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Abstract

Amoeboid cell migration is characterized by frequent changes of the direction of motion and

resembles a persistent random walk on long time scales. Although it is well known that cell

migration is typically driven by the actin cytoskeleton, the cause of this migratory behavior

remains poorly understood. We analyze the spontaneous dynamics of actin assembly due

to nucleation promoting factors, where actin filaments lead to an inactivation of these fac-

tors. We show that this system exhibits excitable dynamics and can spontaneously generate

waves, which we analyze in detail. By using a phase-field approach, we show that these

waves can generate cellular random walks. We explore how the characteristics of these per-

sistent random walks depend on the parameters governing the actin-nucleator dynamics. In

particular, we find that the effective diffusion constant and the persistence time depend

strongly on the speed of filament assembly and the rate of nucleator inactivation. Our find-

ings point to a deterministic origin of the random walk behavior and suggest that cells could

adapt their migration pattern by modifying the pool of available actin.

Introduction

The ability of cells to migrate is one of their most fascinating characteristics. During mesen-

chymal migration, cells persistently polarize and adhere to the substrate, which leads to persis-

tent directional motion [1, 2]. In contrast, during amoeboid migration, cells frequently change

their polarization and hence their direction of motion. They also adhere less strongly to the

substrate than cells during mesenchymal migration. Amoeboid migration can be observed for

the soil amoeba Dictyostelium discoideum and for immune cells, for example, dendritic cells.

The random walk performed during amoeboid migration is an important aspect of immune

cells’ task to scan the organism for pathogens. The origin of the random polarization changes

during amoeboid migration is largely unknown [3] and it is not clear to what extent cells can

control the characteristics of their random walk.

Molecular noise is an obvious candidate for generating random migration [4, 5]. The pro-

cesses involved in generating migration are indeed subject to noise due to the stochastic nature

of molecular reactions. However, these stochastic events take place on length and time scales
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that are small compared to those characteristic of cellular random walks. It is not obvious how

cells could influence the strength of this noise and hence their migration behavior. Fluctuating

external cues could also generate random walks. Indeed, cells respond to a multitude of exter-

nal signals, notably, chemical or mechanical gradients, and adapt their migration accordingly.

Here, the cells have a certain degree of control as they can tune the strength of their responses.

However, cellular random walks have been observed in the absence of external cues [6–9].

Finally, there is the possibility that cells generate internal polarization cues, which would give

them the maximal possible control over their behavior. In this context, spontaneous actin

polymerization waves have been proposed to provide such internal cues [10].

Actin is an important constituent of the cytoskeleton, which drives cell migration. It assem-

bles into linear filaments—called F-actin—with two structurally different ends. This structural

polarity of actin filaments is exploited by molecular motors that transform the chemical energy

released during hydrolysis of adenosine-triphosphate (ATP) into mechanical work. The

assembly and disassembly of F-actin is regulated by various cofactors. For example, formins

and the Arp2/3 complex nucleate new filaments. Actin depolymerizing factor (ADF)/cofilin,

on the other hand, can promote their disassembly. Interestingly, there is evidence for feedback

between the actin cytoskeleton and the activity of these regulatory cofactors. For example,

nucleation promoting proteins have been reported to be less active in regions of high F-actin

density [11, 12]. Such a feedback can lead to spontaneous actin polymerization waves [13–17].

Such waves are present during migration [13, 15, 18, 19], and theoretical analysis has shown

that they can be sufficient to cause cell motility [10, 18, 20, 21].

From a physical point of view, spontaneous actin polymerization waves are akin to waves in

excitable media. Early indications of this connection were given in [13, 14, 17]. Further sup-

port came from the observation that actin polymerization waves exhibit a refractory period

[15, 22]. More recently, the actin cytoskeleton of D. discoideum was shown to be poised close

to an oscillatory instability [19]. The dynamics of excitable systems is exemplified by the Fitz-

Hugh-Nagumo system, which is a very much simplified version of the Hodgkin-Huxley equa-

tions describing action potentials traveling along the axons of nerve cells.

In this work, we analyze the description of actin polymerization waves proposed in Ref

[16]. We clarify its connection to the FitzHugh-Nagumo system and characterize the waves it

generates. Furthermore, we use a phase-field approach [23, 24] to study the impact of actin

polymerization waves on cell migration. Here, the phase field is an auxiliary field that distin-

guishes between the inside and outside of a cell. We analyze in detail a recently introduced cur-

rent for confining proteins to the cell interior [10]. Finally, we explore the relation between the

system parameters and the characteristics of the random walks generated by chaotic polymeri-

zation waves.

Actin dynamics

In this section, we present the description of the actin cytoskeleton developed in Refs [10, 16,

21]. In Ref [16], the basic mechanism for the actin-nucleator dynamics, see Eqs (1)–(4) below,

was presented and studied in fixed geometries. The coupling to a dynamic phase field, which

represents the cell interior, was introduced in Ref [21]. There, the nucleator current in pres-

ence of a phase field had a form that led to strong leaking of nucleators from the cell interior.

This was remedied in Ref [10], which focused on experiments and lacked a detailed study of

the dynamic equations, which is the purpose of the present article. After establishing the

dynamic equations, we discuss their relation to the FitzHugh-Nagumo model (FHN) and

show that oscillations and waves emerge spontaneously in our system. Finally, we characterize

the shape, length and propagation velocity of these waves.
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The dynamic equations

Amoeboid cell migration is driven by the actin cytoskeleton, which is mostly concentrated in

the actin cortex, a layer beneath the plasma membrane. The cortex thickness is a few hundred

nanometers [25–27] and thus much smaller than the lateral extension of a cell (>10 μm). In

this work, we aim at describing the actin cytoskeleton adjacent to the substrate and thus use a

two-dimensional geometry.

We use the continuum description of Refs [10, 16, 21] for the actin dynamics, where the

actin density is captured by the field c. The alignement of actin filaments can lead to (local) ori-

entational order in the system. This effect is captured by the orientational order parameter p,

which is similar to the nematic order parameter of liquid crystals. In the dynamic equations,

all terms allowed by symmetry up to linear order and up to first order in the derivatives are

considered, such that

@tc ¼ � varp � kdcþ ana ð1Þ

@tp ¼ � varc � kdp: ð2Þ

Here, va is the average polymerization speed and kd an effective degradation rate, see Fig 1.

Instead of the phenomenological approach used here, Eqs (1) and (2) can also be obtained by

coarse-graining a kinetic description [21]. In this way, one sees that the term var p in Eq (1)

describes changes of the actin density resulting form the addition or removal of actin mono-

mers at the ends of actin filaments. The term var c indicates that changes in the polarization

are linked to the actin polymerization current va c: when actin is polymerizing from an actin-

dense region into an actin-sparse region, the polarization of the actin network grows in the

direction opposite to the actin-density gradient. Note, that this description neglects flows of

the actin network [28] that could, for example, be generated by molecular motors. We also

neglect a possible diffusion term that would account for fluctuations in the actin dynamics.

We have checked that our results are not affected qualitatively for sufficiently small diffusion

constants.

The last term of Eq (1) is a source term that describes nucleation of new actin filaments. For

the conditions present in cells, new actin filaments hardly form spontaneously. Instead, spe-

cialized proteins assist in this process. Examples are members of the formin family or the

Fig 1. Schematic representation of the actin dynamics captured by Eqs (1)–(4). Blue circles represent inactive

nucleators. They are spontaneously activated at rate ω0, a process that is often associated with membrane binding. The

activation rate is enhanced by already active nucleators, represented by green circles, which is captured by the

parameter ω. Active nucleators generate new actin filaments (red) at rate α. The latter grow at velocity va and

spontaneously disassemble at rate kd. Furthermore, actin filaments attract factors that inactivate nucleators. This

complex process, which can involve several different proteins in a cell, is captured by the rate ωd.

https://doi.org/10.1371/journal.pone.0246311.g001
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Arp2/3 complex. These proteins can be in an active or an inactive state and their spatial distri-

bution in a cell can change with time. In this way they can contribute essentially to orchestrat-

ing the organization of the actin cytoskeleton. We introduce the densities ni and na to describe

these actin nucleation promoting factors—’nucleators’ for short -, where the indices refer to

the inactive and active forms, respectively. Active nucleators generate new actin at a rate α,

hence the form of the last term in Eq (1).

The dynamic equations for the fields na and ni capture their transport by diffusion and

their activation and inactivation dynamics. On the time scales that are relevant for the dynam-

ics we study in the remainder of this work, nucleator synthesis and degradation can be

neglected. Consequently, the dynamic equations should conserve the number of nucleating

proteins,
R
A(na + ni)dA = Antot = const, where A is the cell area adjacent to the substrate. We

write

@tna ¼ DaΔna þ o0ð1þ on2
aÞni � odcna ð3Þ

@tni ¼ DiΔni � o0ð1þ on2
aÞni þ odcna: ð4Þ

The diffusion constants for active and inactive nucleators are Da and Di, respectively. Spon-

taneous activation of nucleators occurs at rate ω0. There is some experimental evidence for a

positive feedback of nucleator activation [29], such that active nucleators promote the activa-

tion of further nucleators. Recently, it was reported that the molecular network underlying this

positive feedback involves the Rho activating Guanine nucleotide exchange factor (GEF)

GEF-H1 [30]. The small guanosine triphosphatase (GTPase) Rho in turn activates actin

nucleating factors of the formin family. We capture this effect by the parameter ω. Nucleator

deactivation can occur spontaneously. Furthermore, it has been proposed that nucleator deac-

tivation can be induced by factors that are recruited by actin filaments [11, 12, 29, 31, 32]. We

assume that the latter dominates [29] and neglect spontaneous deactivation. Actin induced

deactivation is controlled by the parameter ωd.

To fully determine the dynamics of the fields c, p, na, and ni, Eqs (1)–(4) have to be comple-

mented by boundary conditions. In this section, we use periodic boundary conditions to study

the intrinsic actin dynamics. Later we will add the presence of the cell membrane through a

phase field, see Sect Cell motility from actin polymerization waves.

In the following we use a non-dimensionalized version of the dynamic equations. We scale

time byo� 1
0

and space by
ffiffiffiffiffiffiffiffiffiffiffiffi
Di=o0

p
. We use the same notation for the rescaled parameters as in

Eqs (1)–(4), such that the non-dimensionalization corresponds to setting ω0 = 1 and Di = 1.

Unless noted otherwise, we use in the following the parameter values given in Table 1.

Spatially homogenous solutions

Consider the case of homogenous protein distributions. The constraint on the nucleator den-

sity thus is na + ni = ntot = const, where ntot is the average total nucleator density. According to

Eq (2), the polarization field is decoupled from the other fields and will tend to zero, p! 0, for

t!1. The remaining dynamic equations become

@tc ¼ � kdcþ ana ð5Þ

@tna ¼ ð1þ on2
aÞðntot � naÞ � odcna; ð6Þ

where we have used ni = ntot − na.
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Eqs (5) and (6) are reminiscent of the FitzHugh-Nagumo (FHN) system [33, 34]. In its gen-

eral form, the latter is given by [35]:

1

�
@tw ¼ v � aw ð7Þ

@tv ¼ � wþ I þ f ðvÞ: ð8Þ

Eq (7) describes generation of the ‘carrier’ w by the ‘driver’ v and degradation of w with rate

a. Here, �� 1 is a small parameter, such that the dynamics of w occurs on longer time scales

than the one of v. The second equation captures inhibition of v by w and I is an external stimu-

lus. Finally, f(v) describes a feedback of v on its own production: in general, it promotes gener-

ation of v for small values of v, whereas it inhibits its production for larger values of v.

A typical specific choice of f is f ðvÞ ¼ v � v3

3
. In that case, the system essentially depends only

on the parameter a and the external stimulus I, because variations in � do not affect the dynam-

ics qualitatively as long as �� 1. Although the stimulus can depend on time, for the time being,

we consider the case of constant I. Information about the asymptotic behavior can be obtained

by analyzing the nullclines in phase space, that is, the curves defined by the respective condi-

tions _v ¼ 0 and _w ¼ 0 in the (v, w)-plane. Intersections of the two nullclines correspond to fix-

points of which there are either one or three. In the latter case, the system is bistable as two

fixpoints are stable against small perturbations, whereas the third is unstable, see Fig 2A.

In the case that there is one fixpoint, it can be stable or unstable against small perturbations.

If it is unstable, the system exhibits a limit cycle and asymptotically oscillates, see Fig 2B. In the

opposite case, the FHN system can present excitable dynamics, that is, even though the fix-

point is stable against small perturbations, sufficiently large perturbations induce an ‘excur-

sion’ in phase space, before returning to the fixpoint, see Fig 2C. This behavior can be

observed, when the intersection of the two nullclines is left to the minimum or right to the

Table 1. Nondimensional parameter values used in this work unless indicated otherwise.

Parameter Meaning Value

Da Diffusion constant of active nucleators 4 � 10−2

va Effective actin polymerization speed 0.1–0.6

kd Effective filament degradation rate 176

ω Cooperative binding strength of nucleators 6 � 10−3

ωd Detachment rate of active nucleators 0.1 − 0.6

α Actin polymerization rate 588

ntot Average total nucleator density 700

L System length 1.3

Ng Number of grid points per dimension 256

o� 1
0

Time scale 91.6 s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Di=o0

p
Length scale 63.5 μm

DC Phasefield relaxation / surface tension coefficient 5 � 10−3

κ Phasefield timescale modifier 118

� Area conservation strength 8

β Actin-membrane interaction coefficient 5.75 � 10−3

A0 Mean cell area 0.083

The length and time scales are chosen such that the ensuing dynamics is comparable to that of immature dendritic

cells [10].

https://doi.org/10.1371/journal.pone.0246311.t001
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maximum of the v-nullcline. If the intersection is between the two extrema, the system sponta-

neously oscillates, see Fig 2B.

The similarity between the actin-nucleator dynamics, Eqs (5) and (6), and the FHN system

becomes evident when choosing c = w, na = v, � = α, a = kd/α, I = ntot, and f(v) = −v + ωIv2 −
ωv3. The two dynamical systems differ in that the term −w of Eq (8) corresponds to −ωd vw in

Eq (6). Lastly, in contrast to v and w in the FHN system, which can take any real value, we now

have w� 0 and 0� v� ntot. Note that, in the FHN system, I is an external signal and can

depend on time, while the corresponding term ntot in the actin-nucleator system is a constant.

From the comparison between the actin-nucleator dynamics and the FHN system, we see

that the actin-nucleator dynamics is driven by the nucleators, whereas actin is the carrier pro-

viding negative feedback. This is in agreement with experimental observations [17, 22]. The

similarity between the two systems suggests that the actin-nucleator dynamics can also show

oscillations as well as excitable behavior. This is indeed the case as we discuss now. We con-

sider the case, where α is not a small parameter.

Fig 2. Phase space diagrams for spatially homogenous dynamics. A-C) Phase space for the FitzHugh-Nagumo Eqs (7) and (8) with a = 2, I = 0 (A),

a = 0.04, I = 2 (B), and a = 0.4, I = 2 (C). D-F) Phase space for the dynamic Eqs (5) and (6) with kd = 5, α = 50 (D), kd = 50, α = 400 (E), and kd = 80, α =

400 (F). Other parameters as in Table 1. In each case, the nullclines are shown in red, the vector fields as blue arrowheads and an example trajectory in

black. For the FHN equations, the diagrams show a bistable case (A), a limit cycle (B) and an excitable case (C). For Eqs (5) and (6) we present limit

cycles (D, E) and an excitable case (F). For these equations, there is no bistable case.

https://doi.org/10.1371/journal.pone.0246311.g002
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Let us take a closer look at the nullclines. Analogously to _w ¼ 0 for the FHN system, _c ¼ 0

yields a linear relation between c and na and the na-nullcline exhibits the characteristic S-shape

of _v ¼ 0. The nullclines of our system intersect exactly once in the region c� 0 and na� 0,

such that there is only one fixpoint (c0, na,0), independently of the parameter values. To see

this, note first that the c-nullcline is a straight line through the origin. Now consider the func-

tion c(na) defined by the nullcline _na. If there were parameter values for which three intersec-

tion points existed, then there would be some tangent to c(na) with a negative y-intercept cy.
However, for any value na� 0 the value cy is given by

cy ¼ on3
a þ 2ntot � na; ð9Þ

which is always positive as the number of active nucleators is bounded from above by the total

number of nucleators, ntot� na. This proves the above statement.

If the fixpoint is unstable against small perturbations, the system exhibits oscillations as

mentioned above, see Fig 2D and 2E. In case, (c0, na,0) is stable, the system can amplify a finite

perturbation, but will eventually return to the fixpoint, see Fig 2F. Before performing a linear

stability analysis of the fixpoint, we first develop a physical picture of the necessary conditions

for an instability.

The fixpoint can only be unstable, when the na-nullcline c(na) exhibits two extrema for na

> 0. Explicitly, the nullcline is given by

cðnaÞ ¼
ntot � on3

a þ ontotn2
a � na

odna
: ð10Þ

Consequently, lim
na!1

cðnaÞ ¼ � 1 and lim
na!0þ

cðnaÞ ¼ þ1. To determine whether the na-null-

cline is monotonously decreasing, we consider the positive roots of the derivative c0 = @c/@na.

They are determined by

0 ¼ � ntot � 2on3
a þ ontotn2

a: ð11Þ

This equation always has one negative real solution. The two other roots are real only if the

discriminant of the polynomial is negative. This leads to on2
tot > 27. In that case, two of the

three real roots take the form

n�a ¼
ntot

6
1� 2 sin

p � sin � 1 1 � 54

on2
tot

� �

3

2

4

3

5

0

@

1

A: ð12Þ

The value of nþa is always positive and n�a is always negative, because the argument of the

sine function takes values between π/6 and π/2. The third root is

n0
a ¼

ntot

6
1þ 2 sin

sin � 1 1 � 54

on2
tot

� �

3

2

4

3

5

0

@

1

A; ð13Þ

which is always positive. In conclusion, the fixpoint (c0, na,0) is unstable and the system oscil-

lates foron2
tot > 27 and if n0

a < na;0 < nþa .

We now turn to a linear stability analysis of the fixpoint. For the dominating growth expo-

nent s of the perturbation, we find

s ¼
a � kd þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða � kdÞ
2
� 4aodna;0

q

2
;

PLOS ONE Excitable actin dynamics and amoeboid cell migration

PLOS ONE | https://doi.org/10.1371/journal.pone.0246311 February 1, 2021 7 / 22

https://doi.org/10.1371/journal.pone.0246311


where a ¼ � 1 � 3on2
a;0 þ 2ontotna;0 � odc0 only depends on kd/α. By increasing the nucle-

ation rate α while keeping kd/α = const, the nullcline remains unaffected. For kd> a the real

part of the eigenvalue becomes negative, leading to a stationary state. Thus, kd< a is the last

condition for the presence of oscillations in our system. The oscillation frequency ωF close to

the instability can be estimated from the imaginary part of the growth exponent s, which gives

oF ¼ IðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aodna;0
p

.

Wave solutions

After having analyzed the dynamic Eqs (1)–(4) for spatially homogenous fields, we now turn

to the general case and study the system in a domain of size L2 with periodic boundary condi-

tions in the x- and y-direction. Then, the system can generate a variety of spatially heteroge-

neous solutions, including planar traveling waves and stationary patterns, see Fig 3 and S1 and

Fig 3. Snapshots of solutions for the actin concentration c to Eqs (1)–(4) in two dimensions with periodic boundary conditions. A, B) Travelling

planar waves for Da = 0.04, ωd = 0.28, va = 0.2 (A) and Da = 0.04, ωd = 0.32, va = 0.44 (B). Green arrows indicate the direction of motion. The

disclinations in (B) might heal after very long times. C, D) Stationary Turing patterns for Da = 0.04, ωd = 0.45, va = 6.0 (C) and Da = 0.21, ωd = 0.42, va =

9.5 (D). For different initial conditions a pure hexagonal pattern of blobs can appear. All other parameters as in Table 1.

https://doi.org/10.1371/journal.pone.0246311.g003
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S2 Videos. For information about the numerical approach we used for solving the dynamic

equations, see Appendix: Numerical implementation of the dynamic equations. In the follow-

ing we will determine the parameter region in which these patterns exist and characterize the

shape of planar waves.

Linear stability analysis. We start our analysis by investigating the stability of the homog-

enous steady state against small spatially heterogeneous perturbations. The homogenous state

is characterized by c(x) = c0 = αna/kd, p(x) = p0 = 0, and ni,0 = ntot − na,0 with

ð1þ on2
a;0Þni;0 � odc0na;0 ¼ 0: ð14Þ

As shown above there is only one positive solution na,0� ntot to this equation, such that

there is a unique homogenous stationary state.

Consider c(x, y, t) = c0+ δc(x, y, t) and similarly for the fields p, na, and ni. Linearizing the

dynamic equations with respect to the steady state and expressing the perturbations in terms

of a Fourier series, dc ¼
P1

n;m¼� 1 ĉnme� iðqx;nxþqy;myÞ and similarly for δ p, δna, and δni with qx,n =

2πn/L and qy,m = 2πm/L, leads to

d
dt

ĉnm ¼ � ivaðqx;np̂x;nm þ qy;mp̂y;nmÞ

� kdĉnm þ an̂a;nm

ð15Þ

d
dt

p̂x;nm ¼ � ivaqx;nĉnm � kdp̂x;nm ð16Þ

d
dt

p̂y;nm ¼ � ivaqy;mĉnm � kdp̂y;nm ð17Þ

d
dt

n̂a;nm ¼ � Daðq2
x;n þ q2

y;mÞn̂a;nm þ ð1þ on2
a;0Þn̂i;nm

þ 2oni;0na;0n̂a;nm � odðc0n̂a;nm þ ĉnmna;0Þ

ð18Þ

d
dt

n̂i;nm ¼ � ðq2
x;n þ q2

y;mÞn̂i;nm � ð1þ on2
a;0Þn̂i;nm

� 2oni;0na;0n̂a;nm þ odðc0n̂a;nm þ ĉnmna;0Þ:

ð19Þ

The solutions to these equations are of the form ĉ / esnmt etc, where snm are the growth

exponents of the modes (n, m). If snm> 0, then a heterogeneous steady state emerges. If

instead, <(snm)>0 and I(snm)6¼0, then an oscillatory state, that is, either a standing or a travel-

ing wave, can be expected.

Our numerical solutions indicate that all instabilities in our system are super-critical such

that there is no coexistence of different states that are not linked by a symmetry transforma-

tion. Close to the instability, the wavelength λ0 of the unstable mode determines the wave

length of the emerging pattern. This remains true in a large region beyond the instability, see

Fig 4. The wave length depends only weakly on the actin assembly velocity va, Fig 4A and 4B,

and not on the nucleator inactivation rate ωd, Fig 4D and 4E. It increases with the diffusion

constant Da, Fig 4C, and decreases with the cooperativity parameter ω, Fig 4F.

In contrast to the wave length, we only get a poor estimate of the wave’s propagation veloc-

ity from the linear stability analysis. In the following we use a variational ansatz to determine

the wave form and propagation velocity of plane waves.
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Wave form. We start by rewriting the dynamic Eqs (1)–(4). First of all, we combine the

equations for the actin density c and the polarization p to obtain one equation for the density.

Furthermore, we exchange ni for N = na+ ni. Finally, we consider solutions in a reference

frame moving with the wave velocity v. We use periodic boundary conditions with period Λ
and thus arrive at

0 ¼
v2 � v2

a

L
2

@
2

xcþ
v
L
@x þ kd

� �
kdc � anað Þ ð20Þ

� vN ¼
1

L
@xN �

1 � Da

L
@xna � vntot ð21Þ

�
v
L
@xna ¼

Da

L
2
@

2

xna þ 1þ on2

a

� �
ðN � naÞ � odcna; ð22Þ

where we have scaled space by Λ, such that the period is equal to 1, see see Appendix: Wave

profile.

Eqs (20) and (21) are linear and can be solved as soon as na is known, see Dependence of

migration characteristics on parameter values. To solve the nonlinear Eq (22) we make the fol-

lowing ansatz for a right-moving wave in the interval [−1/2, 1/2]

naða1; a2; a3; a4; xÞ ¼
a1

2
e� a2xð1þ tanh ½a3x�Þð1 � 2xÞa4 ; ð23Þ

where a1 to a4 are variational parameters. We constrain a2 and a3 to vary in the intervals [5,

15] and [30, 50], respectively, whereas a4 can take on the values 2, 3, 4; we do not impose any

Fig 4. Wavelength as a function of system parameters. Orange dots represent values obtained from numerical solutions in two spatial dimensions

with periodic boundary conditions (L = 1.0), blue lines are the results of a linear stability analysis, see Sect Linear stability analysis. Parameter values are

ωd = 0.44 (A), ωd = 0.48 (B), va = 0.46 and ωd = 0.43 (C), va = 0.32 (D), va = 0.48 (E), and va = 0.46 and ωd = 0.43 (F). All other parameters as in Table 1.

https://doi.org/10.1371/journal.pone.0246311.g004
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constraints on a1. Note that the test function (23) does not fulfill the periodic boundary condi-

tion. However, since a2, a3� 1, na(a1, a2, a3, a4, ±1/2)� 0.

In our ansatz, the active-nucleator density na increases according to the exponential poly-

nomial xa4ea2x at the front of the wave. In this region actin is nucleated and increases corre-

spondingly. The trailing region of the wave is defined by a decrease of the active nucleator

density according to 1+ tanh(a3 x). This decrease results from a threshold actin concentration

beyond which nucleator inactivation occurs at a higher rate than nucleator activation. Due to

the large value of a3, the nucleator density drops sharply to zero and also the actin density

decays exponentially in the trailing region. The corresponding decay length is v/kd, see see

Appendix: Wave profile.

After solving the linear Eqs (20) and (21), we calculate an error by integrating the difference

between the left and the right hand sides of (22) over the whole period:

Errða1; a2; a3; a4; vÞ ¼
Z 1

2

� 1
2

jF na; c;Nð Þjdx

Fðna; c;NÞ ¼
v
L
@xna þ

Da

L
2
@

2

xna � odcna þ 1þ on2

a

� �
ðN � naÞ:

ð24Þ

Minimizing the error yields values for the variational parameters a1 to a4, v, and Λ.

In Fig 5A, we compare a solution obtained by the variational ansatz and by numerically

solving the dynamic Eqs (1)–(4). The agreement is very good with the largest deviations being

present at the front of the wave. Similarly, the parameter dependence of the wave speed is

reproduced well by our variational ansatz, Fig 5B and 5C. The wave speed is essentially inde-

pendent of the actin polymerization speed va as long as va≲1, which is consistent with our ear-

lier remark that the wave dynamics is driven by the nucleator activity rather than actin

assembly. Furthermore, the wave speed increases with the parameter ωd describing nucleator

inactivation by actin. Indeed, as ωd increases, nucleators are more rapidly inactivated, such

that they become available for activation at the wave front.

Stationary patterns. In addition to planar traveling waves, the dynamic Eqs (1)–(4) can

also produce stationary patterns, see Fig 3C and 3D. These Turing patterns appear if va ≳ 1

and consist either of ‘blobs’ of high or low active nucleator densities or of labyrinthine stripes

of high active nucleator density. These structures can coexist in the same system. Since our

focus in this work is on actin waves, we refrain from discussing these states further.

Cell motility from actin polymerization waves

Having analyzed the intrinsic actin dynamics, we now turn to a characterization of cell migra-

tion patterns emerging form spontaneous actin waves. We start by introducing a phase-field

approach for describing the cellular domain. It contains a novel current for confining the

nucleators to the cell interior. We then describe migration patterns and study the dependence

of their characteristics on the system parameters.

Phase-field dynamics

Similar to previous work on cell motility, we use a phase-field approach to define the dynamic

cell shape [23, 24]. A phase field is an auxiliary scalar field with values ranging between 0 and

1, which are called the pure phases of the system. We treat values of 0 as being outside of the

cell and values of 1 as being inside. The phase-field dynamics is given by [23, 24]

@tC ¼ DCΔCþ kCð1 � CÞðC � dÞ � bp � rC; ð25Þ
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where

d ¼
1

2
þ �

Z

A
CdA0 � A0

� �

: ð26Þ

The term proportional to κ derives from a free energy with minima at the pure phases.

They are separated by an energy barrier at C = δ. Conservation of the cell area can be achieved

Fig 5. Shape and velocity of traveling waves in one dimension. A) Actin and active nucleator concentrations c (green) and na (orange) for va = 0.8

and ωd = 0.35. Dots are from a numerical solution, solid lines are obtained from the variational ansatz Eq (23) and the solution Eq (39). B, C) Wave

speed as a function of the actin polymerization velocity va (B) and the nucleator inactivation parameter ωd (C). All other parameters as in Table 1.

https://doi.org/10.1371/journal.pone.0246311.g005
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by adjusting the value of δ as described in Eq (26): The actual cell area is given by
R
ACdA0, it’s

target area by A0. If the cell is bigger than A0, then δ> 0.5 such that the overall cell area shrinks

and vice versa. For sufficiently large values of κ, the transition between the two pure phases is

sharp.

The transition region between the two pure phases determines the position of the cell mem-

brane. Specifically, we implicitly define the location of the cell membrane by all positions r

with C(r) = 0.5. The term proportional to DC accounts for interfacial tension between the two

pure phases and thus the surface tension of the membrane. For cells, surface tension of the

membrane dominates its bending energy [24], which we neglect. Finally, the term propor-

tional to β describes the interaction strength between the phase field and the actin network.

The interaction is always directed along the polarization vector, such that the membrane can

be pushed outwards or pulled inwards [24]. In our solutions we do not observe pulling to the

inside.

The dynamics of the actin network and the nucleators is confined to the cell interior by

multiplying the dynamic Eqs (1)–(4) by C. Conservation of the nucleators is an important

aspect of these dynamic equations. Simply multiplying the corresponding transport term byC

violates conservation of the total nucleator amount and also leads to nucleators leaking out of

the cell interior [21]. Here, we choose a different option and instead modify the nucleator cur-

rent at the position of the membrane. For a particle density n, we write

@tn ¼ DðCΔn � nΔCÞ ð27Þ

¼ rðDCrnÞ � rðDnrCÞ: ð28Þ

This term evidently conserves the total particle number. It can be interpreted as a combina-

tion of scaling the diffusion constant with C and introducing an inwards flux proportional to

D at the membrane. This suggests that the expression is efficient for keeping the nucleators

inside the cell. This is indeed the case as can be seen by solving for the stationary state of Eq

(28), which is given by n/C.

In this context, it is also instructive to look at the discretized version of the right hand side

of Eq (28). Using the discretized Laplacian4nj� (nj−1 − 2nj + nj+1)h−2, where h is the discreti-

zation length, we get in one dimension:

DðCjDnj � njDCjÞ ¼ D
njþ1Cj þ nj� 1Cj � njCjþ1 � njCj� 1

h2
: ð29Þ

From this expression it is evident that nucleators can hop only to a site j inside the cell, i.e.,

with Cj> 0, see Fig 6A.

In presence of the phase field, the dynamic equations are

@tc ¼ Cðana � var � pÞ � kdc ð30Þ

@tp ¼ � vaCrc � kdp ð31Þ

@tna ¼ DaðCΔna � naΔCÞ þCðð1þ on2
aÞni � odcnaÞ ð32Þ

@tni ¼ CΔni � niΔC � Cðð1þ on2
aÞni � odcnaÞ: ð33Þ

For actin, the diffusion current can be neglected as argued above, such that its dynamics is

unaffected by the modified diffusion introduced in Eq (28). The coupling of the actin density c
and the polarization field p to the phase field is thus obtained by simply restricting the
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Fig 6. Polymerization waves in presence of a phase field. A) Schematic comparison of the discretized diffusion in absence (left) and presence (fight)

of a phase-field, see Eq (29). B) Phase diagram of migration patterns as a function of the actin growth velocity va and nucleator inactivation parameter

ωd. C-E) Example trajectories with cell outlines drawn at 8 equidistant points in time for va = 0.34 and ωd = 0.45 (diffusive migration, C), va = 0.22 and

ωd = 0.38 (random walk with straight segments, D), and va = 0.46 and ωd = 0.43 (random walk with curved segments, E). Scale bars correspond to a

length of 0.3. Other parameters as in Table 1.

https://doi.org/10.1371/journal.pone.0246311.g006
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corresponding sources to the cell interior through multiplication with C. However, since the

actin concentration is not a conserved quantity and rapidly degraded in the absence of nuclea-

tors, we chose the degradation term to act also outside the cell interior to get rid of any actin

that might have left the cell.

Actin-wave induced cell trajectories

In Fig 6B we show the phase diagram of the different dynamic patterns of the phase field’s cen-

ter rc =
R

rC(r)d2 r as a function of the parameters va and ωd. Five different dynamic states can

be distinguished. Below a critical value of ωd, waves do not emerge in the system and the center

settles into a stationary state. The critical value of ωd depends only weakly on va. There is a sec-

ond critical value, such that the center rc is again stationary if ωd is larger than this critical

value.

Close to the critical values of ωd, the actin-nucleator system forms a spiral wave, see S3

Video. These spirals are symmetric and do not deform the phase field. They spin around a

fixed point, which coincides with the center rc. Since the dynamic equations are isotropic, solu-

tions with clockwise or counter-clockwise rotations coexist. As the value of ωd is, respectively,

further increased or decreased, the spiral loses its symmetry. In this case, the motion of the

center rc becomes erratic and can be described as a random walk.

Three different types of random walks can be identified. First, the center rc can exhibit dif-

fusive dynamics, see Fig 6C and S4 Video. Second, it can perform a random walk, where

straight segments along which the cell moves with constant velocity alternate with segments of

diffusive motion, see Fig 6D and S5 Video. Also in the third type of random walk the cell cen-

ter changes between two states, namely, diffusive or curved motion, see Fig 6E and S6 Video.

Along the curved segments, the radius of curvature typically varies, but there are special cases,

for which the radius of curvature along the curved segments is constant and the same for all

segments. Note that for all kinds of random walk trajectories, the direction of motion after a

diffusive segment is uniformly distributed. Similarly, the handedness of a curved segment is

uncorrelated with that of the preceding segment.

For the erratic trajectories, the actin-nucleator dynamics is chaotic. For the persistent ran-

dom walk, axisymmetric waves emanate from a center with a fixed position within the cellular

domain. During the diffusive states, we observe spiral wave chaos instead. In the states corre-

sponding to curved segments, the waves are not axisymmetric, which leads to ‘protrusions’ of

the membrane and a turning of the cell axis. In case of the diffusive trajectories, the actin-

nucleator dynamics exhibits spiral chaos. The deterministic dynamic equations are thus able

to replicate salient migration features of searching cells [10].

Dependence of migration characteristics on parameter values

The random walks discussed above fall into the class of persistent random walks. For a persis-

tent random walk, the velocity of the walker has a finite time autocorrelation, that is, its magni-

tude and direction persist for a characteristic time τ. Note that there are several realizations of

a persistent random walk. In a run-and-tumble process, the walker exhibits periods during

which it moves along straight lines with constant speed. These periods are interrupted by

events during which the walker essentially does not move but changes its direction. Another

possibility is that the direction of motion and the speed varies constantly in a smooth way.

Inbetween these extremes, the segments of a run-and-tumble motion shows continuous

changes of the velocity. In all cases, the mean square displacement hr2(t)i is given by hr2(t)i =

4Dt+ 2(vτ)2(e−t/τ − 1). Here, v is the mean velocity of the persistent period and D is the
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diffusion constant describing the effective diffusive behavior on very long time scales. In the

following we study, how the effective parameters τ, v, and D depend on our system

parameters.

As shown in Fig 7A–7C, the persistence time τ, the speed v and the diffusion constant D ini-

tially increase with va and then decrease for larger values of va. The non-monotonous behavior

of these quantities is a consequence of two competing effects. To see this, let us first recall that

Fig 7. Effective parameters of random walk trajectories. A-C) Diffusion constant D (A), speed v (B), and persistence time τ (C) as a function of the

actin polymerization speed va. D-F) As (A-C), but as a function of the nucleator inactivation parameter ωd. Values were measured by fitting a persistent

random walk model to the mean square displacement (MSD) of the respective trajectories. In (B) and (E), also the mean speed measured directly on the

trajectories is shown (orange squares). Other parameters as in Table 1.

https://doi.org/10.1371/journal.pone.0246311.g007
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the wave speed does not increase with increasing va, Fig 5B. However, the polarization of the

actin network does increase in this case as can be read of directly from Eq (2). Consequently,

the interaction between the actin field and the membrane gets stronger and the membrane

deformations are more pronounced. At the same time, the pronounced membrane deforma-

tions feed back on the actin waves, which are getting less regular. Thus, the cell polarization is

less efficient, such that the periods of persistent migration are effectively shortened. At the

same time, the migration speed decreases during these periods. This is confirmed by the mean

instantaneous speed of the cell centers, which are very similar to the effective speed v, see

Fig 7B.

As a function of the parameter ωd, we observe a transition from a persistent to a diffusive

random walk. Below the transition, the parameters v and D increase with ωd. In contrast, the

value of τ depends non-monotonically on ωd; it first increases and then decreases. Above a

critical value of ωd, we find τ = 0. For these values, the diffusion constant varies only slightly

with ωd and is two orders of magnitude smaller than for the persistent random walks. The

dependence of v on ωd is linear for the persistent random walks. Note that the values of v
obtained from fitting the mean square displacement for τ� 0 are not meaningful. The mean

instantaneous velocity is again very similar to v for the persistent random walks. In the diffu-

sive regime, it still grows linearly with ωd. This is in line with the wave velocity, which increases

with ωd, see Fig 5C.

Discussion

In this work, we have shown that a deterministic, self-organized system describing the actin

assembly dynamics in living cells is capable of generating cellular random walks akin to amoe-

boid migration [10, 21]. We elucidated its relation to excitable systems by a comparison with

the FitzHugh-Nagumo system and characterized in detail spontaneously emerging traveling

waves. We recall that the wave propagation speed is independent of the actin polymerization

velocity va, such that the waves are driven by the nucleator dynamics and not the actin

dynamics.

By coupling the actin dynamics to a phase field, we studied the impact of the spontaneous

actin dynamics on cell migration. In this context, we introduced a new expression for the

nucleator current in presence of a phase field, such that nucleators are confined to the cell inte-

rior. In other phase-field studies of cell migration, conservation of particle numbers is typically

not an issue and all material leaving the cell interior is simply quickly degraded [24]. If nuclea-

tors are not conserved, for example, by replacing the concentration of inactive nucleators ni by

a constant, then the density of active nucleators diverges and waves are absent from the system.

In Ref [21], nucleators that had leaked out of the system were reintroduced into the cell by

homogenously distributing them in the cell interior. In contrast, the current −D(Cr n − nr
C) used in this work acts locally. All phases reported in Ref [21] are recovered and also the

topologies of the phase spaces are the same in both systems with one notable exception:

whereas in the present work erratic migration occurred for larger values of va and ωd than for

persistent migration, it was the opposite in Ref [21].

By analyzing the mean-squared displacement of the simulated cells, we characterized their

persistent random walks in terms of a diffusion constant, a persistence time, and the cell

speed. We linked these effective parameters to the actin-polymerization speed va and the

strength ωd of the negative feedback of actin on nucleator activity. It showed that these param-

eters had a strong effect on the effective diffusion constant and the persistence time, whereas

the cell speed varied only by a factor of two. This suggests that by changing the pool of available

actin monomers, cells can control important aspects of their random walks. This might allow
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notably cells of the immune system patrolling an organism for pathogens to adapt their behav-

ior to the tissue they reside in.

In this work, we have neglected the effects of molecular motors, which can generate con-

tractile stresses in actin networks. Their effects can be included into the description [28],

which is in particular important when stress fibers are present [36]. The description we consid-

ered rather applies to cells that do not adhere to a substrate, like the immature dendritic cells

studied in Refs [9, 10]. Still, the migration of immature dendritic cells depends on the presence

of molecular motors [9]. Further work is necessary to address the influence of molecular

motors on actin polymerization waves. Similarly, the effects of hydrodynamic flows on these

waves [37] remain to be studied.

Furthermore, it will be interesting to study in future work collective cell migration driven

by spontaneous actin-polymerization waves. Previous phase-field studies revealed how steric

interactions between cells can lead to collective migration [38, 39] and how topographic sur-

face structures influence this behavior [40]. In the context of our work, one might expect inter-

esting synchronization phenomena between actin waves in different cells.

Appendix: Numerical implementation of the dynamic equations

A self-written CUDA program was used to solve the nondimensional dynamic equations effi-

ciently on graphics processing units (GPUs). The system was discretized into 256 points on

each axis in both 1D and 2D. The protein densities and the phase field were updated using the

explicit midpoint rule with adaptive step size control. Fourier transformations were used to

compute spatial derivatives, a method that has a higher accuracy than a finite difference

scheme. The code and a more detailed description of the algorithm are available at [41].

Appendix: Wave profile

In this appendix, we determine the actin and nucleator densities for a wave traveling at velocity v.

Actin density

The actin density c and the polarisation field p are given by Eqs (1)–(4), which in one spatial

dimension and after non-dimensionalization read

@tc ¼ � va@xp � kdcþ ana ð34Þ

@tp ¼ � va@xc � kdp: ð35Þ

Deriving Eq (34) with respect to time, we can eliminate the field p and obtain a linear equa-

tion for c with an inhomogeneity proportional to na:

@
2

t cþ 2kd@tcþ k2
dc � v2

a@
2

xc ¼ aðkd þ @tÞna: ð36Þ

This is the equation for a wave with speed va, internal friction with 2kd and a driving pro-

portional to k2
d. The source of the wave depends on na and its time derivative. We will assume

that the active nucleators move as a solitary wave with velocity v, that is, na(x, t) = n(x − vt).
In the reference frame moving with the nucleation wave speed v and normalized by the

wavelength L, Eq (36) becomes

v2 � v2
a

ðkdLÞ
2
@

2

xc �
2v
kdL

@xcþ c ¼
a

kd
ð1 �

v
kdL

@xÞna: ð37Þ
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The homogenous solution ch(x) to this equation can be written as

chðxÞ ¼ elx
v0

la
�

c0l

la

� �

sinh ðlaxÞ þ c0 cosh ðlaxÞ
� �

; ð38Þ

where l ¼ kdLv=ðv2 � v2
aÞ and analogously la ¼ kdLva=ðv2 � v2

aÞ. In the above equation, the

amplitude of the homogenous solution is fixed by the conditions ch(0) = c0 and c0hð0Þ ¼ v0.

The solution to the in-homogenous Eq (37) with the source term SðxÞ ¼ akdL2

v2 � v2
a

1 � v
kdL
@x

� �
na

is obtained by the method of variation of constants. We write c0 = AS(x) and v0 = AS0(x), where

A is the Wronskian of our system and arrive at the full solution

cðxÞ ¼ aLl
Z 1

0

naðxþ xÞe
� lx cosh ðlaxÞ �

va

v
sinh ðlaxÞ

� �
dx; ð39Þ

where l ¼ v=ðv2 � v2
aÞ and analogously for λa.

The solution corresponds to a fraction of
v� va

2v of the scaled nucleator density decaying on a

lengthscale of L� ¼ 1

l� la
and a fraction of

vþva
2v decaying with Lþ ¼ 1

lþla
. The decaying part of the

actin wave can be fitted perfectly with the single parameter a v� va
2v e� l� x þ vþva

2v e� lþx
� �

. Note that

the nucleation rate α has no effect on the shape of the wave, but only affects its amplitude.

The solution for the polarization field p is obtained by solving Eq (35) for p(x, t)�p(x − vt).

Total nucleator density

We now rewrite the dynamic Eqs (1)–(4) for the active and inactive nucleator concentrations

na and ni in terms of the total nucleator concentration N = na+ ni and na. In one spatial dimen-

sion and after non-dimensionalization, we have

@tna ¼ Da@
2

xna þ ð1þ on2
aÞðN � naÞ � odcna ð40Þ

@tN ¼ @
2

xN þ ðDa � 1Þ@
2

xna ð41Þ

In the reference frame of the traveling wave, (41) becomes

�
v
L
@xN ¼

1

L2
@

2

xN þ
Da � 1

L2
@

2

xna: ð42Þ

Integrating once and determining the integration constant by integrating once more over

the entire system, we arrive at a first order equation for the total amount of nucleators,

@xN þ vLN ¼ vLntot þ ð1 � DaÞ@xna ð43Þ

with ntot being the average total nucleator density.

Eq (43) implies that with a homogenous total nucleator concentration N = const = ntot, gra-

dients in na also vanish. Thus, a heterogeneity in the total nucleator concentrations is necessary

to observe waves and wave propagation requires nucleator transport.

Furthermore, Da is a measure for how far active nucleators can diffuse around the bulk of

the wave while bound before detaching, on a time scale proportional to the wave period τ, thus

affecting the wave length. Da needs to be sufficiently smaller than Di to create a length scale dif-

ference large enough to enable the formation of the bulk of the wave and maintain the imbal-

ance in total nucleator concentration, otherwise the constant distribution of proteins is the

only solution (as the wave length grows too large, or the imbalance shrinks too much to be

supported).
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The solution to Eq (43) is given by

NðxÞ ¼ ntot þ ð1 � DaÞ naðxÞ � vL
e� vL

2

2 sinh vL
2

� �

Z 1
2

� 1
2

naðxÞe
vLðx� xÞdxþ

Z x

� 1
2

naðxÞe
vLðx� xÞdx

 !" #

ð44Þ

From this equation we see that there are no waves, when Da = 1 (= Di).

Active nucleator density

Using the solutions for c, Eq (39), and N, Eq (44), we arrive at a single equation for the distri-

bution of the active nucleators in the reference frame moving at the wave speed v:

Da

L2
@

2

xnaðxÞ þ
v
L
@xnaðxÞ ¼

odaLv
v2 � v2

a

naðxÞ
Z 1

0

naðxþ xÞe
� lx cosh ðlaxÞ �

va

v
sinh ðlaxÞ

h i
dx

� ½1þ onaðxÞ
2
�niðxÞ;

ð45Þ

where

niðxÞ ¼ ntot � DanaðxÞ �
ð1 � DaÞvL

evL � 1

Z 1

0

naðxþ xÞe
vLxdx ð46Þ

is the distribution of inactive nucleators. This non-linear integro-differential equation can be

solved using the variational ansatz of Sect Wave solutions.

Supporting information

S1 Video. Example of a traveling wave solution to Eqs (1)–(4) in two dimensions with peri-

odic boundary conditions for va = 0.44, ωd = 0.32. Other parameters as in Table 1. Disclina-

tions can take very long times to heal.

(MP4)

S2 Video. Example of a Turing pattern generated by Eqs (1)–(4) in two dimensions with

periodic boundary conditions for va = 6.0, ωd = 0.45, Da = 0.04. Other parameters as in

Table 1.

(MP4)

S3 Video. Symmetric spiral wave solution of Eqs (30)–(33) for va = 0.25 and ωd = 0.325.

Other parameters as in Table 1. Colors indicate the actin concentration, red line corresponds

to C = 0.5.

(MP4)

S4 Video. Asymmetric spiral wave solution of Eqs (30)–(33) for va = 0.225 and ωd = 0.35,

leading to diffusive motion. Other parameters as in Table 1. Colors indicate the actin concen-

tration, red line corresponds to C = 0.5.

(MP4)

S5 Video. Wave solution of Eqs (30)–(33) for va = 0.4 and ωd = 0.4, leading to a dynamics

of the phase field’s center, where straight segments alternate with diffusive segments.

Other parameters as in Table 1. Colors indicate the actin concentration, red line corresponds

to C = 0.5.

(MP4)

S6 Video. Wave solution of Eqs (30)–(33) for va = 0.48 and ωd = 0.43 leading to persistent

random walk of the phase field’s center, where curved segments alternate with diffusive
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segments. Other parameters as in Table 1. Colors indicate the actin concentration, red line

corresponds to C = 0.5.

(MP4)
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