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ABSTRACT Genotype calling plays important roles in population-genomic studies, which have been
greatly accelerated by sequencing technologies. To take full advantage of the resultant information, we
have developed maximum-likelihood (ML) methods for calling genotypes from high-throughput sequencing
data. As the statistical uncertainties associated with sequencing data depend on depths of coverage, we
have developed two types of genotype callers. One approach is appropriate for low-coverage sequencing
data, and incorporates population-level information on genotype frequencies and error rates pre-estimated
by an ML method. Performance evaluation using computer simulations and human data shows that the
proposed framework yields less biased estimates of allele frequencies and more accurate genotype calls
than current widely used methods. Another type of genotype caller applies to high-coverage sequencing
data, requires no prior genotype-frequency estimates, and makes no assumption on the number of alleles at
a polymorphic site. Using computer simulations, we determine the depth of coverage necessary to
accurately characterize polymorphisms using this second method. We applied the proposed method to
high-coverage (mean 18·) sequencing data of 83 clones from a population of Daphnia pulex. The results
show that the proposed method enables conservative and reasonably powerful detection of polymorphisms
with arbitrary numbers of alleles. We have extended the proposed method to the analysis of genomic data
for polyploid organisms, showing that calling accurate polyploid genotypes requires much higher coverage
than diploid genotypes.
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Whenwe carry out population-genomic analyses, identifying individual
genotypes is often necessary. For example, in order to identify putative
loci associated with a phenotype in genome-wide association studies,
calling genotypes is necessary tofindwhich allele each individual carries
at each locus. Moreover, calling individual genotypes is a first step in
some population-genetic analyses. For example, many statistical meth-
ods for haplotype phasing (e.g., Scheet and Stephens 2006; Browning
and Browning 2007; Li et al. 2010) start from genotype calls at each
SNP site. In addition, when accurate genotypes are called at each SNP

site, traditional statistical methods, including the four-gamete test
(Hudson and Kaplan 1985) and composite disequilibrium measures
(Cockerham and Weir 1977; Weir 1996), can be used to examine the
pattern of linkage disequilibrium.

Despite the advantages, some difficulties are associated with high-
throughput sequencing technologies. One of the main difficulties is the
high sequencing error rates,which typically range from0.001 to 0.01 per
read per site with commonly used sequencing platforms (Glenn 2011;
Quail et al. 2012). Second, because sequencing occurs randomly among
sites, individuals, and chromosomes in diploid organisms, depths of
coverage are variable at all levels. As a result, when depths of coverage
are low, there are often missing data, which introduces biases in sub-
sequent population-genetic analyses unless they are statistically accounted
for (Pool et al. 2010).

To call genotypes from high-throughput sequencing data, many
statistical methods have been recently developed (e.g., Li et al. 2008,
2009b; Hohenlohe et al. 2010; Martin et al. 2010; McKenna et al.
2010; Catchen et al. 2011, 2013; DePristo et al. 2011; Li 2011;
Nielsen et al. 2012; Vieira et al. 2013). The performance of the
widely used genotype callers in population-genomic analyses is
not well understood, especially when the population deviates from
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the Hardy–Weinberg equilibrium (HWE). Recent studies (Kim
et al. 2011; Han et al. 2014) found that allele frequencies estimated
directly from the sequence reads are unbiased, whereas those es-
timated via genotype calling are biased when depths of coverage
are low. These studies assumed a population in HWE. Vieira et al.
(2013) recently showed that the performance of genotype calling
can be improved by first estimating inbreeding coefficients from
the sequencing data, and then calling genotypes incorporating the
information on estimated inbreeding coefficients. Unfortunately,
their method is applicable only when the inbreeding coefficients
are non-negative (Maruki and Lynch 2015), and does not always
take full advantage of the population-level information. Negative
inbreeding coefficients are common in some organisms, including
asexual aphids (Delmotte et al. 2002), Daphnia in permanent
ponds/lakes (Hebert 1978), fruit bats (Storz et al. 2001), partially
inbreeding plant species (Brown 1979), Laysan finches (Tarr et al.
1998), prairie dogs (Foltz and Hoogland 1983), rhesus monkeys
(Melnick 1987), and water voles (Aars et al. 2006). Furthermore,
some regions under balancing selection may contain excess het-
erozygotes and therefore show negative inbreeding coefficients
(Black and Salzano 1981; Markow et al. 1993; Hedrick 1998;
Black et al. 2001; Ferreira and Amos 2006; Tollenaere et al. 2008).

In this study, we develop a maximum-likelihood (ML) method for
calling genotypes from high-throughput sequencing data that incorpo-
rates the prior information from a genotype-frequency estimator (GFE)
(Maruki and Lynch 2015). We examine the performance of the pro-
posed method using computer simulations under different genetic
conditions, including those where HWE is violated, and compare the
performance with that of other widely used methods. The results show
that our method yields more accurate genotype calls with low or mod-
erately high depths of coverage than the current widely used methods,
which is supported by analysis of human data. In addition, we develop
anotherMLmethod for calling genotypes from high-coverage sequenc-
ing data, which relaxes the assumption of biallelic polymorphisms
made in many existing methods.

We also examine the necessary depth of coverage for identifying
triallelic sites and accurate genotype calling with the proposed method,
using computer simulations. Taking the results of the performance
evaluation into account, we apply the proposed method to high-
throughput sequencing data of 83 clones from a population of the
microcrustacean Daphnia pulex, which have reasonably high depths of
coverage (mean 18· per site per individual) (Lynch et al. 2016). The
results show that the proposed method enables accurate and rapid
identification of polymorphic sites with arbitrary numbers of alleles.
Furthermore, we show that the proposed method can be applied to
analyses of polyploid data.

METHODS
We develop ML methods for calling individual genotypes from
high-throughput sequencing data. We develop two types of meth-
ods for calling genotypes, one for low-coverage sequencing data and
the other for high-coverage sequencing data, because the degree of
uncertainty associated with sequencing data depends on depths of
coverage. In both types of methods, we statistically test the signif-
icance of polymorphisms. Also, we do not call the genotype of an
individual when more than one genotype has equivalent likelihood
values for the observed data.

Genotype calling from low-coverage sequencing data
When depths of coverage are low, only one of the two parental
chromosomes might be sampled, and sequence errors can resemble

true variants. In such cases, the statistical uncertainties of indi-
vidual sequence data can be high, thus calling accurate genotypes
is not easy. However, when sequence data for multiple individuals
from a population are available, the accuracy of the called geno-
types can be improved by incorporating the population-level
information on genotype frequencies and error rates into the
genotype-calling process using Bayes’ theorem [see Martin
et al. (2010); Nielsen et al. (2012); Vieira et al. (2013) for similar
methods using the expectation-maximization algorithm for esti-
mating priors].

Here, the genotype of an individual at a single site is called from the
nucleotide read quartet (counts of A, C, G, and T) of high-throughput
sequencing data at the site by an ML method. This is achieved by
maximizing the likelihood of the observed data as a function of the
genotype of the individual g. The two most abundant nucleotide reads
in the population sample are considered to be candidates for alleles at
the site.

Given the genotype of the individual, g = 1 (major homozygote,
MM), 2 (heterozygote, Mm), or 3 (minor homozygote, mm), and se-
quencing error rate per read per site e, the log-likelihood of the observed
site-specific read quartet consisting of the observed counts of the most
abundant (major) nucleotide readM (e.g., C) (nM), second most abun-
dant (minor) nucleotide read m (e.g., T) (nm), and other nucleotide
reads (e.g., in this case A and G) (ne1 and ne2) in the population sample,
lnLðnM ; nm; ne1; ne2jg; eÞ; is given by the following multinomial distri-
bution formula:

ln LðnM ; nm; ne1; ne2jg; eÞ ¼ ln
�ðn!Þ=ðnM !nm!ne1!ne2!ÞPgðMÞnM

· PgðmÞnmPgðe1Þne1Pgðe2Þne2
�
;

(1)

where n ¼ nM þ nm þ ne1 þ ne2 (the depth of coverage). PgðMÞ is a
probability of observed nucleotide read M with genotype g. It is
a function of e and is given by summing conditional probabil-
ities of the observed nucleotide read, given the true nucleotide
on the sequenced chromosome chosen from the pair (Table 1).
The other P terms are similarly defined. For example, the prob-
ability of nucleotide read M with genotype 2 (Mm), P2ðMÞ; is
ð1=2Þð12 eÞ þ ð1=2Þðe=3Þ; assuming the error occurs at an equal
rate from the true nucleotide to one of the other three nucleo-
tides. Because the multinomial coefficient in Equation 1 is con-
stant regardless of the parameter values, for computational
efficiency, it is ignored as follows:

ln LðnM ; nm; ne1; ne2jg; eÞ ¼ ln
�
PgðMÞnMPgðmÞnmPgðe1Þne1Pgðe2Þne2

�
:

(2)

When the genotype frequencies and error rate at the site are
estimated from the population sample of nucleotide reads, they
can be incorporated into Equation 2 as Bayes’ priors.We previously
developed an ML method to estimate the site-specific genotype
frequencies and error rate from the nucleotide read quartets
(Maruki and Lynch 2015). This method yields essentially unbiased
genotype-frequency estimates even with moderate depths of cov-
erage, which we use as the Bayes’ priors necessary for improving
the accuracy of genotype calls. Specifically, given the estimates of
the genotype frequencies ĝ1 (frequency of major homozygotes), ĝ2

(frequency of heterozygotes), and ĝ3 (frequency of minor homo-
zygotes), and error rate (ê) predetermined by the ML method of
Maruki and Lynch (2015), the log-likelihood of the observed data
are given as follows:
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ln LðnM ; nm; ne1; ne2jg; ĝ1; ĝ2; ĝ3; êÞ

¼ ln

8<
:
h
ĝgPgðMÞnMPgðmÞnmPgðe1Þne1Pgðe2Þne2

i,

X3
j¼1

h
ĝjPjðMÞnMPjðmÞnmPjðe1Þne1Pjðe2Þne2

i9=
;; (3)

where theML error-rate estimate ê is substituted into the P terms. The
inferred (called) genotype of the individual is the genotype that max-
imizes Equation 3. To avoid calling genotypes at false polymorphic
sites, we only call genotypes at significantly polymorphic sites, which
are identified beforehand using the likelihood-ratio test by the
population-level genotype-frequency estimator (GFE) (Maruki
and Lynch 2015).

Genotype calling from high-coverage sequencing data
When depths of coverage are high, both parental chromosomes are
sequenced with high probability, and nucleotide reads derived from true
variants are reliably abundant comparedwith thosedue to sequence errors.
In such cases, if the confounding effects of binomial sampling of parental
chromosomes and sequence errors are statistically accounted for, accurate
and rapid genotype calls may be made from sequence data on each
individual separately, relaxing the assumption of biallelic polymorphisms
made in themethod for low-coverage sequencing data and eliminating the
need for prior population-level estimates of genotype frequencies.

Given thenucleotide read quartet of an individual at a site, we call the
genotype of the individual by finding the genotype that maximizes the
likelihood of the observed data. For example, if the nucleotide read
quartet of an individual contains only A, C, and G, we examine the
likelihoods of six candidate genotypes (AA, AC, AG, CC, CG, and GG).
Suppose, for example, that the nucleotide read quartet of an individual
contains nonzero counts for all four nucleotides. LettingnA; nC; nG; and
nT denote the counts of A, C, G, and T, respectively, the log-likelihood
for genotype AA is

ln LðnA; nC; nG; nT jAA; eÞ ¼ ln½ð12eÞnAðe=3Þn2nA �; (4)

where n is the sum of the nucleotide read counts (depth of coverage)
and e is the sequence error rate per read per site. This equation is a
multinomial distribution formula, where the constant multinomial
coefficient is ignored for computational efficiency, as in Equation 2.
The subsequent likelihood functions are derived and shown in a
similar way. By taking the derivative of Equation 4 with respect to e
and equating it to zero, e is analytically estimated as

ê ¼ ðn2 nAÞ=n; (5)

and this estimate is substituted into Equation 4 to find the likelihood for
genotypeAA.As another example, the log-likelihood for genotypeAC is

ln LðnA; nC ; nG; nT jAC; eÞ ¼ ln
�ð1=22e=3ÞnAþnC ðe=3ÞnGþnT

�
;

(6)

where e is similarly estimated as

ê ¼ ð3=2Þ � ½ðnG þ nTÞ=n�; (7)

and again, this estimate is substituted into Equation 6 to find the
likelihood for genotype AC. The likelihoods for the other eight
candidate genotypes are similarly calculated.

Statistical tests of called genotypes in the high-
coverage genotype caller
Because of high sequencing error rates, genotypes called by the high-
coverage genotype caller (HGC) might sometimes falsely suggest
polymorphisms. To minimize analyzing false polymorphisms and
misidentifying sites containing three or four alleles, we examine statis-
tical significance of called genotypes by likelihood-ratio tests (Kendall
and Stuart 1979). Specifically, we examine the statistical significance of
called genotypes with respect to the genotype homozygous for the most
abundant nucleotide in the population sample M (MM).

Under the null hypothesis ofmonomorphism, the site is fixed forM.
Under the alternative hypothesis of polymorphism, at least one indi-
vidual has a genotype different fromMM: Therefore, we reject the null
hypothesis of population monomorphism if the likelihood of at least
one non-MM called genotype is significantly greater than that of the
MM genotype. Specifically, lettingLL0 andLL1 denote the log-likelihoods
of the observed data of an individual for theMM genotype and that for a
non-MM called genotype, the likelihood-ratio test statistic (LRT) for the
individual is

LRT ¼ 2ðLL1 2 LL0Þ: (8)

This test statistic is expected to be asymptotically x2-distributed with
one degree of freedom. We reject the null hypothesis of population
monomorphism when LRT is significant for at least one of the non-
MM called genotypes at a user-specified level.

We estimate the number of alleles by examining the nucleotides
contained in significant genotypes. To minimize misidentification of
sites containing three or four alleles, when the significant genotype is
heterozygous,wecompare the likelihoodof the calledgenotype to thatof
the genotype homozygous for the more abundant nucleotide in the
individual, and consider the genotype heterozygous only if the former is
significantlygreater than the latter at the specified levelby the likelihood-
ratio test with one degree of freedom. Otherwise, the genotype is
considered homozygous for estimating the number of alleles.

Genotype calling from triploid sequencing data
The HGC explained above can be extended to triploid data. Specifi-
cally, assuming that sequencing occurs randomly among the three

n Table 1 Probability of an observed nucleotide read as a function of the individual genotype g and error rate e

Genotype
Nucleotide Read

M m e1 e2

1 (MM) 12 e e=3 e=3 e=3
2 (Mm) ½ð1=2Þ � ð12 eÞ� þ ½ð1=2Þ � ðe=3Þ� ½ð1=2Þ � ðe=3Þ� þ ½ð1=2Þ � ð12 eÞ� e=3 e=3
3 (mm) e=3 12 e e=3 e=3

M and m denote candidate alleles (the two most abundant nucleotide reads in the population sample, e.g., C and T) and e1 and e2 denote other nucleotide reads
(e.g., in this case, A and G).
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chromosomes, and equal error rates occur from the true nucleotide to
one of the other three, the probability of anobservednucleotide read as a
function of the genotype of an individual is found in a way analogous to
that for diploid data (Supplemental Material, Table S1). Then, the
likelihood of the observed nucleotide read quartet of an individual
can be formulated. As with diploid data, we choose the genotype that
maximizes the likelihood to call the genotype of the individual. The
proposed method can be applied to low-coverage sequencing data,
although high coverage is needed to call accurate genotypes.

As an example, suppose that the nucleotide read quartet of an
individual contains nonzero counts for all four nucleotides. Letting
nA; nC; nG; and nT denote the counts of A, C, G, and T, respectively, the
log-likelihood for genotype AAA is

ln LðnA; nC; nG; nT jAAA; eÞ ¼ ln½ð12eÞnAðe=3Þn2nA �; (9)

where n is the sum of the nucleotide read counts (depth of coverage),
and e is the sequence error rate per read per site. By taking the de-
rivative of Equation 9 with respect to e and equating it to zero, e is
analytically estimated as

ê ¼ ðn2 nAÞ=n; (10)

and this estimate is substituted intoEquation9 tofind the likelihood for
genotype AAA. As another example, the log-likelihood for genotype
ACC is

ln LðnA; nC ; nG; nT jACC; eÞ
¼ ln

�½ð1=3Þ2ðe=9Þ�nA ½ð2=3Þ2ð5=9Þ � eÞ�nC ðe=3ÞnGþnT
�
;

(11)

where e is estimated as

ê ¼
�
6nþ 9nC þ 15nG þ 15nT

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð6nþ 9nC þ 15nG þ 15nTÞ2 2 360nðnG þ nTÞ

q �	
10n;

(12)

and again, this estimate is substituted into Equation 11 to find the
likelihood for genotypeACC.As a final example, the log-likelihood for
genotype ACG is

ln LðnA; nC ; nG; nT jACG; eÞ ¼ ln
�ð1=32e=9ÞnAþnCþnGðe=3ÞnT �;

(13)

where e is estimated as

ê ¼ 3 � ½ðnTÞ=n�; (14)

and again, this estimate is substituted into Equation 13 to find the
likelihood for genotypeACG.To avoid analyzing false polymorphisms
due to sequencing errors, the statistical significance of called genotypes
is examined by likelihood-ratio tests analogous to those with diploid
data, and the number of alleles is based on significant genotypes.

Genotype calling from tetraploid sequencing data
Because tetraploid species are common in plants and some animals, we
also formulate likelihood functions for a tetraploid genotype caller.
Assuming that sequencing occurs randomly among the four chromo-
somes, and equal error rates occur from the true nucleotide to one of the
other three, the probability of an observed nucleotide read as a function

of the genotype of an individual is similarly found (Table S2). As with
triploid data, we find the genotype that maximizes the likelihood of the
observed nucleotide read quartet of an individual to call the genotype of
the individual.

As an example, suppose that the nucleotide read quartet of an
individual contains nonzero counts for all four nucleotides. Letting
nA; nC; nG; and nT denote the counts of A, C, G, andT, respectively, the
log-likelihood for genotype AAAA is

ln LðnA; nC; nG; nT jAAAA; eÞ ¼ ln½ð12eÞnAðe=3Þn2nA �; (15)

where n is the sum of the nucleotide read counts (depth of coverage)
and e is the sequence error rate per read per site. By taking the de-
rivative of Equation 15 with respect to e and equating it to zero, e is
analytically estimated as

ê ¼ ½ðn2 nAÞ=n�; (16)

and this estimate is substituted into Equation 15 to find the likelihood
for genotype AAAA. As another example, the log-likelihood for ge-
notype ACCC is

ln LðnA; nC; nG; nT jACCC; eÞ
¼ ln

�ð1=4ÞnA ½ð3=4Þ2ð2=3Þ � eÞ�nC ðe=3ÞnGþnT
�
; (17)

where e is estimated as

ê ¼ ð9=8Þ � ½ðnG þ nTÞ=ðnC þ nG þ nTÞ�; (18)

and again, this estimate is substituted into Equation 17 to find the
likelihood for genotypeACCC.As another example, the log-likelihood
for genotype AACC is

ln LðnA; nC ; nG; nT jAACC; eÞ
¼ ln

�½ð1=2Þ2ðe=3Þ�nAþnC ðe=3ÞnGþnT
�
; (19)

where e is estimated as

ê ¼ ð3=2Þ � ½ðnG þ nTÞ=n�; (20)

and again, this estimate is substituted into Equation 19 to find the
likelihood for genotype AACC. As a final example, the log-likelihood
for genotype AACG is

ln LðnA; nC; nG; nT jAACG; eÞ
¼ ln

�½ð1=2Þ2ðe=3Þ�nAð1=4ÞnCþnGðe=3ÞnT�; (21)

where e is estimated as

ê ¼ ð3=2Þ � ½nT=ðnA þ nTÞ�; (22)

and again, this estimate is substituted into Equation 21 to find the
likelihood for genotype AACG. Again, we report the number of alleles
at a site based on significant genotypes to avoid analyzing false
polymorphisms due to sequencing errors.

Generation of diploid nucleotide read data at biallelic
sites using computer simulations
To examine the performance of the genotype callers at biallelic sites, we
generated nucleotide read data for N diploid individuals by computer
simulations and called individual genotypes from the simulated data. In
the simulations, the probability of sampling an individual with a par-
ticular genotype was equal to its relative frequency in the population.
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The population frequencies of major and minor homozygotes were
specified by g1 and g3; respectively. To compare the called genotypes
with the true genotypes, we recorded the true genotype of each indi-
vidual. The depths of coverage were assumed to be Poisson-distributed
with mean m among the individuals, and were specified as

cðX;mÞ ¼
h
ðmÞXe2m

i.
X!; (23)

where X is a particular value of the coverage for an individual and c is
a probability mass function of X. The nucleotide reads from each
individual were randomly chosen from its genotype allowing for er-
rors. Sequence errors were randomly introduced at rate e per read per
site from the true nucleotide to one of the other three nucleotides.

Comparison of the Bayesian genotype caller with other
widely used methods
To compare the performance of our Bayesian genotype caller (BGC)
with that of other widely used methods for calling genotypes, we called
individual genotypes usingGATK (version 3.4-0) (McKenna et al. 2010;
DePristo et al. 2011; Van der Auwera et al. 2013) and Samtools (version
0.1.19) (Li 2011) from the same simulated nucleotide read data gener-
ated by the method described above, and compared the accuracy of the
genotypes called by different methods. Although both GATK and Sam-
tools use Bayesian genotype-frequency priors, GATK uses the same
priors for all sites and Samtools assumes HWE, and therefore their
approaches differ from ours. In addition to these genotype-calling
methods, we also compared our performance with that of the corre-
sponding genotype-calling function in ANGSD (version 0.911)
(Korneliussen et al. 2014), which is also designed especially for low-
coverage sequencing data. To make the generated data applicable to all
methods, including ours, we made BAM files of sequence read data
mapped to a simulated reference sequence.

First, we generated a simulated reference sequence consisting of
random nucleotides. Each of a total of 10,000 biallelic sites was sur-
rounded by 50 fixed nucleotides on both sides, so that sequence reads of
101bpareuniquelymapped to the referencesequence.Weoutputted the
101-bp sequence reads in the FASTA format with nucleotide reads at
biallelic sites characterized in themannerdescribedabove.The sequence
reads were mapped to the reference sequence using Novoalign (version
3.00.02) (www.novocraft.com). We converted SAM files of mapped
reads to BAM files using Samtools (Li et al. 2009a).

To call genotypes with GATK, we made a dictionary file of the
reference sequence and added read groups to the BAMfiles using Picard
(version 1.134) (http://broadinstitute.github.io/picard). Then,we sorted
and indexed the BAM files using Samtools. We generated individual
GVCF files, which contain information of called genotypes, from the
BAM files using HaplotypeCaller, which individually calls genotypes,
assigning an arbitrarily chosen uniform base quality score (30) to every
base. Changing the base quality score, however, from 30 to 20, did not
noticeably influence the results (results not shown). Then, we called
genotypes from the GVCF files using Genotype_GVCFs, which refines
the called genotypes using the population-level information. We called
genotypes with Samtools from the BAM files using mpileup and
bcftools to use the population-level information. To call genotypes with
ANGSD, we first converted the BAM files to SAM files using Samtools.
Then, we assigned the same uniform base quality score of 30 to every
base, using a custom Perl script. The resulting SAM files with base
quality scores were converted back to BAM files as input for ANGSD,
using Samtools. We used a Bayesian genotype-calling method corre-
sponding to ours in ANGSD, setting the value of the -doPost option at

one, using Samtools genotype likelihoods, and setting the statistical
significance for calling SNPs at the 5% level. Unlike other methods,
our method does not rely just on read quality, and estimates error rates
from sequence data themselves. This unique feature of our method is
important because errors can result from other factors including those
introduced during sample preparation.

TheML estimates of genotype frequencies and error rates, necessary
for calling genotypes with BGC, were obtained using GFE (available
from https://github.com/Takahiro-Maruki/Package-GFE; an updated
version with a function to prepare the input file of the BGC and its
documentation are available as File S1 and File S2) (Maruki and Lynch
2015). The individual pro files of nucleotide read quartets were gener-
ated using sam2pro (version 0.6) (http://guanine.evolbio.mpg.de/
mlRho/sam2pro_0.6.tgz) from mpileup files generated from the BAM
files by Samtools.

In addition to examining the performance of genotype calling, we
compared the allele-frequency estimates by GFE to those by other
methods. The allele-frequency estimates via genotype calling by GATK
and Samtools were calculated from the VCF files using VCFtools
(version 0.1.11) (Danecek et al. 2011). The allele-frequency estimates
by ANGSDwere estimated directly from sequence reads by the method
of Kim et al. (2011).

To examine how different genotype-calling methods perform when
applied to real sequencing data, we applied them to low-coverage (mean
7.6· per site per individual) sequencing data of the phase 3 1000 Ge-
nomes project (1000 Genomes Project Consortium 2015) on chromo-
some 11 in the CEU population. To assess the accuracy of genotype
calls by different methods, we compared the called genotypes with the
corresponding genotypes in phase II and III data of the International
HapMap project (International HapMap Consortium 2007; Interna-
tional HapMap 3 Consortium 2010). Specifically, we downloaded the
BAM files of the phase 3 1000 Genomes sequencing data in 99 CEU
individuals on chromosome 11 from ftp.1000genomes.ebi.ac.uk/vol1/
ftp/phase3/data/. We also downloaded the FASTA file of the reference
sequence (human_g1k_v37.fasta) from ftp.1000genomes.ebi.ac.uk/
vol1/ftp/technical/reference/.We downloaded the corresponding geno-
types in the HapMap phase II and III data from ftp.ncbi.nlm.nih.gov/
hapmap/genotypes/2010-08_phaseII+III/forward/. We found that 94
out of the 99 CEU individuals had both 1000 Genomes and HapMap
data, and therefore used the 94 individuals with the necessary data in
the subsequent analyses.

To prepare high-quality input data for calling genotypes, wemarked
duplicate reads and locally realigned sequences around indels in the
BAM files using GATK (version 3.4-0) (McKenna et al. 2010; DePristo
et al. 2011) and Picard (version 1.107) (http://broadinstitute.github.io/
picard), followingGATKbest practices (Van der Auwera et al. 2013). In
addition, we clipped overlapping read pairs in the BAM files using
BamUtil (version 1.0.13) (http://genome.sph.umich.edu/wiki/BamUtil).
We made mpileup files of the 94 individuals from the processed BAM
files using Samtools. The pro files of nucleotide read quartets were made
from thempileupfiles using sam2pro (version 0.8) (http://guanine.evolbio.
mpg.de/mlRho/sam2pro_0.8.tgz). The file of nucleotide read quartets of
94 individuals necessary for the proposed method was made from the pro
files using GFE (Maruki and Lynch 2015).

To call genotypes with GATK, we first sorted and indexed the BAM
files using Samtools. Next, we generated individual GVCF files from the
BAM files using HaplotypeCaller. Then, we called genotypes from the
GVCFfilesusingGenotype_GVCFs.WecalledgenotypeswithSamtools
from the BAM files using mpileup and bcftools using the population-
level information. To call genotypes with ANGSD from the BAM files,
we used a Bayesian genotype-calling method corresponding to ours in
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ANGSD setting the value of the -doPost option at one, using Samtools
genotype likelihoods and setting the statistical significance for calling
SNPs at the 5% level. In addition to these genotype-calling methods, we
examined how the popular genotype-imputation method performs by
imputing missing genotypes in GATK calls using Beagle (version 4.1)
(Browning and Browning 2016). Because preexisting high-quality ref-
erence panels (genotypes/haplotypes) do not exist in the vast majority
of the organisms, except a few model organisms such as humans and
flies, we imputed the genotypes without a reference panel. Here, we
imputed genotypes using genotype likelihoods instead of called geno-
types to take the uncertainty of genotype calls into account.

We calculated the correct-call rate among individuals as a fraction of
individuals with genotype calls identical to HapMap genotypes, assum-
ing that HapMap genotypes are correct. To examine the accuracy of
actually called genotypes, we also calculated the correct-call rate among
called genotypes, where the fraction is calculated among called geno-
types.We converted theNCBI build 36 coordinates in theHapMapdata
to the GRCh37 coordinates in the 1000 Genomes data using the UCSC
liftOver (Speir et al. 2016) to make the coordinates in the two data sets
consistent with each other. To minimize the confounding effect of
mismapping, we excluded sites involved in putative repetitive regions
identified by RepeatMasker (http://www.repeatmasker.org/) and those
with population coverage (sum of the coverage over the individuals)
less than half the mean or greater than one and a half means from the
analyses. We downloaded the repeat-masked reference sequence from
the Ensemblwebsite (ftp.ensembl.org/pub/release-75/fasta/homo_sapiens/
dna/) to identify sites involved in putative repetitive regions.

Performance evaluation of the HGC as a function
of coverage
Because of the random sampling of parental chromosomes, only one of
the two chromosomesmight be sampledwhen the depth of coverage for
an individual is low.Therefore, theabilityof agenotypecaller tocorrectly
infer individual genotypes is mainly limited by its ability to call hetero-
zygoteswhen thedepthof coverage is low. Inaddition,when thedepthof
coverage is low, homozygotes can appear heterozygous due to sequenc-
ing errors.Therefore, examining the effect of coverage on the accuracyof
calledgenotypes is important forfinding theoptimal sequencingstrategy
for genotype ascertainment.

To examine how much coverage is needed to accurately call geno-
types using the HGC, we examined its rates for correctly calling
homozygotes and heterozygotes as functions of the depth of coverage.
Specifically,wegeneratednucleotidereaddata fromanindividualhaving
a homozygous or heterozygous genotype with a fixed depth of coverage
and error rate e, and called the genotype of the individual with HGC.
We repeated this process for 10,000 simulation replications and calcu-
lated the correct-call rate as a fraction of simulation replications where
the genotype was correctly called by HGC.

Performance evaluation of genotype callers at triallelic
sites using computer simulations
To examine the performance of theHGC for identifying sites withmore
than two alleles and calling genotypes in population samples, we
generated BAM files of sequence read data in a way similar to that at
biallelic sites, where nucleotide read data at each of a total of 10,000
triallelic sites for N diploid individuals were generated, according to
their genotype frequencies, introducing errors at rate e. Here, for sim-
plicity, we specified the population genotype frequencies by assigning
population allele frequencies p, q, and r to the most abundant, second
most abundant, and the rarest allele, respectively, and assuming HWE,

although our method makes no assumption on the mating system. As
GATK and Samtools are both capable of calling genotypes at triallelic
sites, we applied them to the BAM files using HaplotypeCaller and
GenotypeGVCF, and mpileup and bcftools with the -m option, respec-
tively, and compared their correct-call rates to that ofHGC. In addition,
we applied our BGC to the BAM files and examined the corresponding
correct-call rate to find the effect of incorrectly assuming at most two
alleles on the accuracy of genotype calls at triallelic sites.

Application of the HGC to empirical data
To examine the performance of the HGCwith real data, we applied it to
high-throughput Illumina sequencing data of 83 D. pulex clones from
Kickapond (Lynch et al. 2016). We mapped the sequencing data to the
PA42 reference genome (version 3.0) (Z. Ye, S. Xu, K. Spitze,
J. Asselman, X. Jiang, M. E. Pfrender, and M. Lynch, unpublished
results) using Novoalign (version 3.02.11) (www.novocraft.com) with
the “-r None” option to prevent it from mapping a read if it matched
more than one location. We converted the SAM files of mapped se-
quencing data to BAM files using Samtools (version 0.1.18) (Li et al.
2009a). Then, we marked duplicate reads and locally realigned se-
quences around indels using GATK (version 3.4-0) (McKenna et al.
2010; DePristo et al. 2011) and Picard (version 1.107) (http://broad-
institute.github.io/picard), following GATK best practices (Van der
Auwera et al. 2013). In addition, we clipped overlapping read pairs
using BamUtil (version 1.0.13) (http://genome.sph.umich.edu/wiki/
BamUtil). We made mpileup files of the 83 clones from the processed
BAM files using Samtools. The pro files of nucleotide read quartets were
made from the mpileup files using sam2pro (version 0.8) (http://gua-
nine.evolbio.mpg.de/mlRho/sam2pro_0.8.tgz). The input file of nucle-
otide read quartets of 83 clones was made from the pro files using GFE
(Maruki and Lynch 2015). To avoid analyzing misassembled regions,
we excluded regions considered to bemisassembled by REAPR (version
1.134) (Hunt et al. 2013) from our analyses. We set the minimum
coverage required to call a genotype of an individual at six. Tominimize
analyzing sites with data on a small number of individuals or those with
mismapped reads, we only analyzed sites with the population coverage
(sum of the coverage over the individuals) at least half the mean and at
most 1.5· of the mean. Furthermore, we excluded sites involved in
putative repetitive regions identified by RepeatMasker (version 4.0.5)
(http://www.repeatmasker.org/) with the RepeatMasker library (Jurka
et al. 2005) made on August 7, 2015. In addition, to further reduce
analyzing sites with mismapped reads, we excluded sites with mean
error-rate estimates among clones of .0.01.

Performance evaluation of the triploid genotype caller
as a function of coverage
To examine the effect of coverage on the accuracy of genotypes called by
the triploid genotype caller (TRI), we examined the correct-call rate as a
functionof the depth of coverage in away similar to that for diploid data.
Here, we examined the correct-call rate for three different types of
genotypes (homozygotes, heterozygotes containing two different nu-
cleotides, and heterozygotes containing three different nucleotides)
among a total of 10,000 simulation replications.

Comparison of the TRI with GATK
To compare the performance of the TRI to that of other widely used
methods,weappliedourTRIandGATK(version3.4-0) (McKenna etal.
2010; DePristo et al. 2011) to BAM files of simulated sequence read data
generated in a way similar to that for diploid data, and compared the
correct-call rates. Here, we generated fixed-coverage read data from an
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individual with a particular genotype 10,000 times. To call triploid
genotypes with GATK, we set the ploidy of HaplotypeCaller at three.

Data availability
Source codes, written in C++, implementing the proposedmethods and
their documentation are available as supporting information (File S1,
File S2, File S3, File S4, File S5, File S6, File S7, File S8, File S9, File S10,
File S11, and File S12).

RESULTS
The performance of the BGCwhen applied to low-coverage sequencing
data at biallelic sites was evaluated with simulated data and compared
with the corresponding performance of GATK, Samtools, andANGSD.
In addition, the allele-frequency estimates by the GFE were compared
with those via genotype calling by GATK and Samtools and those by a
method of Kim et al. (2011), as implemented in ANGSD. To examine
the performance under the worst situation, the error rate was set at 0.01,
which is typically the upper bound with commonly used sequencing plat-
forms. We evaluated the performance under three different genetic con-
ditions, where the inbreeding coefficient fwas zero (HWE), minimized, or
maximized given minor-allele frequency q. When f is minimized, the
frequencies of major homozygotes and minor homozygotes, g1 and g3;
are 12 2q and 0, respectively. When f is maximized, g1 and g3 are 12 q
and q, respectively.

When the depth of coverage is low (mean 3·), the allele-frequency
estimates by GFE are unbiased, whereas those via genotype calling are
biased under all examined conditions (Table 2). The allele-frequency

estimates by ANGSD are similar to ours, although they are slightly
biased when f is minimized or maximized. The allele-frequency esti-
mates via genotype calling by GATK are more biased than those by
Samtools when f is zero or minimized. On the other hand, when f is
maximized, the allele-frequency estimates via genotype calling by Sam-
tools aremore biased than those by GATK. The correct-call rate among
individuals by the proposed method (BGC) is higher than that by
GATK, and lower than that by Samtools and ANGSD when f is zero
or minimized. When f is maximized, the correct-call rate by BGC is the
highest. The highest correct-call rate among individuals by Samtools
and ANGSD when f is zero or minimized is mainly because both
methods always call individual genotypes regardless of the depth of
coverage, even when there is no read. In fact, the correct-call rate
among called genotypes by BGC is the highest under the majority of
the examined conditions.

When the depth of coverage is moderately high (mean 10·), the
allele-frequency estimates by all methods are similar to each other and
nearly unbiased under all examined conditions (Table S3). Consistent
with this, the correct-call rates by all methods are high under all exam-
ined conditions. However, the correct-call rate by BGC is the highest
under all examined conditions. We confirmed that we correctly gener-
ated the simulated data by examining the realized parameter values in
the population samples (Table S4).

Our conclusions on the performance of the genotype-calling meth-
ods based on computer simulations are further supported by qualita-
tively similar results of the corresponding performance evaluation using
human data (Table 3). Similar to the simulation-based results of the
performance evaluation when the population is inHWE, the correct-call

n Table 2 Comparison of the allele-frequency estimates and called genotypes by different methods with low depths of coverage

Method q f q̂ (mean 6 2 SEM)
Correct-Call Rate among

Individuals (mean 6 2 SEM)
Correct-Call Rate among

Called Genotypes (mean 6 2 SEM)

Proposed 0.1 0 (HWE) 0.10 6 0.00050 0.84 6 0.00064 0.91 6 0.00049
GATK 0.1 0 (HWE) 0.06 6 0.00042 0.80 6 0.00073 0.88 6 0.00057
Samtools 0.1 0 (HWE) 0.08 6 0.00039 0.90 6 0.00045 0.90 6 0.00045
ANGSD 0.1 0 (HWE) 0.10 6 0.00050 0.90 6 0.00045 0.90 6 0.00045
Proposed 0.1 Minimized 0.10 6 0.00050 0.87 6 0.00068 0.95 6 0.00049
GATK 0.1 Minimized 0.06 6 0.00041 0.82 6 0.00077 0.91 6 0.00061
Samtools 0.1 Minimized 0.08 6 0.00039 0.94 6 0.00047 0.94 6 0.00047
ANGSD 0.1 Minimized 0.11 6 0.00050 0.94 6 0.00046 0.94 6 0.00046
Proposed 0.1 Maximized 0.10 6 0.00063 0.95 6 0.00046 1.00 6 0.00015
GATK 0.1 Maximized 0.09 6 0.00058 0.93 6 0.00051 1.00 6 0.00006
Samtools 0.1 Maximized 0.06 6 0.00046 0.91 6 0.00047 0.91 6 0.00047
ANGSD 0.1 Maximized 0.08 6 0.00057 0.91 6 0.00047 0.91 6 0.00047
Proposed 0.3 0 (HWE) 0.30 6 0.00077 0.77 6 0.00081 0.88 6 0.00080
GATK 0.3 0 (HWE) 0.22 6 0.00077 0.68 6 0.00094 0.79 6 0.00088
Samtools 0.3 0 (HWE) 0.25 6 0.00096 0.84 6 0.00074 0.84 6 0.00074
ANGSD 0.3 0 (HWE) 0.30 6 0.00076 0.84 6 0.00074 0.84 6 0.00074
Proposed 0.3 Minimized 0.30 6 0.00063 0.74 6 0.00087 0.87 6 0.00075
GATK 0.3 Minimized 0.19 6 0.00067 0.58 6 0.00098 0.70 6 0.00101
Samtools 0.3 Minimized 0.26 6 0.00085 0.83 6 0.00078 0.83 6 0.00078
ANGSD 0.3 Minimized 0.31 6 0.00064 0.83 6 0.00078 0.83 6 0.00078
Proposed 0.3 Maximized 0.30 6 0.00094 0.94 6 0.00047 1.00 6 0.00017
GATK 0.3 Maximized 0.26 6 0.00093 0.90 6 0.00061 1.00 6 0.00011
Samtools 0.3 Maximized 0.24 6 0.00118 0.87 6 0.00067 0.87 6 0.00067
ANGSD 0.3 Maximized 0.28 6 0.00102 0.87 6 0.00067 0.87 6 0.00067

q, q̂; and f are the minor-allele frequency, its estimate, and inbreeding coefficient, respectively. q̂ by the proposed method and ANGSD are directly estimated from
sequence read data by the genotype-frequency estimator (Maruki and Lynch 2015) and Kim et al.’s (2011) method, respectively. Called genotypes by the proposed
method are by the Bayesian genotype caller. The correct-call rate among individuals is a fraction of individuals with correctly called genotypes among N =
100 individuals, where missing genotype calls are considered incorrect. On the other hand, the correct-call rate among called genotypes is calculated only among
individuals with called genotypes. Mean depth of coverage m = 3, error rate e = 0.01. Results are based on a total of 10,000 simulation replications for each parameter
set. HWE, Hardy–Weinberg equilibrium.
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rate among individuals of BGC was lower than that by ANGSD and
Samtools and higher than that by GATK. Again, this is mainly because
the former twomethods call individual genotypes even when there is no
read, and the correct-call rate among called genotypes by BGC is the
highest. The correct-call rate among individuals of the Beagle imputa-
tion of genotypes called by GATK was higher than that by GATK and
lower than that of the other methods. Interestingly, the correct-call rate
among called genotypes of the Beagle imputation of genotypes called by
GATK was lower than that by GATK, indicating that genotype impu-
tation does not necessarily improve the accuracy of genotype calls, at
least when preexisting high-quality reference panels are not available.
The observation here is consistent with a recent finding that population-
genetic parameters estimated via genotype imputation from low-
coverage sequencing data are biased (Fu 2014).

To examinewhen the depth of coverage is high enough to accurately
call individual genotypes using the HGC, we examined the correct-call
rate as a function of coverage when the true genotype is homozygous or
heterozygous. Overall, the rate for correctly calling homozygotes is high
(Figure 1A). It decreases with increased coverage when the coverage is
five or less, and approaches one when the coverage is over 5. The overall
rate for correctly calling heterozygotes increases with increased cover-
age, although it somewhat decreases when the coverage increases from
five to six (Figure 1B). This decrease is consistent with the sudden
increase in the rate for correctly calling homozygotes when the coverage
increases from five to six. These patterns are observed because when
two nucleotides have nonzero read counts, one of which has just one
read, in the quartet, both of them are considered to be from an allele
without error when the coverage is five or less, and the one with a single
read count is considered to be due to a sequence error when the cov-
erage is over five by HGC, as the likelihood that the single read is due to
a sequence error becomes greater than that without error. In addition to
the valley of the correct-call rate at coverage equal to six, there is
another small valley at coverage equal to 11. This is because when
two nucleotides have nonzero read counts, one of which has just two

reads, in the quartet, both of them are considered to be from an allele
without error when the coverage is,11, and the one with double reads
is considered to be due to sequence errors when the coverage is$11 by
HGC, as the likelihood that such reads are due to sequencing errors
becomes greater than that without error.

To compare the performance ofHGC in calling diploid genotypes at
triallelic sites with that of other existing methods, we compared the
correct-call rate of HGC to that of GATK and Samtools (Table 4). In
addition, to examine the effect of incorrectly assuming biallelic poly-
morphisms on the accuracy of genotype calls at triallelic sites, we ap-
plied our BGC to the same data and examined its correct-call rate. The
correct-call rate of HGC is higher than that by Samtools and slightly
lower than that by GATK. Compared with genotype calls by Samtools,
genotype calls by HGC and GATK quickly become more accurate with
higher depths of coverage. The correct-call rate of BGC is the lowest.
This is because BGC assumes at most two alleles, as many other meth-
ods including ANGSD do, and fails to correctly call genotypes contain-
ing the rarest allele. We confirmed that we correctly generated the
simulated data by examining the realized parameter values in the pop-
ulation samples (Table S5).

To evaluate the power of HGC for detecting polymorphisms, we
examined the false-positive and -negative rates as functions of themean
depth of coveragem. The false-positive rate of detecting polymorphisms
is low when m is moderately high (10), and is essentially zero with
m. 10 (Figure 2A). The false-negative rate of detecting polymor-
phisms is reasonably low when m is moderately high (10), and ap-
proaches the theoretical minimum possible value, which is the
probability that only one of the two alleles is sampled in a finite
sample, whenm is 30 (Figure 2B).We note that the high false-negative
rates with low minor-allele frequencies are mainly due to the finite
sample size (100), which limits sampling rare alleles, and they remain
high even with infinite coverage with any method. The power for
detecting three alleles is essentially the same as that for detecting
polymorphisms; the false-positive rate is low (Figure 2C) and false-negative

n Table 3 Comparison of the performance of the genotype-calling methods with human data

Method
Correct-Call Rate among

Individuals (mean 6 2 SEM)
Correct-Call Rate among

Called Genotypes (mean 6 2 SEM)

BGC 0.954 6 0.0004 0.969 6 0.0004
GATK 0.923 6 0.0004 0.943 6 0.0004
Samtools 0.966 6 0.0004 0.966 6 0.0004
ANGSD 0.967 6 0.0004 0.967 6 0.0004
GATK + Beagle 0.941 6 0.0004 0.941 6 0.0004

The correct-call rate among individuals is calculated among individuals with HapMap genotypes, where missing genotype calls are considered incorrect. On the other
hand, the correct-call rate among called genotypes is calculated only among individuals with both HapMap genotypes and called genotypes, respectively.

Figure 1 Correct-call rate of the high-coverage geno-
type caller as a function of the depth of coverage. (A)
Correct-call rate when the true genotype of the indi-
vidual is homozygous. (B) Correct-call rate when the
true genotype of the individual is heterozygous. Error
rate e = 0.01. Results are based on a total of 10,000
simulation replications for each parameter set.
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rate is reasonably low (Figure 2D). These results indicate that HGC
accurately describes polymorphisms with arbitrary numbers of alleles
when the depth of coverage is high.

We applied the HGC to high-throughput sequencing data of 83 D.
pulex clones fromKickapond to identify sites containingmore than two
alleles. We set the minimum coverage required to call a genotype of an
individual at six so that the rate of falsely calling homozygotes as
heterozygotes is low (Figure 1A). We identified a total of 4,403,303
significantly polymorphic sites at the 5% level from the sequence data
filtered by multiple procedures to minimize analyzing misassembled
regions and sites with mismapped reads. The vast majority (97.07%) of

these were considered to contain two alleles. However, 127,167 (2.88%)
and 2030 (0.05%) sites were considered to contain three and four alleles,
respectively.

The performance evaluation using computer simulations shows that
calling accurate triploid genotypes requires much higher coverage than
calling diploid genotypes (Figure 3). In particular, high coverage is
needed to correctly call heterozygotes (Figure 3, B and C). This is
because higher coverage is required to sequence all three chromosomes
rather than just two chromosomes. Furthermore, it is difficult to dis-
tinguish the two alternative heterozygotes containing two alleles (e.g.,
AAC vs.ACC) unless the coverage is very high. Overall, the correct-call

n Table 4 Performance of different genotype callers for calling diploid genotypes from nucleotide data at triallelic sites

Method Mean Coverage Correct-Call Rate (mean 6 2 SEM)
Correct-Call Rate among Called
Genotypes (mean 6 2 SEM)

HGC 10 0.97 6 0.00037 0.97 6 0.00037
GATK 10 0.97 6 0.00032 0.98 6 0.00031
Samtools 10 0.96 6 0.00040 0.96 6 0.00040
BGC 10 0.78 6 0.00099 0.79 6 0.00099
HGC 15 0.99 6 0.00022 0.99 6 0.00022
GATK 15 1.00 6 0.00013 1.00 6 0.00013
Samtools 15 0.96 6 0.00040 0.96 6 0.00040
BGC 15 0.80 6 0.00088 0.81 6 0.00087
HGC 20 1.00 6 0.00014 1.00 6 0.00014
GATK 20 1.00 6 0.00007 1.00 6 0.00007
Samtools 20 0.97 6 0.00031 0.97 6 0.00031
BGC 20 0.80 6 0.00084 0.81 6 0.00083
HGC 30 1.00 6 0.00005 1.00 6 0.00005
GATK 30 1.00 6 0.00002 1.00 6 0.00002
Samtools 30 0.99 6 0.00015 0.99 6 0.00015
BGC 30 0.81 6 0.00080 0.81 6 0.00080

Allele frequencies p, q, and r are 0.7, 0.2, and 0.1, and the population is in Hardy–Weinberg equilibrium. Correct-call rate and that among called genotypes are
calculated among N = 100 individuals and those with called genotypes, respectively. Error rate e = 0.01. Results are based on a total of 10,000 simulation replications
for each parameter set.

Figure 2 Power analysis of the high-coverage geno-
type caller. (A) False-positive rate of polymorphism
detection as a function of the mean depth of coverage.
(B) False-negative rate of detecting polymorphisms at
biallelic sites as a function of the minor-allele frequency.
The solid curve shows the theoretical minimum value as
the probability that just one of the alleles is sampled in a
finite sample of sizeN given by q2N þ ð12qÞ2N; where q is
the minor-allele frequency. (C) False-positive rate of
detecting triallelic sites as a function of the mean depth
of coverage with q = 0.1 (i.e., the site is biallelic). (D)
False-negative rate of inferring triallelic sites as a function
of the frequency of the rarest allele. The frequency of the
second most abundant allele is 0.2. The statistical signif-
icance of the likelihood-ratio tests is set at the 5% level in
all panels. N = 100, error rate e = 0.01, inbreeding co-
efficient f = 0 (Hardy–Weinberg equilibrium). Results are
based on a total of 10,000 simulation replications for
each parameter set.
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rate increases with increased coverage for all three types of genotypes,
although there are a few local exceptions. The valley of the rate for
correctly calling homozygotes at coverage equal to eight (Figure 3A) is
observed because when two nucleotides have nonzero read counts, one
of which has just one read, in the quartet, both of them are considered
to be from an allele without error when the coverage is eight or less, and
the one with a single read is considered to be due to a sequence error
when the coverage is over eight by the TRI, as the likelihood that the
single read is due to a sequence error becomes greater than that without
error. The sudden decrease in the rate for correctly calling heterozy-
gotes containing three different nucleotides when coverage increases
from six to seven (Figure 3C) is observed because when three nucleo-
tides have nonzero read counts, one of which has just one read, in the
quartet, all of them are considered to be from an allele without error
when the coverage is six or less, and the one with a single read is
considered to be due to a sequence error when the coverage is over
six by the TRI, as the likelihood that the single read is due to a sequence
error becomes greater than that without error. These observations
highlight the inherent difficulty in calling polyploid genotypes not only
for our method.

Comparison of the performance of our TRI to that of GATK shows
thatTRIyieldsmoreaccurate calledgenotypeswhen the truegenotype is
a homozygote or heterozygote with two different nucleotides, whereas
GATKyieldsmoreaccurate calledgenotypeswhen the truegenotype is a
heterozygote with three different nucleotides (Table S6). Because the
former two genotypes are generally far more abundant than the latter in
natural populations, our method is likely to yield more accurate geno-
type calls than GATK when applied to real data. We also note that our
method is more efficient than GATK in terms of both memory usage
and computation time. TRI takes 2.749 sec whereas GATK takes
397.708 sec under the same computing environment to analyze simu-
lated data with fixed coverage of 30 at 1,010,000 sites in an individual.
This �145-fold difference in computation time becomes huge when
analyzing organisms with a large genome size.

Because it takes additional time to prepare the input file of TRI from
theBAMfile,make adictionaryfile of the reference, andadd read groups
to the BAM file to use GATK, we also compared the computation time
between TRI andGATK taking these additional times into account. The
additional times taken for the above analysis are 22.374 and8.863 sec for
TRI and GATK, respectively, making the total time 25.123 and 406.571
sec for TRI and GATK, respectively. Therefore, the total time taken for
GATK is �16 times greater than that for TRI.

DISCUSSION
Given the rapid emergence of the field of population genomics, there is a
need to systematically examine the performance of genotype callers.
Recent studies (e.g., Lynch 2009; Buerkle and Gompert 2013; Maruki
and Lynch 2014) found that sequencing asmany individuals as possible

with low depths of coverage is the optimal strategy for estimating
population-level parameters without calling genotypes with limited
budgets. However, when depths of coverage are low, statistical uncer-
tainty of individual sequence data are high and calling genotypes is
difficult. Therefore, when inferring accurate genotypes is critical for a
study, it becomes necessary to sequence a more limited number of
individuals with higher depths of coverage.

In this study, we investigated how estimating genotype frequencies
and error rates from a population sample and incorporating the
population-level information into genotype-calling processes improves
the performance of genotype calling, especially when the population
deviates from HWE. We also examined the situation when individual
coverage is high enough to accurately call genotypes without prior
population-level estimates.Topromote theuseof ourmethods,we freely
provide C++ programs implementing our genotype callers, along with
their documentation (File S3, File S4, File S5, File S6, File S7, File S8, File
S9, and File S10).

Figure 3 Correct-call rate of the triploid genotype caller as a function
of the depth of coverage. (A) Correct-call rate when the true genotype
of the individual is homozygous. (B) Correct-call rate when the true
genotype of the individual is heterozygous containing two different
nucleotides. (C) Correct-call rate when the true genotype of the
individual is heterozygous containing three different nucleotides. Error
rate e = 0.01. Results are based on a total of 10,000 simulation repli-
cations for each parameter set.

n Table 5 Summary of the proposed methods

Method Ploidy Advantage Disadvantage

BGC Two More accurate for biallelic SNPs Assumes at most two alleles
HGC Two Highly efficient Genotype-frequency information not used

Arbitrary numbers of alleles Less accurate for biallelic SNPs
TRI Three Highly efficient Genotype-frequency information not used

Arbitrary numbers of alleles
TET Four Highly efficient Genotype-frequency information not used

Arbitrary numbers of alleles
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Consistent with previous results (Kim et al. 2011; Han et al. 2014),
we find that allele-frequency estimates via genotype calling are biased,
whereas those directly estimated from sequence read data are unbiased
when depths of coverage are low. Given the importance of unbiased
estimates of allele frequencies for subsequent population-genetic anal-
yses, this reinforces the importance of estimating allele frequencies di-
rectly from sequence reads with low depths of coverage, as in Maruki
and Lynch (2015). Our BGC takes advantage of prior population-level
estimates of genotype frequencies and error rates to improve the accu-
racy of genotype calls in a population with an arbitrary mating system
and internal population structure. The higher accuracy of called geno-
types by BGC than obtainedwith currently widely used genotype callers
in the majority of examined cases shows that our approach improves
the ability to call genotypes while also providing unbiased estimates of
allele frequencies.

Our performance evaluation of the HGC revealed that the rate of
correctly calling homozygotes can be high if the minimum coverage
required for calling genotypes is set at six or greater. By raising
the minimum coverage cutoff to eight or greater, the rate for correctly
calling heterozygotes can also be reasonably high. The power analyses of
HGC for detecting polymorphisms and triallelic sites also indicate that
themethod is conservative and reasonably sensitive. The comparison of
the performance of HGC to that of other existing methods showed that
ourmethod yieldsmore accurate or as accurate diploid genotype calls at
sites with more than two alleles.

The application of HGC to high-throughput sequencing data of
83 Daphnia clones from a population indicates that a non-negligible
fraction of polymorphisms is triallelic and even tetra-allelic inD. pulex.
There is growing evidence that triallelic polymorphisms exist in the
human genome (e.g., Hodgkinson and Eyre-Walker 2010; Nelson et al.
2012; Cao et al. 2015). In particular, a recent study sequencing many
samples with high depths of coverage by Nelson et al. (2012) found that
the fraction of triallelic sites is much higher than that previously
expected. Furthermore, a recent study (Jenkins et al. 2014) found tri-
allelic polymorphisms may be more informative for demographic in-
ferences than biallelic polymorphisms. Therefore, it is important to
relax the assumption of biallelic polymorphisms. Our method provides
an efficient, flexible, and statistically rigorous framework for identifying
polymorphic sites containing arbitrary numbers of alleles.

Because of its efficiency and flexibility, our method can be extended
to analyses of population-genomic data from polyploid organisms. Our
performanceevaluationof theTRI revealed thatmuchhigher coverage is
needed for correctly calling triploid genotypes than in the case of
diploids. This conclusion is extended to genotype calling of organisms
with higher ploidy, as the difficulties we found become greater. These
results will help researchers to design sequencing strategies for pop-
ulation-genomic analyses of polyploid organisms.

As guidance on proper usage of the proposed four different geno-
type-callingmethods, we provided a summary of the proposedmethods
(Table 5). BGC and HGC are both intended for calling diploid geno-
types. Users should first apply HGC to population-genomic data of
diploid organisms to identify sites with more than two alleles. Then,
users should apply BGC to the data at biallelic sites, as BGC yields more
accurate genotype calls than HGC at biallelic sites, unless the depth of
coverage is extremely high. To facilitate this procedure, we provide a C++
program and documentation for setting the coverage of all individuals at
zero at sites with more than two alleles as identified by HGC (File S11
and File S12). TRI and TET are extensions of HGC to triploid and
tetraploid data, respectively. They enable highly efficient genotype calling
at sites with arbitrary numbers of alleles. If future studies enable the
population-level estimation of the genotype frequencies and error rates

in diploid data at sites with arbitrary numbers of alleles and triploid and
tetraploid data, we can, in principle, improve the accuracy of genotype
calls from these data, although it will be very computationally expensive
to estimate frequencies of many genotypes in these cases.
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