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We used T2 relaxation, chemical exchange saturation transfer (CEST), and dynamic contrast-enhanced (DCE)
magnetic resonance imaging (MRI) to assess whether bacterial infection can be differentiated from inflamma-
tion in a myositis-induced mouse model. We measured the T2 relaxation time constants, %CEST at 5 satura-
tion frequencies, and area under the curve (AUC) from DCE-MRI after maltose injection from infected, in-
flamed, and normal muscle tissue models. We applied principal component analysis (PCA) to reduce dimen-
sionality of entire CEST spectra and DCE signal evolutions, which were analyzed using standard
classification methods. We extracted features from dimensional reduction as predictors for machine learning
classifier algorithms. Normal, inflamed, and infected tissues were evaluated with H&E and gram-staining his-
tological studies, and bacterial-burden studies. The T2 relaxation time constants and AUC of DCE-MRI after
injection of maltose differentiated infected, inflamed, and normal tissues. %CEST amplitudes at �1.6 and
�3.5 ppm differentiated infected tissues from other tissues, but these did not differentiate inflamed tissue
from normal tissue. %CEST amplitudes at 3.5, 3.0, and 2.5 ppm, AUC of DCE-MRI for shorter time periods,
and relative Ktrans and kep values from DCE-MRI could not differentiate tissues. PCA and machine learning of
CEST-MRI and DCE-MRI did not improve tissue classifications relative to traditional analysis methods. Simi-
larly, PCA and machine learning did not further improve tissue classifications relative to T2 MRI. Therefore,
future MRI studies of infection models should focus on T2-weighted MRI and analysis of T2 relaxation times.

INTRODUCTION
The diagnosis and treatment of bacterial infections remain a
central problem in medicine. For example, bacterial infections
have a higher annual mortality than AIDS, breast cancer, and
prostate cancer combined (1). In addition, the medical burden
generated from infections is expected to rise in the next two
decades, owing to antibacterial resistance and the anticipated
increase in the number of patients receiving implanted medical
devices (2-5). Some progress has been made in identifying bac-
terial infections by means of computed tomography and posi-
tron emission tomography (PET). Radiotracers used for these
methods lack the capability of measuring symptoms consistent
with bacterial infections. However, the specificity of bacterial
imaging has improved with the synthesis of radiotracers with a
high translational potential (6-8) which make the utility of these
methods capable of measuring the presence of bacteria (9).

Creative applications of standard magnetic resonance im-
aging (MRI) methods may improve the specificity of diagnosing
infection and inflammation. Small animal models are widely
studied to translationally implement noninvasive imaging of
bacterial infections and inflammation (10-11). For example,
T2-weighted MRI can be used to differentiate between benign
and malignant inflammatory breast lesions (12). In addition,
T2-weighted MRI can help identify the presence of bacterial
infections arising from methicillin-sensitive Staphylococcus au-
reus (13) or viral infections such as Zika and Cytomegalovirus
(14-15). A temporal series of dynamic contrast enhanced (DCE)
magnetic resonance (MR) images can be used to measure
transport rate constants and identify inflammation caused by
atherosclerotic plaques (16-19). A series of chemical ex-
change saturation transfer (CEST) MR images can be used to
noninvasively measure quantitative %CEST values for longi-
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tudinal monitoring of bacterial brain abscesses (20), and
bacteriolytic cancer therapy (21).

Principal component analysis (PCA) is a widely available
and viable tool that can address the plethora of multifaceted
information contained in MR data sets such as numerous images
with different TE times for T2 MRI, different time points for
DCE-MRI, and different saturation frequencies for CEST-MRI
(22-24). The combination of PCA and machine learning can
potentially improve the classification of the pathological con-
dition with T2 MRI, DCE-MRI, and CEST-MRI.

We sought to test the efficacy of MRI studies with a small
animal model of myositis-induced infection to differentiate bac-
terial infection from inflammation and differentiate infected or
inflamed tissue from normal tissues. In particular, we estab-
lished distinct tissue models by inoculating Escherichia coli into
the right thigh, and heat-killed, inactivated E. coli into the left
thigh of each mouse. We hypothesized that T2 MRI would be
sufficient to differentiate these tissue models given the differ-
ence in T2 relaxation times between normal muscle, inflamed
muscle, and infected muscle (25-26). We also hypothesized that
differences between the inflamed and infected tissue models
could be detected by CEST-MRI (27-30). A final objective of our
study was to determine if the T2-exchange (T2ex) contrast agent
maltose could be used for DCE-MRI. Unlike bacterial cells, mam-
malian cells do not contain the necessary cellular machinery for
the processing of maltodextrins for energy production (31-34).
Therefore, bacterial infection may differ from inflammation
with regard to the dynamic uptake of maltose.

METHODOLOGY
In Vivo Studies
All animals were cared for in compliance with protocols approved
by the Institutional Animal Care and Use Committee of the Univer-
sity of Arizona. Twenty, 4- to 6-week-old female immunocompe-
tent CBA/J mice were inoculated with �5 � 107 CFU/mL E. coli
(ATCC 25922) in the right thigh muscle, and �5 � 107 CFU/mL
heat-inactivated E. coli in the left thigh muscle, 6-12 h before
imaging. In addition, 5 CBA/J mice were immunosuppressed with
cyclophosphamide treatment (MP Biomedicals; Santa Ana, CA),
with 150 mg/kg administered intraperitoneally 5 days before im-
aging, and 100 mg/kg administered 1 day before imaging. Before
the MRI scan, each mouse was anesthetized with 1.5%–2.5% iso-
flurane in O2 carrier gas, and a 27 G catheter was placed in the tail
vein. Physiologic respiration rate and core body temperature were
monitored throughout the MRI session. All animals were imaged
while maintaining their temperature at 37.0°C � 0.2°C using warm
air controlled by a temperature feedback system (SA Instruments,
NY).

In Vivo T2 MRI
We performed T2-weighted spin-echo MRI to localize the myo-
sitis-induced thigh and the contralateral inflamed thigh, which
required 3.3 minutes to acquire (Figure 1A, left). The T2 relax-
ation time of all tissues was measured using a multi-slice multi-
echo (MSME) acquisition method with a variable echo spacing
as follows: repetition time (TR) � 3.0 seconds; echo time (TE) �
10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, and 120 milliseconds;
average � 1; linear encoding order; field of view (FOV) � 6.0 �

4.0 cm2; slice thickness � 1.0 mm; matrix � 128 � 128; for 5
slices centered on the site of infection; in-plane spatial resolu-
tion � 0.47 � 0.31 mm2; scan time � 6.4 minutes (Figure 1C).
The signal profiles from the regions of interest (ROIs) that rep-
resented the four tissue classes (Figure 1A, right) were fit with a
monoexponential function without a constant offset using least
square curve fitting to estimate the T2 relaxation time.

In Vivo CEST-MRI
Endogenous CEST-MRI studies were performed with a respira-
tion-gated CEST-Fast Imaging with Steady-State Precession
(CEST-FISP) MRI acquisition protocol with the following param-
eters: TR � 3.7 milliseconds; TE � 1.7 milliseconds; averages �
4; excitation pulse angle � 15°; centric encoding order; unbal-
anced “FID” mode; slice thickness � 1.0 mm; FOV � 6.0 � 4.0
cm2; in-plane spatial resolution � 0.47 � 0.31 mm2; matrix �
128 � 128; acquisition time � 453 milliseconds (35). A satura-
tion period was applied before each FISP acquisition, consisting
of 1 continuous-wave radiofrequency pulse of 3.0 seconds at a
saturation power of 1.0 �T, with no additional spoiling and fat
saturation pulses. Selective saturation was applied at 110 fre-
quencies ranging from �55 to �50 ppm in increments of 0.625
ppm (9 frequencies); and �8 to 8 ppm in increments of 0.16 ppm
(101 frequencies), which required a total of 25 minutes. CEST
spectra from the ROI of the tumor were fit with a sum of 6
Lorentzian line shapes to measure %CEST at 3.5, 3.0, 2.0, �1.6,
and �3.5 ppm, and to account for direct saturation of water at
0 ppm (Figure 1B) (36).

In Vivo DCE-MRI
A series of T2-weighted DCE-MR images were acquired using a
spin-echo MRI protocol with TR � 250 milliseconds; echo train
length � 10 milliseconds; effective TE � 10 milliseconds; av-
erages � 4; repetitions � 32; FOV � 6 � 4 cm2; in-plane spatial
resolution � 0.94 � 0.63 mm2; linear encoding order; matrix �
64 � 64; slice thickness � 1.0 mm, for 5 slices centered in the
site of infection (Figure 1D). Each individual rapid acquisition
with relaxation enhancement (RARE) image was acquired in 64
seconds, and repeated 32 times. An initial set of baseline images
was acquired for 10.7 minutes (10 scans) before intravenous
injection of 3.0 mmol/kg D-maltose solution (Sigma-Aldrich, St.
Louis, MO) and subsequent infusion of contrast agent at a rate of
400 �L/h for the remaining 23.5 minutes, for a total scan time of
34.1 minutes. A 50-�L bolus of 0.5M Multihance® (Bracco Im-
aging, Milan, Italy) was injected at the end of each imaging
session to confirm successful catheterization, which delivered
1.0 mmol/kg of the agent to the mouse. The DCE-MRI signal of
the ROIs were first normalized to the average baseline signal
before injection of D-maltose, and then divided by the standard
deviation of noise (measured from a region of the image that
represented air) to obtain a contrast-to-noise ratio (CNR), and
then thresholded at � 2�2 CNR to ensure that only real contrast
was analyzed. The area under the curve (AUC) was calculated
from the time of injection to 2 minutes, from injection to 5
minutes, from injection to 17 minutes, and from injection to 22
minutes. The DCE-MRI results were also analyzed with the linear
reference region model to estimate the relative Ktrans and kep

values for each ROI (37).
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Analysis Methods
All analyses of T2 MRI, CEST-MRI, and DCE-MRI results were
completed with MATLAB 2017b (MathWorks, Inc., Natick, MA).
Boxplots were constructed for average T2 relaxation time,
%CEST at specific saturation frequencies, and AUC of DCE-MRI
for each tumor model using RStudio (RStudio, Inc., Boston, MA)
and Rattle (Togaware, Canberra, Australia) (Figure 2). These
boxplots showed the median of each tumor model as a thick
horizontal line, 95% confidence intervals of the median as
notches, 25% and 75% quartiles as thin horizontal lines, open
circles as data points that are beyond the interquartile ranges,
and vertical dashed lines as the range. Groups were considered
to be different when a Wilcoxon rank-sum analysis showed P �
.05 between groups.

Three analysis methods were used to build tumor classifi-
cation models with the T2 relaxation times (Figure 1C and Figure
3), CEST spectra (Figure 1B and Figure 4), and DCE CNR evolu-
tions (Figure 1D and Figure 5). A 30-fold cross-validation
method was used to prevent overfitting the model. The perfor-
mance of each model was measured using the AUC of the
receiver operating curve (ROC). In addition, predictive classifi-
cation models were assessed to evaluate true-positive rates ver-
sus false-negative rates, and positive predictive values versus
false discovery rates (true-positive and false-positive rates for
classifications). The support vector machine (SVM) classification
using T2 relaxation times was performed with 1 PCA component
that explained 95% variance of the data, a 1-vs-1 multiclass
method, box constraint � 2, and kernel scale � 3.2. Training

required 2.33 seconds and the prediction speed was �690 obser-
vations/s. The k-nearest neighbor classification of CEST spectra
was performed with 5 PCA components, a one-vs-one multiclass
method, 3 neighbors, a cosine distance metric, and equal dis-
tance weight. Training required 0.904 seconds, and the predic-
tion speed was �220 observations/s. The k-nearest neighbor
classification of DCE CNR evolutions was performed with 5 PCA
components, a 1-vs-1 multiclass method, 10 neighbors, cosine
distance metric, and equal distance weight. Training required
0.667 seconds, and the prediction speed was �310 observa-
tions/s. Linear discriminant analysis, subspace discriminant
analysis, medium tree, and random forest machine learning
algorithms were also used for classification using T2 relaxation
times, CEST spectra, and DCE CNR evolutions.

Histology
Six, 6- to 8-week-old female immunocompetent CBA/J mice
were analyzed with hematoxylin and eosin (H&E) and Gram
staining studies (The Jackson Laboratory; Bar Harbor, ME). The
mice were each inoculated with �5 � 107 CFU/mL E. coli in the
right thigh. Inflammation in the left thigh of two mice in one
group was induced by means of intramuscular administration of
�5 � 107 CFU/mL heat-inactivated E. coli. In another group of
two mice, 750 �g/100 g of 10 mg/mL lipopolysaccharide (LPS)
from E. coli O111:B4 (Sigma Aldrich; St. Louis, MO, USA) was
intramuscularly administered. Two mice in the third group were
treated with intramuscular administration of saline as a control.
Myositis in mice was induced for 10 hours before left and right

Figure 1. Imaging results for in
vivo mouse studies. Throughout the
figure, the infected tissue class (0)
is shown in red; the normal muscle
on left thigh tissue class (1) is
shown in blue; the inflamed tissue
class (2) is shown in white or
black; and the normal muscle on
right thigh tissue class (3) is shown
in green. Example of a T2-
weighted anatomical image of a
myositis-induced mouse (left), and
the same mouse with an example
of tissue ROIs selected for analysis
(right) (A). Examples of chemical
exchange saturation transfer
(CEST) spectra for the 3 tumor
models (B). Examples of T2-
weighted signal decay curves for
the 4 tissue models (C). Examples
of dynamic contrast-enhanced
(DCE) contrast-to-noise ratio (CNR)
evolutions for the 4 tissue models
(D).
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Figure 2. Distributions of magnetic resonance imaging (MRI) results in notched boxplot representations. 0 � infected
tissue class (red); 1 � normal muscle on left thigh tissue class (blue); 2 � inflamed tissue class (black); and 3 � normal
muscle on right thigh tissue class (green). The distributions of T2 relaxation times for the 0, 1, 2, and 3 tissue classes (A).
The area under the curve (AUC) from injection to 2 minutes (left), 5 minutes (second from left), 17 minutes (second from
right), and 22 minutes (right), respectively, for the 0, 1, 2, and 3 tissue classes (B). The distributions of %CEST signals at
saturation frequencies of 3.5, 3.0, 2.0, �1.6, and �3.5 ppm for 0, 1, 2, and 3 tissue classes (C).

Figure 3. Error matrix represen-
tations after machine learning
classification with a medium
Gaussian support vector machine
(MG SVM) algorithm using T2

relaxation times as predictors.
0 � infected tissue class (red);
1 � inflamed tissue class (blue);
and 2 � normal muscle on right
thigh tissue class (black). Number
of correct (green) and incorrect
(red) predicted observations (A).
Positive predictive value rates
(green) and false discovery rates
(red) (B). True-positive rates
(green) and false-negative rates
(red) (C). AUC for the receiver
operator characteristic (ROC)
curves represents classifier algo-
rithm prediction accuracy (D).
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thigh tissue samples were harvested for staining and bacterial
burden calculations. Tissue samples and microscope slides were
prepared for H&E and Gram stains using the HistoCore Arcadia
H (Leica, Wetzlar, Germany), and microscopic imaging was
conducted on an Olympus BX50 L98-029 with an Olympus
DP72 camera (Shinjuku, Tokyo, Japan) (Figure 6).

RESULTS
Twenty mice were successfully imaged 6–12 hours after induc-
tion of myositis. No mice expired following each 50-min imag-
ing scan. The T2-weighted MRI signals of the ROIs (Figure 1C)
were higher for both the infected and inflamed tissues (tissue
classes 0 and 2 in Figures 1 and 2) than for the normal tissues
that appeared almost identical (tissue classes 1 and 3 in Figures
1 and 2). The CEST spectra of the tissue ROIs showed a signifi-
cant decrease in water signal between �1.5 and �4 ppm owing
to the relayed nuclear overhauser effect of aliphatic protons on
proteins and lipids (Figure 1B; 38, 39). The DCE-MRI %SNR
(signal-to-noise ratio) evolutions showed a clear difference be-
tween the infected and inflamed tissues from normal tissue
(Figure 1D).

Boxplots of T2 relaxation time for each tissue class showed
that the infected tissues were statistically different for both the
normal and inflamed tissue classes (Figure 2A; Table 1). A
rank-sum test analysis was performed on the distribution of T2

relaxation times to attain statistically significant differences
(P � .01) between all tissue classes, except for the comparison of
both normal tissues as expected (P � .374) (Table 1). Therefore,

T2 relaxation times can differentiate infected tissue from both
inflamed and normal tissue, and can also differentiate inflamed
tissue from normal tissue. Clinical translation of these results
will require care to perform quantitative T2 measurements with
sufficient accuracy to also produce statistically significant dif-
ferences between tissue classes (40).

Boxplot analyses of %CEST results showed that the infected
versus inflamed tissue classes, and infected versus normal tissue
classes, had statistically different %CEST signals at �1.6 and
�3.5 ppm, and were not statistically different at 3.5, 3.0, and 2.0
ppm (Figure 2C; Table 1). A rank-sum test analysis was per-
formed on the distribution of %CEST, which showed statistically
significant differences (P � .012) between the infected tissue
class and the other tissue classes for %CEST signals at both �1.6
and �3.5 ppm. The inflamed tissue class was not statistically
different from either of the normal tissues, and both normal
tissues were not statistically different from each other, at any
saturation frequency. Therefore, CEST-MRI can differentiate in-
fected tissue from inflamed and normal tissue, but it cannot
differentiate inflamed tissue from normal tissue.

Relative Ktrans and kep values were produced from the linear
reference region model after pharmacokinetic analysis of DCE-
MRI data. However, statistical significance was not achieved
between all comparisons of 2 tissue classes (data not shown).
Boxplot analyses of DCE CNR evolution showed no statistical
significance between all tissue classes when results were ana-
lyzed for 1 minute and 5 minutes after injection and infusion of
maltose (Figure 2B; Table 1). The infected tissue class showed

Figure 4. Error matrix represen-
tations after machine learning
classification with a k-nearest
neighbor algorithm using princi-
pal components from entire CEST
spectra as predictors. 0 � in-
fected tissue class (red); 1 � in-
flamed tissue class (blue); 2 �

normal muscle on right thigh tis-
sue class (black). Number of cor-
rect (green) and incorrect (red)
predicted observations (A). Posi-
tive predictive value rates (green)
and false discovery rates (red)
(B). True-positive rates (green)
and false-negative rates (red) (C).
AUC for the ROC curves repre-
sents classifier algorithm predic-
tion accuracy (D).
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statistical significance when compared to tissue classes 1, 2, and
3 after results were analyzed for 17 and 22 minutes after injec-
tion and infusion of maltose. Similarly, inflamed tissue class 2
was statistically different from both normal tissue classes 1 and
3, following injection and infusion of maltose after 17 and 22
minutes, respectively. The rank-sum test analysis was performed
on the entire DCE-MRI data set to attain statistically significant
differences (P � .01) between all tissue classes, except for the
comparison of both normal tissues (Table 1). We included the
first 10 minutes of baseline scans to serve as a negative control.
These results showed that the AUC analysis of DCE-MRI results
can differentiate infected tissue from both inflamed and normal
tissue.

The Gaussian SVM with a medium kernel scale had the best
performance among the classification models tested when T2

relaxation times were used as predictors (data not shown). The

complexity of a four-class machine learning classification dic-
tated the need to use three tissue classes (0 � infected, 1 �
inflamed, and 2 � normal left thigh tissue; Figure 3; see online
supplemental Table S1). The model classified 82% of the infected
tissue, and it classified a relatively poor 55% of the inflamed
tissue, and 64% of the normal left thigh tissue (Figure 3C). The
AUC of the ROCs ranged from 0.74 to 0.88 for the models,
indicating good classification of both infected and normal tissue
(Figure 3D; see supplemental Table S1). However, machine
learning did not further improve the ability to classify each
tissue class relative to boxplot analyses of T2 relaxation time
value distributions (Figure 2A).

The CEST spectra provided 101 predictors for classifying
tissues (corresponding to each saturation frequency from �8 to
8 ppm, and excluding 9 predictors from �55 to �50 ppm). PCA
using a k-nearest neighbors algorithm, resulted in a 91% correct

Table 1. Wilcoxon Rank-Sum P-values for the Distributions of T2 Relaxation Time, %CEST, and AUC of the
DCE CNR Evolutions Between Each Tissue Class

Imaging
Techniquea 0 & 1 0 & 2 0 & 3 1 & 2 1 & 3 2 & 3

T2 0.001 0.001 0.001 0.009 0.374 0.001

CEST 0.003 0.001 0.011 0.554 0.787 0.438

DCE 0.001 0.001 0.001 0.009 0.374 0.001

a0 � infection; 1 � normal muscle (right leg); 2 � sterile inflammation; 3 � normal muscle (left leg).

Figure 5. Error matrix represen-
tations after machine learning
classification with a k-nearest
neighbor algorithm using princi-
pal components from entire DCE
pharmacokinetic curves as predic-
tors. 0 � infected tissue class
(red); 1 � inflamed tissue class
(blue); 2 � normal muscle on
right thigh tissue class (black).
Number of correct (green) and
incorrect (red) predicted observa-
tions (A). Positive predictive value
rates (green) and false discovery
rates (red) (B). True-positive rates
(green) and false-negative rates
(red) (C). AUC for the ROC curves
represents classifier algorithm pre-
diction accuracy (D).
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classification for the infected tissue class (Figure 4C; see supple-
mental Table S1). PCA reduced the CEST spectra to 5 compo-
nents, where the first 2 components explained 60% and 30% of
the classification. These 2 components resulted in a good AUC of
the ROC with 	0.82 true-positive rates for infected tissue clas-
sification. The AUC of the ROCs for inflamed and normal tissue
were only 0.65 and 0.63, respectively (Figure 4D; see supple-
mental Table S1). Therefore, while machine learning (Figure 4)
has utility for positive classification of the infected tissue, the
results matched those relative to boxplot analyses of CEST at
each saturation frequency (Figure 2C).

DCE CNR evolutions provided 32 predictors (corresponding
to each image repetition). A k-nearest neighbor algorithm re-
sulted in an 89% correct classification for the infected tissue
class (Figure 5C; see supplemental Table S1). PCA reduction of
the DCE data to 5 components resulted in the first 2 components
explaining 93% and 6% of the classification. The components
resulted in good AUC of the ROCs with true-positive rates of 0.87
and 0.84 for the infected and inflamed tissue classes, respec-
tively, and a modest 0.62 for the normal tissue class (Figure 5D;
see supplemental Table S1). Therefore, machine learning (Figure
5) generated correct classification of infected tissue that is com-
parable to the more traditional DCE-MRI analyses of the AUC for
at least 17 minutes after injection of maltose.

To validate the mouse model, H&E and Gram staining his-
tological experiments were performed with 6 additional immu-
nocompetent CBA/J mice following imaging studies. After in-
duction of myositis following 10 hours of agent exposure, mice
were humanely sacrificed, and tissues were collected for bacte-
rial load calculations and histology (Figure 6). When intramus-
cular injections without inflammatory agents were given, the
muscle remained normal (Figure 6A). Myositis-induced sterile
inflammation after intramuscular administration of LPS re-
sulted in significant inflammation of the tissue (Figure 6B).
Myositis-induced inflammation after intramuscular administra-
tion of heat-killed bacteria also showed substantially inflamed
tissue (Figure 6C). Finally, myositis-induced bacterial infection
was clearly visualized after intramuscular injection of bacteria
(Figure 6D). Bacterial burden (log10 CFU) was enumerated for
mice with respect to exposure of inflammation-inducing LPS or
heat-killed E. coli. The 3 mice exposed to LPS had an average
bacterial burden of 6.95 � 0.101, and the 3 mice exposed to
heat-killed bacteria had an average bacterial burden of 6.56 �
0.123 (Table 2).

DISCUSSION
The high rate of positive classification of infected tissue from the
other tissue classes was anticipated owing to the intrinsic dif-
ferences between T2 relaxation times of infected, inflamed, and
normal muscle tissues at 7 T magnetic field strength (25). The
addition of CEST-MRI and DCE-MRI did not provide additional
information for improved classification and differentiation of
infected and inflamed tissues. Our preliminary study provides a
platform for future research that investigates the utility of T2-
weighted MRI for infection imaging and classification. Perform-
ing imaging studies with a larger cohort of mice and different
bacterial models of myositis-induced infection and inflam-
mation can further improve the repeatability and reproduc-

ibility of tissue classifications. We speculate that future stud-
ies can include a longitudinal evaluation of antibacterial
treatment efficacy in mice with myositis infections, although
further evidence of significant changes in T2 after treatment
are needed to warrant such studies. Nonetheless, T2-weighted
MRI is sufficient for evaluating and classifying infected and
inflamed tissues, and it serves as an alternative to CEST and
DCE-MRI when the administration of exogenous contrast
agents is not needed.

The specific saturation frequencies of 3.5, 3.0, and 2.0 ppm
were chosen to measure CEST arising from endogenous amide,
amine, and hydroxyl groups, while �1.6 and �3.5 ppm were
chosen to measure CEST arising from relayed NOE of aliphatic
protons on proteins and lipids. Our results showed that machine
learning did not improve overall classification of tissue models
based on the entire CEST spectra, relative to classifications using
the single saturation frequencies of �1.6 and �3.5 ppm. The
classification of infected and inflamed tissues when CEST-MRI

Figure 6. Hematoxylin and eosin (H&E) (left col-
umn) and Gram (right column) stains showing nor-
mal muscle (A), lipopolysaccharide (LPS)-induced
inflammation (B), heat-killed Escherichia coli (E.
coli)-induced inflammation (C), and Gram-nega-
tive bacteria (D). Scale bars on each image are
50 �m.
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was analyzed with machine learning was expected to produce
higher true-positive rates than we observed. However, similar
CEST signal distributions for infected and inflamed tissues may
contribute to the complexity of their overall classifications. The
large influx of proteins and lipids associated with inflammation,
whether induced via bacterial infection or sterile inflammation,
appears to contribute to the significantly different CEST signal
distributions at �1.6 and �3.5 ppm as compared with the
statistically insignificant CEST signal distributions at 3.5, 3.0,
and 2.0 ppm. These results are similar to other machine learning

studies for T1-weighted relaxation MRI, CEST-MRI, and DCE-
MRI that have been recently reported (24).

The classification of the tissue classes with the AUC from CNR
evolutions of DCE-MRI was anticipated to produce a visibly sepa-
rable distribution of AUC of infected tissue from the rest of the
tissue classes because of the biologically relevant utility of maltose
as a bacterial energy source (31, 33). The injection and infusion of
maltose increases the specificity of T2-weighted DCE-MRI of bac-
terial infections. These results indicate that maltose can be used as
an exogenous contrast agent that can contribute to imaging infec-
tions, and it has potential to be combined with imaging bacteria-
specific PET tracers during PET/MRI studies (41).

Contrary to our expected outcome of an increase in positive
tissue classifications using PCA and machine learning, tissue clas-
sifications were adequate using the distribution of tissue T2 relax-
ation times. We found that distributions of T2 relaxation times,
CEST signals at �1.6 and �3.5 ppm, and DCE CNR evolutions can
be effectively used to classify tissue classes without machine learn-
ing. When using entire CEST spectra and DCE pharmacokinetic
curves as predictors for PCA and machine learning, we achieved
great classifications of infected tissue at 91% and 89%, respec-
tively. However, PCA and machine learning failed to distinguish
inflamed tissues from normal tissue classes, and did not further
improve the successful classification of tissue models using the
distributions of T2 relaxation times, %CEST, and more simplistic
analyses of DCE-MRI AUC in our studies.

Supplemental Materials
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