standard lipopolysaccharide; TLR, Toll-like
receptor; TNF, tumor necrosis factor; upLPS, ultra pure lipopolysaccharide.

Cells in the atherosclerotic lesions can die in several ways, and
the inflammatory response to each form of cell death is highly
variable. In contrast to the homeostatic apoptosis, highly pro-
inflammatory necrotic types of cell death, such as necroptosis
and pyroptosis tend to trigger an inflammatory response (9).
Pyroptosis is a form of cell death associated with inflammasome
activation and requires the activity of caspase-1 (10). Pyroptotic
cell death is highly proinflammatory because it leads to the
release of not only intracellular contents (DAMPs) but also
cytokines, such as IL-1β and IL-18. Necroptosis, a programmed
form of necrosis, does not involve caspase activation. Necroptosis
leads to disruption of the plasma membrane and release of the
cellular contents and various DAMPs. Atherosclerotic plaques
are populated mostly by macrophages (11), which equipped
with a set of pattern recognition receptors (PRRs), including
Toll-like and scavenger receptors, readily respond to DAMPs.
Several studies have shown that inflammation caused by TLR
activation by endogenous ligands participates in the development
of atherosclerosis (12–14).

Furthermore, microbial pathogens promote both the
induction and perpetuation of atherosclerotic lesions. The
involvement of pathogens in atherosclerosis initiation and
progression is supported by multiple epidemiological surveys
(15). Many studies have documented that the risk of developing
atherosclerosis is correlated with chronic infections by various
pathogens, including bacteria, such as Chlamydia pneumoniae,
Helicobacter pylori, and Porphyromonas gingivalis as well as
viruses, such as cytomegalovirus, HIV, and influenza A virus
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(16). Lesional macrophages respond to pathogens and pathogen
associated molecular patterns (PAMPs) using the same PRRs
which serve to recognize endogenous danger signals—it worsens
the DAMPs-induced inflammatory status and undermines the
structural stability of the plaque (16). Thus, bacteria and bacterial
structures present in atheroma contribute to enhanced risk of
plaque rupture (17). Apart from danger signals, macrophages
present in the local microenvironment of the atherosclerotic
intima are exposed to growth factors, cytokines, specialized
pro-resolving and pro-inflammatory mediators (leukotrienes),
and many lipids and lipid-containing molecules (5, 18).

Because infiltration and accumulation of the atherogenic
plasma lipoproteins is the driving force of atherogenesis,
removal of these lipoproteins in the developing lesions is the
primary function of the intimal macrophages. Initially, the
internalization and degradation of subendothelially retained
lipoproteins by intimal macrophages can represent a process
that delays lesion progression. Formation of foam cell is mainly
due to uncontrolled uptake of modified low-density lipoprotein
(LDLs) or impaired cholesterol efflux in macrophages, resulting
in an excessive level of lipoprotein-derived cholesterol, which is
consequently processed and accumulated inside the cells (19).
These modified LDLs operate as de facto damage-associated
molecular patterns, and are therefore recognized by host pattern
recognition receptors, similar to how PAMPs are recognized (20).

The complex plaque microenvironement determines
polarization of macrophages residing in the atheroma. In return,
different phenotypes of macrophages shape plaque ecosystem,
evolution and stability (5). Given the complexity of the plaque
microenvironment, lesional macrophages are unlikely to exist
in their pure M1/M2 polarized forms and instead represent
intermediate states in a whole spectrum of phenotypes (7, 21).

Chronic (long-term) accumulation of foam cells in the intima
takes place in the constant presence of proatherogenic lipids—
oxidatively modified low density lipoproteins (oxLDLs). Most
cellular models of foam macrophages include stimulation with
oxLDLs in relatively high concentrations and subsequent culture
for 3–6 days. As helpful these cellular models may be, they
are oblivious to the cumulative effects of modified lipoproteins,
to which macrophages are continuously exposed in atheroma,
and which cannot be imitated by a single episode of intensive
oxLDLs phagocytosis. The prolonged in vitro culture of foam
macrophages in the presence of oxLDLs may also reflect some
emerging concepts of foam cells: (i) although precise data are
not available, the lifetime of macrophages in atheroma is long
(months not days), both for the resident and monocyte-derived
cells (22, 23), (ii) diet-induced macrophage reprogramming is
a gradual process (24) and (iii) increased lipid uptake and
full development of the foam phenotype apparently involves a
multilayered positive feedback-loop with oxLDLs and CD36 (25).

The aim of the present study was to determine whether
our modified cellular model−30 days of differentiation in
the constant presence of oxLDLs—is more adequate to study
the biology of foam cells. The results presented below reveal
novel aspects of immune activity of foam cells, and propose
a new in vitro model which may help to study elements of
plaque homeostasis.

MATERIALS AND METHODS

Culture of Human Monocyte-Derived
Macrophages (hMDMs) and Foam Cells
(hMDFCs)
The outline of experimental protocol was shown in Figure 1.
Peripheral blood mononuclear cells (PBMC) were isolated from
citrate-treated blood of de-identified, healthy, normolipemic
human donors obtained from the Regional Center for Blood
Donation and Blood Treatment in Krakow (Poland) by standard
density gradient separation (Pancoll human, PAN-biotech,
Germany). The cells designed for cytokine analysis were plated at
4× 106 per well on 24-well plates (BD Primaria, BD Biosciences,
USA) in RPMI1640 supplemented with L-glutamine (2mM),
gentamycin (50µg/mL) and 10% fetal calf serum. After 2 h
of incubation at 37◦C in humidified atmosphere containing
5% CO2, the supernatant with non-adherent lymphocyte
fraction was discarded. The remaining adherent monocytes were
cultured in RPMI1640 supplemented with 12% heat-inactivated
pooled human serum (HS medium) for 5 days to allow their
differentiation to macrophages. Since the 5th day the cells were
maintained either in HSmedium (standard-hMDMs, prolonged-
hMDMs, oxLDL-treated hMDMs), HS medium with addition
of 50µg/mL oxLDLs for next 3 days (standard-hMDFCs) or
HS medium with addition of 5µg/mL oxLDLs for a total time
period of 30 days (prolonged-hMDFCs). The culture media
were changed every 3 days. For cytometric measurements and
immunoblotting PMBC were seeded at 20 × 106 per well
on 6-well culture plates (BD Primaria, BD Biosciences, USA)
and treated as described above. Total serum cholesterol and
triglycerides concentration in donors serum were determined
with enzymatic diagnostic tests (LiquickCor-CHOL, LiquickCor-
TG, CORMAY, Poland).

Isolation and Oxidation of Low Density
Lipoproteins
Low density lipoproteins (LDLs) were prepared from EDTA-
treated plasma of healthy de-identified human donors obtained
from the Regional Center for Blood Donation and Blood
Treatment in Krakow (Poland). LDLs were isolated by sequential
ultracentrifugation through a discontinuous KBr gradient
according to Havel et al. (26). Plasma density was adjusted to
1.019 g/mL with solid KBr and centrifuged at 180,000 g for 24 h
at 4◦C (Beckman L7-65 ultracentrifuge with Ti 60 rotor, Beckman
Coulter, Brea, USA). The top fraction of the gradient was gently
removed. Density of the remaining solution was raised to 1.063
g/mL by addition of KBr and again centrifugated. LDLs fraction
was collected and dialysed overnight at 4◦C against PBS pH
7.4. Oxidation of LDLs was performed by incubation with 5µM
Cu2+ for 20 h at 37◦C after adjustment of protein concentration
to 0.12 mg/mL. Obtained oxLDLs were dialysed overnight
against PBS pH 7.4 at 4◦C. Preparations were concentrated by
ultrafiltration (Amicon Ultra Centifugal Filters, 100K NMWL,
Millipore, Ireland) at 3,500 g at 4◦C and sterilized by filtration
through a 0.22µm syringe filter (Millex-GV, Millipore, Ireland).
Protein concentration of the specimen was measured with
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Nogieć et al. Recognition of Molecular Patterns by Foam Cells

FIGURE 1 | The outline of experimental protocol.

Lowry method. The purity of preparations was controlled by
polyacrylamide gel electrophoresis and subsequent gel staining
with Oil Red O for lipids and with Coomasie Brilliant Blue R for
proteins detection. All materials used during isolation procedures
were endotoxin-free and we did not observe LDL- induced
production of TNF and other markers of activation in human
monocytes and macrophages. As a control of ultracentrifugation
stages we used commercially available ultrapure LDL preparation
(KALEN Human LDLTM, KALEN Biomedical, LLC, USA) which
was oxidized and treated as described above. We found no
differences in activity between the two preparations.

Spontaneous and PAMPs-Induced Protein
Secretion Analysis
To analyze spontaneous and PAMPs-induced protein secretion,
culture medium was replaced either with RPMI1640 with 2%
HS (prolonged-hMDMs) or RPMI1640 with 2% HS additionally
supplemented with 5µg/mL of oxLDLs (prolonged-hMDFCs,
oxLDL-treated hMDMs). The supernatants were collected after
24 h. For the stimulation with PAMPs, the culture media were
changed 1 h before assay as described for spontaneous secretion
and the cells were stimulated with indicated concentrations of
PAMPs molecules or bacteria: stLPS and upLPS (10 ng/mL);
MALP-2 (15 ng/mL) Pam2CSK4 and Pam3CSK4 (50 ng/mL),
LTA and CL075 (1µg/mL), Poly (I:C) (50µg/mL). P. gingivalis
were given at a 1:10 cell: bacterium ratio. Culture supernatants
were collected 24 h after stimulation. To determine average

protein content in the cultures, the cells were lysed with RIPA
buffer containing protease inhibitors. Protein concentration were
determined using micro Lowry method.

Activation of NLRP3 Inflammasome
To analyse NLRP3 inflammasome activation, standard- and
prolonged-hMDMs and hMDFCs were primed for 4 h with
1µg/mL LPS and then treated with 10µM nigericin for 20 h.
For inhibition of caspase-3,−1,−8,−9; caspase-1 or RIP1 kinase
activity, cells were treated with 20µM Q-VD-OPh, 50µM Ac-
YVAD-cmk, or 20µMnecrostatin-1, respectively, for 1 h prior to
LPS stimulation. For induction of autophagy, cells were treated
with 50 nM rapamycin for 1 h before LPS stimulation. The
supernatants were collected, centrifuged at 500 g for 5min at 4◦C
and used immediately for lactate dehydrogenase (LDH) release
assay and then frozen for cytokine measurement.

Oil Red O Staining Procedure
Macrophages were gently washed with PBS, fixed with 4%
phosphate buffered formalin for 15min at 37◦C and rinsed with
PBS. The cells were then treated with 60% isopropanol for 15 s
and stained in the darkness with Oil Red O solution for 30min
at 37◦C. Oil Red O solution was freshly prepared by dilution of
the stock solution (60mg Oil Red O dissolved in 20mL of 100%
isopropanol) with distilled water in the ratio 3:2 and subsequent
filtration. After washing with PBS the cells were counterstained
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with hematoxylin for 2min, rinsed with PBS and analyzed under
Nikon Eclipse Ti (Nikon, USA) microscope.

Flow Cytometry
Macrophages were harvested, pelleted and resuspended in PBS
containing 5% FCS (1.5× 105 cells/100µl). The cells were stained
with fluorescent-labeled anti-human antibodies or appropriate
isotype controls for 30min in the dark at 4◦C. Because of
elevated autofluorescence exhibited by hMDFCs, we employed
quenching method which was described previously for analysis
of alveolar macrophages and immature dendritic cells (27, 28).
Accordingly, after washing with 1% FCS in PBS the cells were
incubated with ice-cold 0.4% crystal violet solution in PBS
pH 7.4 for 5min. This step was omitted if APC-conjugated
antibodies were used. Prior to analysis, the macrophages were
washed extensively and suspended in 5% FBS in PBS. To
determine the positive population an Overtone subtraction
algorithm was applied. To compare the surface expression level
of the markers expressed by the majority (over 60%) of the
cells, mean fluorescence intensity (MFI) was used. Determination
of MFI from 10,000 gated events from each sample was
accomplished using LSRII cytometer (Becton Dickinson, USA)
and BD FACSDivaTM software. Overtone subtraction statistical
analysis and histograms overlays were performed using FCS
ExpressTM (De Novo Software, USA) and FlowJoTM (FlowJO,
LLC, Data Analysis Software, USA), respectively.

Western Blot Analysis
Macrophages were lysed on plates with RIPA buffer (Sigma
Aldrich, USA) containing protease inhibitors. Lysates were
cleared by centrifugation at 8,000 g for 10min at 4◦C. Protein
content was determined using microLowry method. Lysates were
electrophoresed and immunobloted using standard conditions.
Briefly, denatured protein samples (20–40 µg) were run on 4–
12% SDS-PAGE and then transferred to a PVDF membrane
(Amersham Biosciences Corp., UK). Membranes were blocked
in 5% non-fat dry milk (BioShop, Canada) for 2 h followed
by washing and overnight incubation with specific monoclonal
(anti-CD11b, CD47, CD81) or polyclonal (anti- CD36, β-actin,
IL-1β, GAPDH) antibodies. The bands were visualized withHRP-
conjugated goat anti-rabbit, goat anti-mouse, or rabbit anti-
goat antibodies. The chemiluminescence signal was detected and
analyzed with ChemiDocTM XRS+ System with Image LabTM

Software (Bio-Rad, USA).

Luminex®-Based and ELISA Analysis of
Cytokines and Chemokines
The analysis of the cytokines and chemokines secreted by
macrophages were performed with FlexMAP 3D (Luminex R©)
platform using the Human Cytokine Magnetic 30-Plex Panel
kit (Invitrogen, USA). The detection thresholds (in pg/mL) for
particular protein were as shown in Table 1. The procedure
was performed according to manufacturer instructions. All
data were normalized to total protein concentration in the
cell cultures. To confirm the results obtained by multiplexed
bead-based immunoassay we applied sandwich ELISA Sets (BD
OptEIATM (BD Biosciences, USA) for human IL-6, IL-10 and

TABLE 1 | Proteins analyzed by multiplex assay and their detection thresholds.

Analyte Detection threshold (pg/ml)

IL-1β 25

IL-2 10

IL-4 5

IL-5 3

IL-6 3

IL-7 30

IL-8 3

IL-10 5

IL-12 15

IL-13 10

IL-15 125

IL-17 50

IFNα 25

IFNγ 5

TNF 10

IL-1RA 60

IL-2R 60

Eotaxin 5

IP-10 5

MCP-1 10

MIG 45

MIP-1alpha 16

MIP-1beta 100

RANTES 20

EGF 40

FGF basic 22

G-CSF 30

GM-CSF 15

HGF 50

VEGF 10

TNF receiving consistent results. In order to determine IL-
1β concentrations in cell culture supernatants upon NLRP3
inflammasome activation, Human IL-1β ELISA Set II was used
according to the manufacturer’s instructions. The sensitivity of
the test was about 3.9 pg/mL.

Lactate Dehydrogenase (LDH) Assay
LDH release to the cell culture medium upon NLRP3
inflammasome activation was measured using PierceTM LDH
Cytotoxicity Assay Kit in accordance with the manufacturer’s
instructions. LDH release was normalized to total LDH content
(cells treated with lysis buffer).

Reagents and Antibodies
The heat-killed bacteria Porphyromonas gingivalis (PG) strain
W83 was kindly provided by A. Sroka and purified S. aureus
lipoteichoic acid (LTA) was kindly provided by Dr. J. Kozieł (both
from Department of Microbiology, Faculty of Biochemistry,
Biophysics and Biotechnology, Jagiellonian University, Poland).
Ultrapure E. coli 011:B4 LPS (upLPS), Pam2CysSerLys4 (Pam2),
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Pam3CysSerLys4 (Pam3), CL075, Poly (I:C), selective caspase-1
inhibitor (Ac-YVAD-cmk), and rapamycin were purchased from
Invivogen, USA. Macrophage-activating lipopeptide-2 (MALP-
2) was obtained from Imgenex Corp., USA. E. coli 0127:B8 LPS
(stLPS), nigericin, necrostatin-1, copper (II) sulfate, glutamine–
gentamicine solution, hematoxylin, Oil Red O powder, crystal
violet, potassium bromide, RIPA buffer and Total Protein Kit,
MicroLowry, Petersons Modification were supplied by Sigma
Aldrich, USA. Complete Protease Inhibitor Cocktail Tablets
were purchased from Roche Diagnostics, Germany. Pan-caspase
inhibitor (Q-VD-OPh) was from R&D Systems, USA. Fetal calf
serum was obtained from Biochrom GmbH, Germany. RPMI
1640 and 10× Dulbecco’s phosphate-buffered saline (PBS) was
from Gibco by Life Technologies, UK.

Primary mouse antihuman antibodies used in this study
include the following: FITC-conjugated anti-TLR6 (TLR6.127),
CD11b (VIM12), PE-conjugated anti-CD14 (Tuk4) and rabbit
anti-GAPDH from Abcam, UK; FITC-conjugated mouse anti-
CD16 (3G8), PE-conjugated anti-CD18 (6.7), CD47 (B6412),
CD81 (JS-81), CD91 (A2MRa2), DC-SIGN (DCN46), APC-
conjugated anti-CD36 antibody obtained from BD Biosciences,
USA; Alexa Fluor 488-conjugated anti-TLR2 (TL2.1), TLR4
(HTA125), PE-conjugated anti-TLR1 (GD2.F4), CD80 (2D10.4),
and CD86 (IT2.2) from eBioscience, USA. Appropriate isotype
controls for flow cytometry, mouse anti-CD11b (238439) and
goat anti-IL-1β (AF-201-NA) was purchased from R&D Systems,
USA. Mouse anti-CD47 (B6H12) and anti-CD81 (5A6), rabbit
polyclonal anti-CD36 (H-300), anti-β-actin (N-21), goat anti-
mouse IgG-HRP and rabbit anti-goat IgG-HRP antibodies
were from Santa Cruz Biotechnology, USA. HRP-conjugated
mouse anti-rabbit IgG (L) antibodies were from Jackson
ImmunoResearch, USA. HRP-conjugated goat anti-rabbit IgG (H
+ L) antibodies, Precision Protein StrepTactin-HRP Conjugate
and Precision Plus Protein Western C standards were purchased
from Bio-Rad, USA. Human IL-10 ELISA Set, human TNF
ELISA Set and human IL-1β ELISA Set II were from BD
Biosciences, USA. PierceTM LDH Cytotoxicity Assay Kit was
purchased from Thermo Scientific, USA.

Statistical Analysis
All experiments were performed with macrophages derived from
at least three different donors each in duplicated or triplicated
cultures (n = number of cultures). GraphPad Prism (GraphPad
Software, USA) and Origin 8.1 (OriginLab, USA) software were
used for statistical analysis. Data are given as mean ± SD,
unless indicated otherwise. Statistical analysis was performed
using Student’s t-test to evaluate differences between two groups,
and ANOVA for multiple comparisons. A statistically significant
difference was assumed at p < 0.05.

RESULTS

Phenotype Characteristics of hMDFCs
Cultured With oxLDLs for Prolonged Time
To obtain prolonged-hMDFCs, human peripheral blood
monocytes were cultured for 30 days in the constant presence of
5µg/mL oxLDLs since the 5th day of differentiation. Monocytes

isolated from the same donor and cultured in the absence
of oxLDLs served as control prolonged-hMDMs. The Oil
red O staining demonstrated that the prolonged-hMDFCs
accumulated cholesterol in the form of large lipid droplets in
the cytoplasm or dispersed deposits surrounding the nucleus
(Figure 2A).

Flow cytometry analysis revealed high autofluorescence of
prolonged-hMDFCs which was quenched with crystal violet
according to the method described for alveolar macrophages
and immature dendritic cells (27, 28). Comparative flow
cytometry analysis of cell-surface expression of TLRs
demonstrated no significant differences between hMDMs
and hMDFCs cultured for prolonged time (Figures 2B,D and
Supplementary Table 1). hMDFCs expressed significantly
less CD47, CD81, and CD11b, while only a slight decrease
was observed for CD14, CD16, and CD36 (Figures 2C,E,F,
Supplementary Tables 1, 2). Both cell populations expressed
comparable levels of CD18, CD86, and CD91 (Figures 2C,E).
Neither hMDMs nor hMDFCs expressed DC-SIGN or CD80
markers (data not shown).

Total Cellular Expression of Receptors in
Prolonged-hMDFCs
To verify flow cytometry results, we evaluated total cellular
expression of proteins which surface expression was mostly
modified in hMDFCs, i.e., CD47, CD81, and CD11b. We also
analyzed the expression of CD36—a scavenger receptor that
mediates uptake of oxLDLs as well as assists in diacylated
lipopeptides recognition by TLR2/TLR6 heterodimer. Lysates
from non-stimulated prolonged-hMDMs and prolonged-
hMDFCs were subjected to Western blot analysis (Figure 3).
We did not observe considerable differences in total expression
of CD11b, CD47, and CD81 although their surface expression
was significantly reduced in hMDFCs. Moreover, total amount
of CD36 was slightly increased in hMDFCs while its surface
expression remained unchanged.

Spontaneous Secretion of Proteins by
Prolonged-hMDFCs
Next, we established a basal cytokine secretion by non-
stimulated hMDFCs and hMDMs cultured for prolonged
time. Because the spontaneous cytokine secretion by hMDFCs
was determined for cells cultured constantly with oxLDLs,
we prepared additional control that is prolonged-hMDMs
exposed to oxLDLs only for 24 h before the measurement
(oxLDL-treated-hMDMs). Cytokines were determined in
supernatants using Luminex R© assay. Neither hMDMs nor
hMDFCs produced measurable levels of pro-inflammatory
interleukins (Supplementary Table 3) and a few chemokines
and IL-1RA were detected (Figure 4). In comparison with
prolonged-hMDMs and oxLDL-treated-hMDMs, we noted a
significant increase in MCP-1, MIP-1 alpha, and MIP-1 beta
secretion by hMDFCs. It suggests that lipid-loading may favor
the recruitment of other leukocytes to the niches occupied by
foam cells.
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FIGURE 2 | Effect of prolonged culture with oxLDLs on the phenotype of hMDMs. Adherent monocytes were cultured in HS medium for 5 days to allow macrophage

differentiation. Since then, the cells were maintained in HS medium (prolonged-hMDMs) or HS medium supplemented with 5µg/mL oxLDLs (prolonged-hMDFCs) for

the total time period of 30 days. (A) The extent of lipid accumulation was assessed by Oil Red O staining. The cells were counterstained with hematoxylin.

(Continued)
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FIGURE 2 | Representative staining images are shown. (B,C) Flow cytometric analysis of surface receptors expression in prolonged-hMDMs and hMDFCs. The cells

were stained with monoclonal antibodies or appropriate isotype controls. Data are displayed in the form of histogram overlays using % Max option, which scales each

population curve to mode 100%. A representative example out of three donors is shown. Positive population was identified using Overtone subtraction technique

(D,E) and relative level of receptor expression was determined by MFI values of positive population (F). Results for prolonged-hMDFCs are expressed as a ratio to

corresponding prolonged-hMDMs (100% indicated with dashed horizontal line). Raw data of receptors expression (% of positive cells and MFI) on prolonged-hMDMs

and hMDFCs are presented in Supplementary Tables 1, 2. Values are the means ± SD from at least three independent experiments (each in triplicate, n ≥ 9). *p <

0.05 vs. hMDMs.

FIGURE 3 | Western blot analysis of CD11b, CD36, CD47, and CD81 in prolonged- hMDMs and hMDFCs. Whole-cell lysates (25 µg) from prolonged- hMDMs and

hMDFCs were analyzed using immunoblotting. Enhanced chemiluminescence signal was detected with Bio-Rad ChemiDoc XRS+ system. β-actin level was

determined as a loading control. (A) Images shown are representative of four independent experiments (donors). (B) Quantification of protein levels. The optical

density was measured for the bands of interest and normalized to β-actin signal. To compare expression levels of receptors, the relative optical density was calculated

(prolonged-hMDFCs vs. corresponding prolonged-hMDMs). Results represents the mean ± SD from four independent experiments. Due to semi-quantitative nature

of measurements, statistical analysis was not performed.

TLR-Induced Cytokine Production by
Prolonged-hMDFCs
The primary aim of this study was to compare the ability
of hMDMs and hMDFCs cultured for prolonged time to
respond to PAMPs. For this purpose, after 30 days of
culture, both cell types were stimulated with defined PAMPs
molecules specific for TLR2 heterodimers (TLR1/2 or TLR2/6),
TLR3, TLR4, TLR7, and TLR8. Alternatively, macrophages
were treated with heat inactivated P. gingivalis. Supernatants
were collected after 24 h and cytokines were analyzed with
Luminex R©. Themean concentrations of proteins are presented in
Supplementary Table 3. Additionally we verified some outcomes
of Luminex R© assays through ELISA measurements of selected
interleukins secreted by macrophages—IL-10, TNF, and IL-6—
receiving consistent results.

We noted that the profile of induced cytokines was similar
in all experiments. Production of IL-15, MIG, IP-10 chemokines
was induced only with TLR3, TLR4, and TLR7/8 ligands
while RANTES were not detected upon LTA, Poly (I:C),
and PG treatment. Cytokines below the lower limit of assay

sensitivity (IL-1β, IL-2, IL-3, IL-4, IL-7, IL-13, IL-17, IFNγ, and
EOTAXIN) were not included in further analysis. On account
of considerable variability among donors, the protein secretion
profiles of stimulated prolonged-hMDFCs are presented relative
to corresponding hMDMs (Figure 5).

We observed that long-term (30 days) culture with oxLDLs
resulted in moderate to significant alteration of both—
interleukin and chemokine family secretion, in a PAMP-
and TLR-dependent manner (Figure 5). Specifically, following
activation of TLR4 (with ultrapure and standard E. coli LPS)
prolonged-hMDFCs produced almost all of the measured
molecules at lower level, with the exception of MCP-1, MIP-
1 alpha, and IL-8. We also noted a significant inhibition of
interleukin and, to a lesser extent, chemokine release after
triggering receptors residing in endosomal compartments—
TLR7/8 with a base analog CL075 and TLR3 with Poly (I:C).
hMDFCs exposed to a complex structure (heat—killed bacteria
P. gingivalis) secreted considerably lower amounts of IL-10, IL-
12, IFN alpha, and MIP-1 alpha than hMDMs. Surprisingly,
the response of prolonged-hMDFCs to TLR2/6 heterodimer
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FIGURE 4 | Spontaneous secretion of proteins by prolonged-hMDFCs. Prolonged- hMDMs and hMDFCs were obtained as indicated in Materials and Methods, and

Figure 1. The cells were then incubated for 24 h in RPMI 1640 with 2% HS (prolonged-hMDMs) or RPMI 1640 with 2% HS, additionally supplemented with 5µg/mL

oxLDLs (prolonged-hMDFCs, oxLDL-treated-hMDMs). Levels of cytokines in supernatants were determined by a multiplex immunoassay. Values were normalized to

protein concentration in corresponding cell cultures. Data represents production of cytokines secreted consistently at the measurable level. Bars and error bars depict

means ± SD of at least three independent experiments (each in triplicate, n ≥ 9). *p < 0.05.

agonists (diacylated lipopeptides—Pam2CSK4 and particularly
MALP-2) remained mostly unaffected or even enhanced in case
of proinflammatory cytokines and the majority of analyzed
chemokines. However, the secretome response of these cells to
other TLR2 ligands—LTA and Pam3CSK4 was severely inhibited
with exception of MCP-1 for LTA.

Interestingly, lipid-loading exerted the most profound effect
on anti-inflammatory and anti-atherosclerotic IL-10 secretion,
which was significantly inhibited irrespective of ligand type used
for cell stimulation. On the contrary, production of another anti-
inflammatory mediator—IL-1RA was affected only after TLR1/2
and TLR7/8 triggering. Furthermore,MCP-1 and IL-8 release was
unchanged or only slightly diminished in prolonged-hMDFCs
stimulated with majority of PAMPs. Collectively, macrophages
differentiated for a long time in the presence of oxLDLs alter their
responsiveness to PAMPs in a manner specific for the challenging
molecule and a member of TLR family involved.

In this study, we also compared hMDFCs differentiated
in our model, i.e., 30 days in the presence of low
concentration of oxLDLs (prolonged-hMDFCs) with the
foam macrophages obtained by the most common protocol, i.e.,
3-days differentiation in the presence of oxLDLs supplied
in 10-fold higher concentrations (standard-hMDFCs).

Irrespective of cell type the extent of lipid loading was
similar (Supplementary Figure 1). Also, IL-10 production
was decreased in both—standard- and prolonged-hMDFCs as
compared to corresponding hMDMs (Figure 6A). Nevertheless,
the increased secretion of TNF induced by Pam2CSK4 and
MALP-2 was observed only as a result of prolonged exposition
to oxLDLs (data not shown). The decrease of IL-10 release by
stimulated hMDFCs regardless of PAMPs can result from lipid
accumulation in the cytoplasm or from oxLDL interference at
the time of TLR triggering. Accordingly, we compared TLR-
induced IL-10 production of hMDFCs with that of hMDMs
treated with oxLDLs exclusively during cell stimulation—
oxLDL-treated-hMDMs (Figure 6A). As described in Materials
and Methods cells were stimulated in medium containing
oxLDLs, the supernatants were collected after 24 h and cytokines
were measured by Luminex R© and/or ELISA. The results were
expressed as a percent of cytokine production by corresponding
hMDMs. As shown in Figure 6A, the presence of oxLDLs during
PAMPs stimulation of TLR4, TLR7/8, and TLR2/6 (Pam2CSK4,
MALP-2) did not inhibit IL-10 secretion. Notably, upon CL075
induction, the IL-10 production by oxLDL-treated cells was even
higher than by prolonged-hMDMs. In case of LTA, Pam3CSK4,
and PG treatment we observed decrease of IL-10 release in both
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Nogieć et al. Recognition of Molecular Patterns by Foam Cells

FIGURE 5 | Effect of prolonged culture with oxLDLs on PAMPs-induced cytokine (A) and chemokine (B) production. Prolonged-hMDMs and hMDFCs were obtained

as indicated in Materials and Methods, and Figure 1. Cells were then stimulated with different PAMPs for 24 h. Levels of cytokines in supernatants were determined

by a multiplex immunoassay and normalized to protein concentration in corresponding cell cultures. Results for prolonged-hMDFCs were expressed as a percent of

(Continued)
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FIGURE 5 | cytokine production by corresponding prolonged-hMDMs (100% indicated with dashed horizontal lines). Bars and error bars represent means ± SD from

at least three independent experiments (each in triplicate, n ≥ 9). *p < 0.05, **p < 0.01, ***p < 0.001 vs. hMDMs; #p < 0.05, ##p < 0.01, ###p < 0.01 vs.

Pam2CSK4 or MALP-2 stimulation. Raw data of cytokine production are presented in Supplementary Table 3.

cell cultures indicating that final IL-10 production is influenced
by cytoplasmic accumulation of oxLDLs as well as their presence
in medium. Still, the IL-10 suppression was more pronounced
in hMDFCs.

To further correlate the profile of cytokine response to distinct
PAMPs with the cellular oxLDL accumulation, we analogously
compared secretion of other proteins in prolonged-hMDFCs and
oxLDL-treated-hMDMs (Figure 6B). Triggering of endosomal
TLR7/8 with CL075 was strongly dependent on lipid-loading.
In sharp contrast with the hMDFCs from prolonged culture,
the presence of oxLDLs only at the moment of stimulation
did not suppress the macrophage secretome. Moreover, in
oxLDL-treated cells the production of IL-10 and TNF was
even enhanced. Following stimulation with Pam2CSK4 only
the long-term lipid-loading led to significant IL-10 inhibition
and TNF upregulation. For other PAMPs we noted rather
comparable pattern of secretome modifications in prolonged-
hMDFCs showing a slight tendency to stronger reduction
of protein production in comparison with oxLDL- treated
counterparts (data not shown).

The data indicate that, in contrast to other cytokines, IL-
10 secretion in response to pathogenic stimuli is affected
predominantly by lipid loading of macrophages. It also suggests
that the plasma membrane TLR signaling is modulated by both
lipid accumulation and oxLDLs presence at the moment of
PAMPs recognition while endosomal TLR signaling is modulated
mainly by the intracellular lipids.

Pyroptosis and IL-1β Secretion by
Standard- and Prolonged hMDFCs
In this study, we compared the activation of NLRP3
inflammasome in hMDMs and hMDFCs differentiated in
standard and prolonged culture. For this purpose, the cells
differentiated as outlined in Figure 1 were primed with E. coli
LPS for 4 h and then stimulated with nigericin for additional 20 h.
The activation of NLRP3 inflammasome was evaluated by two
parameters: IL-1β levels and LDH activity assayed in extracellular
medium. Raw data obtained from seven independent
experiments were shown in Supplementary Figure 2. It
was found that for each cell type, LPS and nigericin stimulation
led to both: IL-1β secretion and cell death occurring with the loss
of plasma membrane integrity and release of LDH. However,
we noticed differences in the response of foam cells obtained
in accordance with the two analyzed models. In Figure 7A

LPS and nigericin-induced release of IL-1β and LDH from
hMDFCs were presented relative to corresponding hMDMs.
Standard-hMDFCs were characterized by significantly decreased
production of IL-1β in comparison with hMDMs counterparts,
which cannot be ascribed to lower cell viability. The opposite
situation was revealed for a prolonged culture—foam cells were

able to produce IL-1β at a similar level as prolonged-hMDMs,
however, a greater cytotoxic effect was observed.

Considering the fact that standard-hMDFCs were
characterized by clearly lower IL-1β secretion (Figure 7A),
we evaluated total cellular expression of proIL-1β in lysates from
hMDMs and hMDFCs by Western Blot analysis (Figure 7B).
In non-stimulated cells and those treated only with nigericin
proIL-1β was not detected. This protein appeared in a significant
amount after priming with LPS, and declined after stimulation
with nigericin. That is, most likely, a result of the NLRP3
inflammasome activation that facilitates caspase-1 autoactivation
and subsequent proteolytic cleavage of proIL-1β into a mature
form that is released from the cell. Importantly, we did not
observe considerable differences in LPS-induced proIL-1β
expression between hMDMs and hMDFCs in both standard
and prolonged cultures. Additionally, despite the low band
intensity in cells stimulated with LPS and nigericin, it was also
visible that in hMDMs and hMDFCs the amount of proIL-1β
present in the cells after activation of the NLRP3 inflammasome
was comparable.

In the next set of experiments standard- and prolonged-
hMDMs and hMDFCs were pretreated before activation of
NLRP3 inflammasome with pan-caspase inhibitor (Q-VD-
OPh), selective caspase-1 inhibitor (Ac-YVAD-cmk), RIP1
kinase inhibitor (necrostatin-1) or mTOR inhibitor (rapamycin).
Raw data of IL-1β secretion and LDH release was shown
in Supplementary Figure 3. Figure 8 depicts the obtained
results expressed as a percent of IL-1β and LDH release
by cells non-treated with inhibitors. As expected, caspase-
1 inhibitor clearly reduced IL-1β secretion in hMDMs and
hMDFCs to 15–22 and 34–50%, respectively. Surprisingly, in
all four types of cells inhibition of caspase-1 activity had no
noticeable effect on the cell death. IL-1β secretion was also
significantly reduced by pan-caspase inhibitor. Interestingly,
in contrast to selective caspase-1 inhibition, pretreatment
with Q-VD-OPh influenced the cell death decreasing release
of LDH from prolonged- hMDMs and hMDFCs. To test
if necroptosis is involved in LDH release, we inhibited
RIP1 kinase activity by the chemical inhibitor necrostatin-
1 and we observed slightly increased plasma membrane
permeabilization for LDH. Moreover, IL-1β secretion was
strongly augmented in standard-hMDMs and to a lesser degree in
both prolonged- hMDMs and hMDFCs following pretreatment
with necrostatin-1. A growing body of evidence indicates
that autophagic flux becomes defective in macrophages of
advanced atherosclerotic plaques, and that treatment with an
autophagy inducer can be exploited as a potential strategy to
prevent plaque formation and destabilization (8). In endothelial
cells cultured in vitro oxLDL-induced pyroptosis is restricted
by autophagy (29). Consequently, we speculated whether, in
our foam macrophages, pyroptosis can be counterbalanced by
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FIGURE 6 | Comparison of IL-10 production by standard-hMDFCs, prolonged-hMDFCs, and oxLDL-treated-hMDMs (A), and comparison of different cytokines

production by prolonged-hMDFCs, and oxLDL-treated-hMDMs (B). Standard/prolonged-hMDMs/hMDFCs were obtained as indicated in Materials and Methods, and

Figure 1. Cells were then stimulated with different PAMPs for 24 h. Levels of cytokines in supernatants were determined by a multiplex immunoassay and/or ELISA

(IL-10 and TNF) and normalized to protein content in corresponding cell cultures. Results for hMDFCs and oxLDL-treated-hMDMs were expressed as a percent of

cytokine production by corresponding standard- or prolonged-hMDMs (100% indicated with dashed horizontal lines). Bars and error bars represent means ± SD from

at least three independent experiments (each in triplicate, n ≥ 9). *p < 0.05, **p < 0.01, ***p < 0.001 vs. hMDMs, ##p < 0.01, ####p < 0.001 hMDFCs vs.

oxLDL-treated hMDMs.

induction of autophagy. Autophagy induction, as a result of
mTOR inhibition by rapamycin, had minor effect on IL-1β
secretion with the exception of standard-hMDFCs where IL-1β

production was increased almost 3-fold. Cells death was generally
augmented in both macrophages and foam cells, most apparently
in prolonged-hMDFCs.
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FIGURE 7 | Pyroptosis and IL-1β secretion by hMDFCs obtained by standard and prolonged cell culture. Standard/prolonged-hMDMs/hMDFCs were obtained as

indicated in Materials and Methods, and Figure 1. Cells were stimulated with 1µg/mL stLPS for 4 h and 10µM nigericin for next 20 h. (A) Levels of IL-1β and LDH

activity in supernatants were determined by ELISA and PierceTM LDH Cytotoxicity Assay Kit, respectively. Results for hMDFCs were expressed as a percent of IL-1β

secretion and LDH release by corresponding standard- and prolonged hMDMs (100% indicated with dashed horizontal lines). Bars and error bars represent means ±

SEM from seven independent experiments (each in duplicate, n = 14). *p < 0.05, ***p < 0.001 vs. hMDMs. Raw data of IL-1β production and LDH release were

shown in Supplementary Figure 2. (B) ProIL-1β expression was determined in whole-cell lysates from hMDMs and hMDFCs using immunoblotting. Enhanced

chemiluminescence signal was detected with Bio-Rad ChemiDoc XRS+ system. β-actin level was determined as a loading control. Images shown are representative

of three independent experiments (donors).

DISCUSSION

The relationship between continuous accumulation of foam
cells in atherosclerotic plaques and maintenance of chronic
inflammation during atherogenesis is not fully understood. In
vitro approaches to study the inflammatory status of oxidized
lipid-loaded macrophages yielded controversial results. Whereas,
some studies have reported minimal or no effects (30, 31),
others showed pro- (32, 33) or anti-inflammatory (34–41) effects
of loading with oxLDLs. This may be due to differences in

the experimental conditions, including oxLDL concentration,
oxidation levels of LDL particles and the duration of oxLDL
treatment. In this study, human monocyte-derived macrophages
were constantly exposed to purified oxLDLs for 30 days.
Such obtained prolonged-hMDFCs displayed the characteristic
macrophage-like morphology, with visible accumulation of
cytoplasmic lipid droplets and typical macrophage phenotype
(Figure 2, Supplementary Figure 1). We did not observe any
cytotoxic effects of prolonged oxLDL loading of macrophages
(not shown). In response to PAMPs both prolonged- hMDMs

Frontiers in Immunology | www.frontiersin.org 13 August 2020 | Volume 11 | Article 1592

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
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FIGURE 8 | The effect of caspases, RIP1 kinase and mTOR inhibition on pyroptosis and IL-1β secretion by hMDFCs obtained by standard and prolonged cell culture.

Standard/prolonged-hMDMs/hMDFCs were obtained as indicated in Materials and Methods, and Figure 1. Cells were primed with stLPS (1µg/mL) for 4 h and then

stimulated with nigericin (10µM) for 20 h with or without caspase inhibitors (Q-VD-OPh or Ac-YVAD-cmk), RIP1 kinase inhibitor (necrostatin-1) or mTOR inhibitor

(rapamycin) pretreatment as described in Materials and Methods. Levels of IL-1β (A) and LDH (B) in supernatants were determined by ELISA and PierceTM LDH

Cytotoxicity Assay Kit, respectively. Results were expressed as a percent of IL-1β secretion and LDH release by cells stimulated without inhibitors—non-treated cells

(100% indicated with dashed horizontal lines). Bars and error bars represent means ± SEM from four (Q-VD-OPh) or five (others) independent experiments (each in

duplicate, n ≥ 8). *p < 0.05, **p < 0.01, ***p < 0.001 vs. non-treated cells. Raw data of IL-1β production and LDH release were shown in Supplementary Figure 3.

and hMDFCs produced identical set of interleukins and
chemokines (Supplementary Table 3). While the overall pattern
of secreted proteins remained unchanged, the cytokine release
by prolonged-hMDFCs in response to PAMPs was mainly
decreased (Figure 4). Notably, the long-term oxLDL loading
was not a proinflammatory event but rather it reduced the
inflammatory response when hMDFCswere stimulated with LPS,
Poly (I:C), and Pam3CSK4—ligands of TLR4, TLR3, and TLR2/1,
respectively (Figure 4). Inhibition has been observed for the
majority of cytokines and RANTES, MIP, IP-10 chemokines by
prolonged-hMDFCs following stimulation of TLR2, TLR4 and

endosomal TLRs. It has been shown that human macrophages
stimulated with high doses of LPS (500 ng/mL) in the presence of
oxLDLs did not change (42) or downregulate (34) the production
of TNF and IL-6. In contrast, Bekkering et al. reported increased
production of proinflammatory cytokines by human monocytes
briefly pre-exposed to a low concentration of oxLDLs, suggesting
epigenetic reprogramming of monocytes (43). In our settings, IL-
6, IL-8, IL-12, and TNF were not induced upon LPS stimulation
either in oxLDL-treated-hMDMs or in prolonged-hMDFCs
(Figure 5, Supplementary Table 3, and data not shown). In
contrast to the suppression of LPS signaling, the stimulation of

Frontiers in Immunology | www.frontiersin.org 14 August 2020 | Volume 11 | Article 1592

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
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proinflammatory proteins with Pam2CSK4 or MALP-2 (ligands
of TLR2/6) was enhanced in prolonged-hMDFCs (Figure 5).
That was not observed for LTA or Pam3CSK4 (ligands of
TLR1/2), although it is known that both heterodimers, TLR1/2
and TLR2/6, activate the same signaling pathways (44). Thus,
our results reveal a novel branching in downstream responses
to heterodimer-specific TLR2 stimulation in foam cells. The
distinct downstream effects following the stimulation of lipid-
laden macrophages through TLR2/1, TLR2/4, or TLR2/6 may
result from activation of divergent signaling pathways, but also
from different composition of signaling complexes involved in
their detection. So far, however, the same accessory components
have been described for optimal recognition of either LTA
or diacylated lipopeptides including LBP, CD14, and CD36
(45–47). Recognition of triacylated Pam3CSK4 has also been
shown to engage CD14, LBP and less probably CD36 (46, 48,
49). Active component of oxLDLs, oxPAPC, has been shown
to compete with TLR ligands for CD14 and LBP binding,
which leads to diminished signaling pathways activation and
cytokine response (31, 50–52). On the other hand, up to 90%
of circulating oxLDLs can be found in the form of oxLDL
immune complexes (53) and it was shown that these complexes
bind FcγRI on a human macrophage cell line and induce the
secretion of proinflammatory cytokines (54). In a more recent
study their role in priming of NLRP3 inflammasome and IL-
1β production was also shown (55). The ability of oxLDLs to
enable cross-talk between FcγR and TLR is likely facilitated
by the tight clustering of TLRs and FcγRs in glycoprotein
microdomains (56). In our cell culture settings, a fraction of
oxLDLs could also form immune complexes with Abs from
supplemented human serum as it contains substantial titers of
anti-oxLDL antibodies (57). We have been particularly interested
whether prolonged-hMDFCs retain the ability to produce anti-
inflammatory proteins. We observed that the production of
IL-10 by these cells was considerably inhibited irrespectively
of the inducing PAMP (Figure 5A). Apparently, the IL-10
production was negatively regulated by accumulated cytoplasmic
lipids but not by oxLDLs present in medium during TLR
interaction with PAMPs (Figure 6A). We also noted that the
production of IL-1RA, an IL-10-dependent protein typical forM2
macrophages, was significantly lower only in case of TLR1/2 and
TLR7/8 stimulation (Figure 5A). Additionally, non-stimulated
oxLDL-treated-hMDMs and prolonged-hMDFCs spontaneously
secreted more IL-1RA than corresponding prolonged-hMDMs
(Figure 4). The response of endosomal receptors TLR7/8 was
dramatically inhibited in prolonged-hMDFCs but not in oxLDL-
treated-hMDMs (Figure 6B). It suggests that the endosomal TLR
signaling is modulated mainly by the intracellular lipids. The
response of prolonged-hMDFCs to the stimulation of membrane
TLRs and another endosomal receptor—TLR3 was apparently
regulated by both the cytoplasmic lipid deposits and extracellular
oxLDLs, depending on structural characteristic of the ligand
(Figure 6 and data not shown). We verified that the PAMPs-
induced secretome of prolonged-hMDFCs is not caused by the
change of surface expression of TLR1, TLR2, TLR4, and TLR6
(Figures 2B,D). Further cytometric analysis revealed decreased
expression of surface CD81, CD47, and CD11b on hMDFCs

(Figures 2C,E,F). Western blot analysis, however, did not reveal
any differences in total cellular lysates of prolonged-hMDMs and
hMDFCs (Figure 3). The diminished surface exposition of CD47
and CD81 may result from their sequestration inside lipid-laden
cells or direct interactions with other surface proteins on the
plasmamembranes whichmake them less accessible to antibodies
by steric hindrance. CD81 is as a member of tetraspanin family,
known to facilitate formation of multiple molecular complexes
in membrane microdomains. Heit et al. demonstrated that
CD81 resides in heterogenous CD36 multimolecular complexes
containing another tetraspanin CD9 and integrins β1/β2 (58).

CD47, also known as a integrin-associated protein, is a
widely expressed cell surface signaling receptor that regulates
cell viability and responses to stress. CD47 lacks a substantial
cytoplasmic signaling domain, but several cytoplasmic binding
partners have been identified. Additionally, lateral interactions
of CD47 with other membrane receptors play important roles
in mediating signaling, that is initiated by the binding of
thrombospondin-1 (59).

To obtain prolonged-hMDFCs we used low concentration
of oxLDLs (5µg/mL) yet the concentrations of modified LDLs
in the vessel wall may be considerably higher (60). On the
other hand, there is no accepted gold standard for in vitro
preparation of oxLDLs (61). In this work we used copper
sulfate-derived oxLDLs which is the most widely accepted
model of highly oxidized LDLs. Such lipoproteins are not fully
physiological molecules and probably do not entirely represent
oxidatively modified LDL in vivo. Nevertheless, copper-treated
LDL resemble naturally occurring oxLDLs and antibodies raised
against such obtained oxLDLs successfully detect epitopes of
human oxLDLs (62). OxLDL preparation used in indicated
concentration was not cytotoxic to the cells as determined by
LDH assay and cytometric analyses (data not shown). Our oxLDL
preparations did not stimulate IL-6, IL-12, or TNF production in
monocytes or in macrophages (data not shown). Moreover, we
did not detect IL-1β in supernatants of both non-stimulated and
PAMPs-triggered foam-cells (Supplementary Figure 2). This is
in line with Netea et al. who proved that humanmacrophages did
not secrete IL-1β upon TLR stimulation alone (63). We noted,
however, significant increase in MCP-1 and slight induction
of MIP-1 alpha, MIP-1 beta secretion by non-stimulated
prolonged-hMDFCs (Figure 4). These findings indicate that lipid
accumulation may favor chemotactic recruitment of other cell
types into atherosclerotic lesion. Short incubation of hMDMs
with oxLDLs induced also a minor increase of IL-1RA secretion
(Figure 4).

Results of our study indicate that although hMDFCs residing
in oxLDL—rich environment retain the ability to recognize
and respond to a variety of pathogenic structures, they are
generally less capable of strong inflammatory reaction. Local
disregulation of proinflammatory mediators, as reported here for
the majority of PAMPs, may lead to generation of chronic, non-
resolving inflammation characteristic for atherosclerosis. This
process may be further perpetuated by lowered IL-10 production
by these cells. The recognition of diacylated lipoproteins by
prolonged-hMDFCs is potentially more proinflammatory than
that of other PAMPs, however its biological significance is not yet
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Nogieć et al. Recognition of Molecular Patterns by Foam Cells

clear. Although themechanisms of oxLDL-mediated alteration of
protein secretion by prolonged-hMDFCs have not been specified,
this work provides an additional insight into the possible
processes responsible for atherosclerotic plaque development.

This work has been based on two assumptions coming
from the current state of cardiovascular science: (i) prolonged
exposure of foam macrophages to oxLDLs will modify their
response to PAMPs and (ii) induction of the major immunogenic
cell death type—pyroptosis, will also be altered.

In recent years, more and more studies have been focusing
on the links between atherosclerosis and inflammation (5, 16,
24, 64, 65), infectious diseases (66–68), and pyroptosis (8, 10,
69, 70)—a pro-inflammatory type of cell death dependent on
the activation of inflammasome. Mounting evidence suggests
that oxLDLs activate NLRP3 inflammasomes through lysosomal
rupture and subsequent cathepsin release (10, 70), which, in
turn, leads to cleavage and activation of procaspase-1 and
pyroptosis. Our current investigation shows that oxLDLs act as a
regulatory factor for IL-1β production and a caspase-dependent
and -independent necrotic type cell death. Challenged by the
standard LPS/nigericin, two-signal inflammasome stimulus, the
prolonged-hMDFCs produced much lower absolute amounts of
IL-1β than foam cells cultured in typical settings—standard-
hMDFCs (Supplementary Figure 2), but higher when ratio of
foam cell to macrophage counterpart was compared (Figure 7A).
Some studies showed that oxLDLs induces inflammasome-
mediated IL-1β production in BMDMs (35, 40, 41), however,
some others have not confirmed this finding (55). This
discrepancy is likely a time- and dose-dependent issue. Jiang
et al. (40) observed IL-1β production by BMDMs treated with
increasing concentrations of oxLDLs (25–200µg/mL) for 12 h,
performing most of the experiments with 200µg/mL oxLDLs.
Similarly, Liu et al. (41) used high concentrations of oxLDL
(50–200µg/mL) for 24 h. Although these high concentrations
of oxLDLs evoke powerful responses from innate immune cells,
they are at the upper extremum of physiological relevance.
We decided to use 5µg/mL oxLDLs for our studies to more
closely mimic conditions in vivo (71, 72). In addition, the long
(30 days) incubation period allowed time for the formation of
cholesterol crystals, which is the primary mechanism by which
oxLDLs activates the inflammasome. Studies by Sheedy et al.
demonstrated that oxLDLs can be a second, activating signal
for the inflammasome through a TLR4/TLR6/CD36 heterotrimer
complex (35). This was largely facilitated by formation of
cholesterol crystals and resulting lysosomal disruption. The
investigators went on to suggest that oxLDLs could act as both—
a priming and activating signal for the inflammasome via TLR
ligation and cholesterol crystal formation, respectively. Although
we cannot exclude such a possibility, we observed neither
spontaneous production of IL-1β (Supplementary Figure 2)
nor increased accumulation of proIL-1β (Figure 7B) in non-
stimulated prolonged-hMDFCs.

Involvement of caspase-1 is supported by the observation that
IL-1β production was decreased by caspase-1-specific inhibitor
(Ac-YVAD-cmk), but not by necrostatin-1, a RIP-1 inhibitor
(Figure 8A and Supplementary Figure 3). Interestingly,
necrostatin-1 increased IL-1β production in hMDMs (and less

in hMDFCs) as well as necrotic type cell death stimulated with
LPS/nigericin (Figure 8 and Supplementary Figure 3). This
may suggest that RIP1 activity is necessary to tame the excessive
inflammasome activation in differentiating macrophages.
Karunakaran et al. demonstrated that oxLDLs directly induce
necroptosis in the absence of synthetic caspase inhibitors
and that the expression of RIP3 in carotid plaques is higher
than in disease-free control arteries (73). They also observed
induction of RIP3 activity in murine BMDMs treated with
oxLDLs in vitro. The results may explain weaker cytotoxicity of
necrostatin-1 observed in our prolonged-hMDFCs (Figure 8).
The induction of necroptosis by oxLDLs was found independent
of inflammasome activation, because cells deficient in caspase-1
or treated with caspase-1 inhibitors underwent necroptotic cell
death in response to oxLDLs to the same degree as wild-type or
untreated cells (73). A particularly interesting feature reflected
in prolonged-hMDFCs was enhanced sensitivity to rapamycin,
an autophagy-inducing mTOR inhibitor. The rapamycin-
treated hMDFCs displayed a necrotic type death which, as
measured by LDH release, was disproportionately larger than
IL-1β production (Figure 8 and Supplementary Figure 3).
This is in contrast to hMDMs or standard-hMDFCs where
the proportion of necrotic cells was moderate (Figure 8).
Apparently, the prolonged-hMDFCs enter necrotic pathways
other than pyroptosis more promptly than standard-hMDFCs.
Furthermore, foam cells derived from THP-1 macrophages in
72 h culture did not respond to everolimus (an FDA-approved
rapalog) with necrosis (74). Indeed, limited clinical data show
substantial depletion of plaque macrophages by everolimus
treatment (75), which may result from excessive necrosis
without a corresponding production of IL-1β. Cumulatively,
the data from short-term-induced foam cells demonstrated
an important limitation of the model which does not fully
reflect the cross-talk between different processes connected with
cell death, particularly pyroptosis, necroptosis and autophagy.
The coexistence of different cell death pathways and their
mutual regulation in foam cells has not been extensively studied
so far, but our present data suggest a gradual, multi-stage
process of foam cell formation which is supported by incidental
observations in primary human foam cells. In the initial stage
of atherosclerosis the activation of mTOR signaling contributes
to the formation of foam cells via enhancing the process from
monocyte to macrophage. In later stages the activation of mTOR
signaling promotes formation of fatty streaks and facilitates
the formation of vulnerable plaques (76). In advanced lesions
overexpression of MLKL (a necroptosis effector kinase) activates
inflammation and inhibits autophagy flux (77).

In conclusion, the current study demonstrates that long-
term exposure of macrophages to moderate amounts of oxLDLs
lead to profound changes in their ability to respond to external
stimuli without dramatic changes of phenotype. Particularly,
we observed strong inhibition of cytokine and chemokine
secretion upon TLR1/2, TLR4, and endosomal TLR stimulation.
Surprisingly, the prolonged-hMDFCs response to diacylated
lipopetides, which are ligands of TLR2/6, was not significantly
changed. We also found that impairment of IL-10 release
is strongly dependent on the extent of lipid loading by
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macrophages. Prolonged-hMDFCs responded to inflammasome
activation with pyroptosis combined with other types of
necrotic death. Such immunogenic response to inflammasome
triggers was aggravated by specific inhibitors of apoptosis and
necroptosis, and by stimulation of autophagy. These findings
identify an important contribution of mature foam cells to innate
immune responses that goes beyond their previous recognition
and highlights necrotic cell death pathways as potential markers
for atherosclerosis disease severity. Better understanding of the
cross-talk between cell death pathways in atherosclerosis is an
area of continued interest and warrants further study.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

AD, AN, and MB performed the experiments. AN and MB
participated in the manuscript preparation. CV provided
the intellectual contribution and revised the manuscript. KG
designed the study, wrote the manuscript, and coordinated the

project. All authors contributed to the article and approved the
submitted version.

FUNDING

This work was supported by grants NN303 8086 40 (to MB) and
UMO-2012/05/B/NZ6/00677 (to KG) from the National Science
Centre (Kraków, Poland). The open-access publication of this
article was funded by the BioS Priority Research Area under
the program Excellence Initiative – Research University at the
Jagiellonian University in Krakow.

ACKNOWLEDGMENTS

The authors are indebted to Mr. Witold Nowak (Department of
Medical Biotechnology, Jagiellonian University, Kraków) for his
excellent assistance in Luminex R© measurements.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fimmu.
2020.01592/full#supplementary-material

REFERENCES

1. World Health Organisation. Cardiovascular Diseases. Geneva: WHO (2017).
2. Berenson GS, Srinivasan SR, Bao W, Newman WP, Tracy RE,

Wattigney WA. Association between multiple cardiovascular
risk factors and atherosclerosis in children and young adults. N

Engl J Med. (1998) 338:1650–6. doi: 10.1056/NEJM1998060433
82302

3. Herrington W, Lacey B, Sherliker P, Armitage J, Lewington
S. Epidemiology of atherosclerosis and the potential to reduce
the global burden of atherothrombotic disease. Circ Res. (2016)
118:535–46. doi: 10.1161/CIRCRESAHA.115.307611

4. Tabas I, Lichtman AH. Monocyte-macrophages and T cells in atherosclerosis.
Immunity. (2017) 47:621–34. doi: 10.1016/j.immuni.2017.09.008

5. Bäck M, Yurdagul A, Tabas I, Öörni K, Kovanen PT. Inflammation and its
resolution in atherosclerosis: mediators and therapeutic opportunities. Nat
Rev Cardiol. (2019) 16:389–406. doi: 10.1038/s41569-019-0169-2

6. Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic
balance. Nat Rev Immunol. (2013) 13:709–21. doi: 10.1038/nri3520

7. Tabas I, Bornfeldt KE. Macrophage phenotype and function
in different stages of atherosclerosis. Circ Res. (2016) 118:653–
67. doi: 10.1161/CIRCRESAHA.115.306256

8. Martinet W, Coornaert I, Puylaert P, De Meyer GRY. Macrophage death as
a pharmacological target in atherosclerosis. Front Pharmacol. (2019) 10:1–
18. doi: 10.3389/fphar.2019.00306

9. Tait SWG, Ichim G, Green DR. Die another way–non-apoptotic mechanisms
of cell death. J Cell Sci. (2014) 127:2135–44. doi: 10.1242/jcs.093575

10. Grebe A, Hoss F, Latz E. NLRP3 inflammasome and the
IL-1 pathway in atherosclerosis. Circ Res. (2018) 122:1722–
40. doi: 10.1161/CIRCRESAHA.118.311362

11. Winkels H, Ehinger E, Vassallo M, Buscher K, Dinh HQ, Kobiyama K, et
al. Atlas of the immune cell repertoire in mouse atherosclerosis defined by
single-cell RNA-sequencing and mass cytometry. Circ Res. (2018) 122:1675–
88. doi: 10.1161/CIRCRESAHA.117.312513

12. Rifkin IR, Leadbetter EA, Busconi L, Viglianti G, Marshak-Rothstein A.
Toll-like receptors, endogenous ligands, and systemic autoimmune disease.
Immunol Rev. (2005) 204:27–42. doi: 10.1111/j.0105-2896.2005.00239.x

13. Cole JE, Kassiteridi C, Monaco C. Toll-like receptors in atherosclerosis: a
“Pandora’s box” of advances and controversies. Trends Pharmacol Sci. (2013)
34:629–36. doi: 10.1016/j.tips.2013.09.008

14. Edfeldt K, Swedenborg J, Hansson GK, Yan ZQ. Expression of toll-like
receptors in human atherosclerotic lesions: a possible pathway for plaque
activation. Circulation. (2002) 105:1158–61. doi: 10.1161/circ.105.10.1158

15. Sessa R. Infectious burden and atherosclerosis: a clinical issue. World J Clin

Cases. (2014) 2:240–9. doi: 10.12998/wjcc.v2.i7.240
16. Zimmer S, Grebe A, Latz E. Danger signaling in atherosclerosis. Circ Res.

(2015) 116:323–40. doi: 10.1161/CIRCRESAHA.116.301135
17. Lanter BB, Sauer K, Davies DG. Bacteria present in carotid arterial plaques are

found as biofilm deposits which may contribute to enhanced risk of plaque
rupture.MBio. (2014) 5:e01206–14. doi: 10.1128/mBio.01206-14

18. Gibson MS, Domingues N, Vieira OV. Lipid and non-lipid factors affecting
macrophage dysfunction and inflammation in atherosclerosis. Front Physiol.
(2018) 9:654. doi: 10.3389/fphys.2018.00654

19. Brown MS, Ho YK, Goldstein JL. The cholesteryl ester cycle in macrophage
foam cells. continual hydrolysis and re-esterification of cytoplasmic
cholesteryl esters. J Biol Chem. (1980) 255:9344–52.

20. Papac-Milicevic N, Busch CJL, Binder CJ.Malondialdehyde epitopes as targets
of immunity and the implications for atherosclerosis. Adv Immunol. (2016)
131:1–59 doi: 10.1016/bs.ai.2016.02.001

21. Nahrendorf M, Swirski FK. Abandoning M1/M2 for a network
model of macrophage function. Circ Res. (2016) 119:414–
7. doi: 10.1161/CIRCRESAHA.116.309194

22. Robbins CS, Hilgendorf I, Weber GF, Theurl I, Iwamoto Y, Figueiredo JL,
et al. Local proliferation dominates lesional macrophage accumulation in
atherosclerosis. Nat Med. (2013) 19:1166–72. doi: 10.1038/nm.3258

23. Murphy AJ, Tall AR. Proliferating macrophages populate
established atherosclerotic lesions. Circ Res. (2014) 114:236–
8. doi: 10.1161/CIRCRESAHA.113.302813

24. Christ A, Günther P, Lauterbach MAR, Duewell P, Biswas D, Pelka K, et
al. Western diet triggers NLRP3-dependent innate immune reprogramming.
Cell. (2018) 172:162–75.e14. doi: 10.1016/j.cell.2017.12.013

25. Zysset D, Weber B, Rihs S, Brasseit J, Freigang S, Riether C, et al. TREM-1
links dyslipidemia to inflammation and lipid deposition in atherosclerosis.
Nat Commun. (2016) 7:1–16. doi: 10.1038/ncomms13151

Frontiers in Immunology | www.frontiersin.org 17 August 2020 | Volume 11 | Article 1592

https://www.frontiersin.org/articles/10.3389/fimmu.2020.01592/full#supplementary-material
https://doi.org/10.1056/NEJM199806043382302
https://doi.org/10.1161/CIRCRESAHA.115.307611
https://doi.org/10.1016/j.immuni.2017.09.008
https://doi.org/10.1038/s41569-019-0169-2
https://doi.org/10.1038/nri3520
https://doi.org/10.1161/CIRCRESAHA.115.306256
https://doi.org/10.3389/fphar.2019.00306
https://doi.org/10.1242/jcs.093575
https://doi.org/10.1161/CIRCRESAHA.118.311362
https://doi.org/10.1161/CIRCRESAHA.117.312513
https://doi.org/10.1111/j.0105-2896.2005.00239.x
https://doi.org/10.1016/j.tips.2013.09.008
https://doi.org/10.1161/circ.105.10.1158
https://doi.org/10.12998/wjcc.v2.i7.240
https://doi.org/10.1161/CIRCRESAHA.116.301135
https://doi.org/10.1128/mBio.01206-14
https://doi.org/10.3389/fphys.2018.00654
https://doi.org/10.1016/bs.ai.2016.02.001
https://doi.org/10.1161/CIRCRESAHA.116.309194
https://doi.org/10.1038/nm.3258
https://doi.org/10.1161/CIRCRESAHA.113.302813
https://doi.org/10.1016/j.cell.2017.12.013
https://doi.org/10.1038/ncomms13151
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
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