organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-(4-Chlorophenyl)-7-methyl-4-(4methylphenyl)-1-oxa-2,7-diazaspiro[4.5]dec-2-en-10-one

D. Gayathri,^a D. Velmurugan,^a* R. Ranjith Kumar,^b S. Perumal^b and K. Ravikumar^c

^aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ^bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and ^cLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India

Correspondence e-mail: d_velu@yahoo.com

Received 10 December 2007; accepted 29 December 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.111; data-to-parameter ratio = 18.3.

In the title compound, $C_{21}H_{21}ClN_2O_2$, the dihydroisoxazole ring adopts an envelope conformation and the piperidinone ring is in a chair conformation. The dihedral angle between the two benzene rings is 84.2 (1)°. The crystal used was an inversion twin.

Related literature

For general background, see: Diana *et al.* (1985); Huisgen (1984); Lepage *et al.* (1992); Ryng *et al.* (1998); Torssell (1988). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983).

Experimental

Crystal data

 $C_{21}H_{21}ClN_2O_2$ $M_r = 368.85$ Orthorhombic, $P2_12_12_1$ a = 11.4585 (8) Å b = 16.1132 (11) Å c = 10.1038 (7) Å

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: none 16236 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.111$ S = 1.03 4350 reflections 238 parameters H-atom parameters constrained $V = 1865.5 (2) \text{ Å}^{3}$ Z = 4 Mo K\alpha radiation $\mu = 0.22 \text{ mm}^{-1}$ T = 293 (2) K 0.24 \times 0.23 \times 0.20 mm

4350 independent reflections 3771 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.022$

 $\begin{array}{l} \Delta \rho_{max} = 0.24 \ e \ \mathring{A}^{-3} \\ \Delta \rho_{min} = -0.16 \ e \ \mathring{A}^{-3} \\ \mbox{Absolute structure: Flack (1983),} \\ \mbox{with 1846 Friedel pairs} \\ \mbox{Flack parameter: 0.65 (6)} \end{array}$

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97* and *PARST* (Nardelli, 1995).

DG thanks the Council of Scientific and Industrial Research (CSIR), India, for a Senior Research Fellowship. The University Grants Commission (UGC–SAP) and the Department of Science and Technology (DST–FIST), Government of India, are acknowledged by DV for providing facilities to the department.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2543).

References

- Bruker (2001). SMART (Version 5.625/NT/2000) and SAINT (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Diana, G. D., McKinlay, M. A., Brisson, C. J., Zalay, E. S., Miralles, J. V. & Salvador, U. J. (1985). J. Med. Chem. 28, 748–752.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Huisgen, R. (1984). In 1,3-Dipolar Cycloaddition Chemistry, edited by A. Padwa. New York: John Wiley.
- Lepage, F., Tombert, F., Cuvier, G., Marivain, A. & Gillardin, J. M. (1992). *Eur. J. Med. Chem.* **27**, 581–593.
- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Ryng, S., Machon, Z., Wieczorek, Z., Zimecki, M. & Mokrosz, M. (1998). Eur. J. Med. Chem. 33, 831–836.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Torssell, K. (1988). Nitrile Oxides, Nitrones and Nitronates in Organic Synthesis. New York: VCH.

Acta Cryst. (2008). E64, o398 [doi:10.1107/S1600536807068717]

3-(4-Chlorophenyl)-7-methyl-4-(4-methylphenyl)-1-oxa-2,7-diazaspiro[4.5]dec-2-en-10-one

D. Gayathri, D. Velmurugan, R. Ranjith Kumar, S. Perumal and K. Ravikumar

Comment

1,3-Dipolar cycloaddition of nitrile oxides to alkenes and alkynes affords isoxazoles and isoxazolines (Torssell, 1988). Apart from exhibiting important biological activities such as antiviral (Diana *et al.*, 1985), anticonvulsant (Lepage *et al.*, 1992) and immunostimulatory (Ryng *et al.*, 1998), isoxazolines are valuable synthons in the synthesis of α , β -unsaturated ketones, β -hydroxy ketones and γ -amino alcohols (Huisgen, 1984). In view of the above facts, we have undertaken the X-ray crystal structure determination of the title compound.

The sum of the bond angles around N2 (331.7°) indicates the sp^3 -hybridization. The dihydro-isoxazole ring (C1—C3/O1/N1) adopts an envelope conformation with atom C1 deviating by 0.350 (2) Å from the plane of rest of the atoms in the ring. The piperidinone ring adopts a chair conformation. The puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) for the dihydro-isoxazole ring are $q_2 = 0.220$ (2) Å, $\varphi = 142.2$ (4)° and $\Delta_s(C_1) = 1.1$ (2)°, and for the piperidinone ring $q_2 = 0.074$ (2) Å, $q_3 = 0.569$ (2) Å, $Q_T = 0.574$ (2) Å and $\theta = 7.5$ (2)°. The dihedral angle between the two benzene rings (C9—C14 and C16—C21) is 84.2 (1)°. The chlorine atom deviates by -0.065 (1) Å from the plane of the attached C16—C21 benzene ring, and the methyl carbon atom C15 deviates by 0.082 (2) Å from the plane of the C9—C14 benzene ring.

The crystal packing is stabilized by van der Waals forces.

Experimental

To a well stirred mixture of 1-methyl-3-[(*E*)-4-methylphenylmethylidene]tetrahydro-4(1*H*)-pyridinone (1 mmol) and 4chlorobenzohydroximoyl chloride (3 mmol) in benzene (15 ml), triethylamine (3 mmol) was added dropwise over a period of 10 min and stirring was continued for 5 h at ambient temperature. The triethylamine hydrochloride was filtered off, solvent evaporated *in vacuo*, and the product was purified by column chromatography using petroleum ether-ethyl acetate (4:1 v/v) mixture. The compound was then recrystallized from ethanol-ethyl acetate (1:1 v/v).

Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.98 Å and $U_{iso}(H)$ = $1.5U_{eq}(methyl C)$ or $1.2U_{eq}(C)$. The crystal used was an inversion twin.

Figures

Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.

Fig. 2. The crystal packing of the title compound viewed down the c axis.

3-(4-Chlorophenyl)-7-methyl-4-(4-methylphenyl)-1-oxa-2,7- diazaspiro[4.5]dec-2-en-10-one

Crystal data

$C_{21}H_{21}CIN_2O_2$	$F_{000} = 776$
$M_r = 368.85$	$D_{\rm x} = 1.313 {\rm ~Mg} {\rm m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 2169 reflections
a = 11.4585 (8) Å	$\theta = 2.2 - 25.0^{\circ}$
b = 16.1132 (11) Å	$\mu = 0.22 \text{ mm}^{-1}$
c = 10.1038 (7) Å	T = 293 (2) K
$V = 1865.5 (2) \text{ Å}^3$	Block, colourless
Z = 4	$0.24 \times 0.23 \times 0.20 \text{ mm}$

Data collection

Bruker SMART APEX CCD area-detector diffractometer	3771 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.022$
Monochromator: graphite	$\theta_{\text{max}} = 28.0^{\circ}$
T = 293(2) K	$\theta_{\min} = 2.2^{\circ}$
ω scans	$h = -14 \rightarrow 14$
Absorption correction: none	$k = -20 \rightarrow 20$
16236 measured reflections	$l = -12 \rightarrow 13$
4350 independent reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.043$	$w = 1/[\sigma^2(F_o^2) + (0.0709P)^2 + 0.0494P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.111$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.04	$\Delta \rho_{max} = 0.24 \text{ e} \text{ Å}^{-3}$
4350 reflections	$\Delta \rho_{min} = -0.16 \text{ e } \text{\AA}^{-3}$
238 parameters	Extinction correction: none
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983); 1846 Friedel pairs
Secondary atom site location: difference Fourier map	Flack parameter: 0.65 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.39999 (14)	0.21740 (10)	0.26025 (16)	0.0441 (4)
C2	0.47545 (14)	0.14014 (10)	0.28375 (16)	0.0432 (4)
H2	0.5027	0.1400	0.3757	0.052*
C3	0.57576 (15)	0.16160 (10)	0.19396 (17)	0.0451 (4)
C4	0.26874 (15)	0.20376 (11)	0.2506 (2)	0.0498 (4)
H4A	0.2523	0.1668	0.1771	0.060*
H4B	0.2414	0.1772	0.3310	0.060*
C5	0.2264 (2)	0.33753 (12)	0.3408 (2)	0.0643 (6)
H5A	0.2049	0.3109	0.4233	0.077*
H5B	0.1784	0.3866	0.3301	0.077*
C6	0.3552 (2)	0.36245 (12)	0.3452 (3)	0.0666 (6)
H6A	0.3773	0.3897	0.2633	0.080*
H6B	0.3691	0.4005	0.4179	0.080*
C7	0.42530 (17)	0.28489 (11)	0.36367 (19)	0.0516 (4)
C8	0.08128 (17)	0.26456 (16)	0.2160 (2)	0.0703 (6)
H8A	0.0523	0.2374	0.2939	0.106*
H8B	0.0692	0.2295	0.1405	0.106*

H8C	0.0404	0.3160	0.2035	0.106*
C9	0.42089 (13)	0.05732 (10)	0.25237 (16)	0.0422 (3)
C10	0.40319 (16)	0.03083 (11)	0.12336 (18)	0.0510 (4)
H10	0.4296	0.0634	0.0535	0.061*
C11	0.34703 (17)	-0.04313 (12)	0.0970 (2)	0.0567 (5)
H11	0.3365	-0.0596	0.0096	0.068*
C12	0.30606 (15)	-0.09324 (11)	0.1981 (2)	0.0535 (4)
C13	0.32650 (18)	-0.06790 (12)	0.3258 (2)	0.0590 (5)
H13	0.3018	-0.1012	0.3955	0.071*
C14	0.38319 (16)	0.00627 (11)	0.35339 (18)	0.0520 (4)
H14	0.3959	0.0217	0.4409	0.062*
C15	0.2395 (2)	-0.17151 (13)	0.1691 (3)	0.0755 (7)
H15A	0.2165	-0.1972	0.2507	0.113*
H15B	0.2882	-0.2090	0.1199	0.113*
H15C	0.1713	-0.1584	0.1180	0.113*
C16	0.69030 (15)	0.12007 (10)	0.19526 (18)	0.0453 (4)
C17	0.77102 (16)	0.13329 (12)	0.09496 (19)	0.0522 (4)
H17	0.7506	0.1654	0.0221	0.063*
C18	0.88106 (17)	0.09925 (12)	0.1024 (2)	0.0559 (4)
H18	0.9347	0.1079	0.0347	0.067*
C19	0.91083 (15)	0.05239 (11)	0.2108 (2)	0.0526 (4)
C20	0.83202 (17)	0.03571 (11)	0.30978 (19)	0.0559 (5)
H20	0.8526	0.0022	0.3810	0.067*
C21	0.72139 (17)	0.06986 (12)	0.30132 (19)	0.0527 (4)
H21	0.6671	0.0590	0.3676	0.063*
N1	0.55545 (14)	0.22078 (9)	0.11384 (15)	0.0530 (4)
N2	0.20607 (14)	0.28110 (9)	0.23159 (16)	0.0548 (4)
01	0.44115 (11)	0.25059 (8)	0.13460 (12)	0.0552 (3)
02	0.49219 (14)	0.27449 (9)	0.45270 (15)	0.0714 (4)
Cl1	1.05097 (4)	0.01181 (4)	0.22360 (6)	0.07411 (18)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0457 (8)	0.0424 (8)	0.0441 (9)	0.0017 (7)	0.0011 (7)	0.0028 (6)
C2	0.0438 (8)	0.0449 (8)	0.0410 (8)	0.0035 (6)	-0.0025 (7)	0.0023 (7)
C3	0.0428 (8)	0.0451 (8)	0.0476 (9)	-0.0007 (7)	-0.0009 (7)	-0.0016 (7)
C4	0.0457 (8)	0.0503 (9)	0.0532 (10)	0.0026 (7)	-0.0022 (8)	0.0016 (8)
C5	0.0689 (13)	0.0495 (10)	0.0744 (14)	0.0179 (9)	0.0117 (11)	0.0037 (9)
C6	0.0768 (14)	0.0425 (9)	0.0805 (14)	0.0026 (9)	0.0013 (12)	-0.0085 (9)
C7	0.0498 (10)	0.0469 (9)	0.0580 (10)	-0.0047 (7)	0.0042 (9)	0.0014 (8)
C8	0.0503 (10)	0.0856 (14)	0.0751 (13)	0.0143 (10)	0.0057 (10)	0.0159 (12)
C9	0.0379 (7)	0.0420 (8)	0.0467 (9)	0.0046 (6)	0.0004 (7)	0.0029 (6)
C10	0.0549 (10)	0.0498 (9)	0.0482 (9)	0.0000 (8)	0.0031 (8)	0.0028 (7)
C11	0.0554 (10)	0.0553 (11)	0.0595 (11)	0.0033 (8)	-0.0044 (9)	-0.0067 (9)
C12	0.0407 (8)	0.0428 (9)	0.0769 (13)	0.0073 (7)	-0.0018 (9)	-0.0003 (8)
C13	0.0582 (11)	0.0477 (9)	0.0710 (13)	0.0022 (9)	0.0080 (9)	0.0151 (9)
C14	0.0563 (10)	0.0509 (9)	0.0489 (9)	0.0031 (8)	0.0013 (8)	0.0037 (8)

C15	0.0590 (12)	0.0509 (11)	0.116 (2)	-0.0032 (9)	-0.0063 (13)	-0.0041 (12)
C16	0.0425 (8)	0.0422 (8)	0.0510 (9)	-0.0008 (7)	-0.0021 (7)	-0.0060(7)
C17	0.0485 (9)	0.0548 (10)	0.0534 (10)	0.0006 (8)	0.0014 (8)	0.0024 (8)
C18	0.0465 (9)	0.0619 (11)	0.0594 (11)	0.0015 (8)	0.0070 (9)	-0.0020 (9)
C19	0.0428 (8)	0.0517 (9)	0.0634 (11)	0.0056 (7)	-0.0035 (8)	-0.0114 (8)
C20	0.0586 (11)	0.0551 (10)	0.0541 (10)	0.0111 (8)	-0.0027 (9)	0.0004 (8)
C21	0.0505 (9)	0.0547 (10)	0.0527 (10)	0.0035 (8)	0.0059 (8)	0.0000 (8)
N1	0.0471 (8)	0.0580 (9)	0.0540 (8)	0.0063 (7)	0.0061 (7)	0.0053 (7)
N2	0.0495 (8)	0.0569 (9)	0.0580 (9)	0.0087 (7)	0.0036 (7)	0.0104 (7)
01	0.0519 (7)	0.0619 (7)	0.0519 (6)	0.0132 (6)	0.0056 (6)	0.0146 (6)
O2	0.0826 (11)	0.0639 (9)	0.0678 (9)	-0.0015 (8)	-0.0190 (8)	-0.0105 (7)
Cl1	0.0503 (3)	0.0879 (4)	0.0841 (4)	0.0210 (2)	-0.0020 (2)	-0.0061 (3)

Geometric parameters (Å, °)

1.456 (2)	C9—C10	1.386 (2)
1.523 (2)	C10-C11	1.380 (3)
1.534 (2)	С10—Н10	0.93
1.536 (2)	C11—C12	1.384 (3)
1.505 (2)	C11—H11	0.93
1.507 (2)	C12—C13	1.374 (3)
0.98	C12—C15	1.503 (3)
1.272 (2)	C13—C14	1.389 (3)
1.473 (2)	С13—Н13	0.93
1.451 (2)	C14—H14	0.93
0.97	C15—H15A	0.96
0.97	С15—Н15В	0.96
1.448 (3)	C15—H15C	0.96
1.530 (3)	C16—C17	1.388 (3)
0.97	C16—C21	1.389 (3)
0.97	C17—C18	1.377 (3)
1.497 (3)	С17—Н17	0.93
0.97	C18—C19	1.373 (3)
0.97	C18—H18	0.93
1.194 (2)	C19—C20	1.374 (3)
1.463 (3)	C19—Cl1	1.7386 (17)
0.96	C20—C21	1.385 (3)
0.96	С20—Н20	0.93
0.96	C21—H21	0.93
1.380 (2)	N1—O1	1.411 (2)
108.48 (14)	C11—C10—C9	121.03 (17)
104.50 (13)	С11—С10—Н10	119.5
116.71 (14)	С9—С10—Н10	119.5
105.78 (13)	C10-C11-C12	121.29 (19)
109.40 (14)	C10-C11-H11	119.4
111.27 (14)	C12-C11-H11	119.4
113.17 (14)	C13—C12—C11	117.52 (17)
98.68 (13)	C13—C12—C15	121.3 (2)
116.88 (13)	C11—C12—C15	121.2 (2)
	1.456 (2) $1.523 (2)$ $1.534 (2)$ $1.536 (2)$ $1.505 (2)$ $1.507 (2)$ 0.98 $1.272 (2)$ $1.473 (2)$ $1.451 (2)$ 0.97 0.97 0.97 $1.448 (3)$ $1.530 (3)$ 0.97 0.97 0.97 $1.497 (3)$ 0.97 0.97 $1.194 (2)$ $1.463 (3)$ 0.96 0.96 0.96 0.96 $1.380 (2)$ $108.48 (14)$ $104.50 (13)$ $116.71 (14)$ $105.78 (13)$ $109.40 (14)$ $111.27 (14)$ $198.68 (13)$ $116.88 (13)$	1.456(2) $C9-C10$ $1.523(2)$ $C10-C11$ $1.534(2)$ $C10-H10$ $1.536(2)$ $C11-C12$ $1.505(2)$ $C11-H11$ $1.507(2)$ $C12-C13$ 0.98 $C12-C15$ $1.272(2)$ $C13-H13$ $1.473(2)$ $C13-H13$ $1.451(2)$ $C14-H14$ 0.97 $C15-H15A$ 0.97 $C15-H15B$ $1.448(3)$ $C15-H15C$ $1.530(3)$ $C16-C17$ 0.97 $C16-C21$ 0.97 $C18-C19$ 0.97 $C18-H18$ $1.497(3)$ $C17-H17$ 0.97 $C18-C19$ 0.97 $C18-C19$ 0.97 $C18-C19$ 0.96 $C20-C21$ 0.96 $C20-C21$ 0.96 $C20-H20$ 0.96 $C21-H21$ $1.380(2)$ $N1-O1$ $108.48(14)$ $C11-C10-C9$ $104.50(13)$ $C11-C10-H10$ $105.78(13)$ $C10-C11-H11$ $11.27(14)$ $C12-C11$ $11.27(14)$ $C12-C11$ $11.380(13)$ $C13-C12-C15$ $116.88(13)$ $C11-C12-C15$

С3—С2—Н2	109.2	C12—C13—C14	121.60 (18)
С9—С2—Н2	109.2	C12—C13—H13	119.2
C1—C2—H2	109.2	C14—C13—H13	119.2
N1—C3—C16	120.60 (16)	C9—C14—C13	120.73 (17)
N1—C3—C2	114.59 (15)	C9—C14—H14	119.6
C16—C3—C2	124.81 (14)	C13—C14—H14	119.6
N2—C4—C1	111.92 (15)	С12—С15—Н15А	109.5
N2—C4—H4A	109.2	С12—С15—Н15В	109.5
C1—C4—H4A	109.2	H15A—C15—H15B	109.5
N2—C4—H4B	109.2	С12—С15—Н15С	109.5
C1—C4—H4B	109.2	H15A—C15—H15C	109.5
H4A—C4—H4B	107.9	H15B—C15—H15C	109.5
N2—C5—C6	110.03 (17)	C17—C16—C21	118.79 (16)
N2—C5—H5A	109.7	C17—C16—C3	121.15 (16)
С6—С5—Н5А	109.7	C21—C16—C3	119.99 (16)
N2—C5—H5B	109.7	C18—C17—C16	120.60 (18)
С6—С5—Н5В	109.7	C18—C17—H17	119.7
H5A—C5—H5B	108.2	С16—С17—Н17	119.7
C7—C6—C5	107.56 (16)	C19—C18—C17	119.33 (18)
С7—С6—Н6А	110.2	C19—C18—H18	120.3
С5—С6—Н6А	110.2	C17—C18—H18	120.3
С7—С6—Н6В	110.2	C18—C19—C20	121.66 (16)
С5—С6—Н6В	110.2	C18—C19—Cl1	119.72 (15)
Н6А—С6—Н6В	108.5	C20-C19-Cl1	118.62 (15)
O2—C7—C6	123.75 (19)	C19—C20—C21	118.62 (17)
O2—C7—C1	122.32 (16)	С19—С20—Н20	120.7
C6—C7—C1	113.88 (17)	C21—C20—H20	120.7
N2—C8—H8A	109.5	C20—C21—C16	120.92 (17)
N2—C8—H8B	109.5	C20—C21—H21	119.5
H8A—C8—H8B	109.5	C16—C21—H21	119.5
N2—C8—H8C	109.5	C3—N1—O1	109.30 (14)
H8A—C8—H8C	109.5	C5—N2—C4	111.01 (15)
H8B—C8—H8C	109.5	C5—N2—C8	110.72 (16)
C14—C9—C10	117.78 (16)	C4—N2—C8	109.97 (16)
C14—C9—C2	120.12 (15)	N1—O1—C1	107.77 (12)
C10—C9—C2	122.07 (15)		
O1—C1—C2—C3	20.69 (15)	C10-C11-C12-C15	176.79 (18)
C4—C1—C2—C3	140.47 (15)	C11—C12—C13—C14	1.8 (3)
C7—C1—C2—C3	-93.02 (15)	C15-C12-C13-C14	-176.97 (18)
O1—C1—C2—C9	-100.88 (16)	C10—C9—C14—C13	-1.8 (3)
C4—C1—C2—C9	18.9 (2)	C2—C9—C14—C13	176.12 (16)
C7—C1—C2—C9	145.41 (15)	C12-C13-C14-C9	0.1 (3)
C9—C2—C3—N1	110.31 (17)	N1—C3—C16—C17	-11.9 (3)
C1C2	-13.93 (19)	C2—C3—C16—C17	168.66 (16)
C9—C2—C3—C16	-70.2 (2)	N1—C3—C16—C21	164.90 (17)
C1—C2—C3—C16	165.53 (15)	C2—C3—C16—C21	-14.5 (3)
O1—C1—C4—N2	-63.77 (19)	C21—C16—C17—C18	-1.9 (3)
C2-C1-C4-N2	178.61 (15)	C3—C16—C17—C18	174.95 (17)
C7—C1—C4—N2	51.2 (2)	C16—C17—C18—C19	-0.5 (3)

N2C5C7	-60.1 (2)	C17—C18—C19—C20	2.7 (3)
C5—C6—C7—O2	-123.4 (2)	C17—C18—C19—Cl1	-178.00 (15)
C5—C6—C7—C1	54.2 (2)	C18—C19—C20—C21	-2.4 (3)
O1—C1—C7—O2	-115.9 (2)	Cl1—C19—C20—C21	178.29 (14)
C4—C1—C7—O2	127.43 (19)	C19—C20—C21—C16	-0.1 (3)
C2-C1-C7-O2	-3.0 (2)	C17—C16—C21—C20	2.2 (3)
O1—C1—C7—C6	66.42 (19)	C3-C16-C21-C20	-174.70 (17)
C4—C1—C7—C6	-50.2 (2)	C16—C3—N1—O1	-178.78 (14)
C2-C1-C7-C6	179.33 (16)	C2-C3-N1-O1	0.7 (2)
C3—C2—C9—C14	141.75 (16)	C6—C5—N2—C4	64.4 (2)
C1—C2—C9—C14	-104.61 (18)	C6—C5—N2—C8	-173.13 (17)
C3—C2—C9—C10	-40.4 (2)	C1—C4—N2—C5	-60.1 (2)
C1—C2—C9—C10	73.2 (2)	C1C4	177.08 (16)
C14—C9—C10—C11	1.6 (3)	C3—N1—O1—C1	14.11 (18)
C2-C9-C10-C11	-176.26 (16)	C4—C1—O1—N1	-147.46 (14)
C9-C10-C11-C12	0.3 (3)	C2-C1-O1-N1	-22.29 (16)
C10-C11-C12-C13	-2.0 (3)	C7—C1—O1—N1	95.25 (15)

Fig. 2