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Abstract: Composite materials based on polypropylene modified with silver nanoparticles (PP/AgNPs)
were manufactured using injection molding and extrusion. Two different matrices were used to
prepare the samples consisting of 0.5 and 1.0 wt. % of silver nanoparticles, respectively. The aim of this
study was to assess whether silver nanoparticles (AgNPs) could influence the stability of a polymer
matrix during the 24-month period of the in vitro testing. The results indicated that composites with
silver nanoparticles displayed the significantly higher Young modulus and tensile strength after
the first and second year of investigation. Moreover, the incorporation of nanoparticles into the
matrix slightly increased the roughness and contact angle values and the parameters remained stable
after the in vitro incubation. The two-year immersion of materials in the deionized water proved
that the microstructure of composites did not change. The DSC analysis revealed that the material
incubation resulted in a slight reduction in the melting temperature and degree of crystallinity of PP.
The addition of nanoparticles to polymer matrices led to the increase in content of β crystals in the
crystalline phase of PP, which was revealed in the long-term in vitro tests. The XRD measurement also
showed the heightened surface crystallinity. The conducted studies have proved that all composites
are stable over a period of 24 months. Such behavior suggests that the tested materials can be used
as biomaterials.
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1. Introduction

Polypropylene (PP) is a thermoplastic polymer which is commonly used in plastics industry.
It is endowed with the remarkable chemical resistance, efficient mechanical properties, high heat
distortion temperature, excellent rigidity, electrical insulation, significant resistance to folding, and ease
of molding [1]. Thanks to the low costs of production, PP is often used in many areas of industry,
among others in: automotive industry, domestic consumption as packaging films, as industrial
products or paints, storage systems, toys, sports equipment, paintbrushes and garden furniture [2,3].
The disadvantages of polypropylene include poor toughness and mold shrinkage [4]. Polypropylene has
a crystalline structure with a high level of stiffness and a high melting point, when compared to other
commercial thermoplastics. PP is also often chosen as a matrix for composite materials with various
modifiers and reinforcements, such as: glass and carbon fibres, carbon nanotube, mica, talk calcium
carbonate, wollastonite and silica. Additives are applied to change or improve physicochemical
properties, to increase tensile or flexural strength and the Young modulus, to creep resistance or
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deflection temperature [5]. Some of this fillers are often used to reduce final material costs as well.
Polypropylene is popular in a medical area as it offers the hot filling capability and provides a good
contact clarity [6]. Medical applications of this polymer include syringes, vials, containers for pills and
capsules, jars or bottles for syrups [7]. As a constituent of composite materials, polypropylene modified
with nanometals is used to obtain removable prostheses, surgical masks, diapers, filters, burn and
wound dressings, and hygienic bands [8,9]. All of these medical devices mostly belong to the first or
second class of risk according to the Food and Drug Administration regulations [10]. Polymer implants
modified with silver nanoparticles and intended for a long-term contact with the human body belong
to the third risk class. The long-term implantation of a medical device (a prosthesis) may lead to
the chemical or biological degradation of the material, the loss of mechanical properties, and the
matrix degradation, resulting in the loss of the material inertia. Polypropylene is currently the most
common material used in the stress urinary incontinence treatment, in breast implants and mesh
implants for pelvic floor disorder (PFD) [11]. Clavé et al. [12] showed that synthetic implants used in a
vaginal approach for pelvic floor reinforcement degraded more when an acute infection or chronic
inflammation took place. One of possible explanations why the polymer structure degrades might
be the diffusion of organic molecules (e.g., fatty acids or cholesterol) into the polymer. The second
reason is the formation of free radicals that appear during infection and inflammation. When radical
oxidation occurs in the absence of oxygen, the radicals may promote cross-linking, which alters the
physical and mechanical properties of the polymer. Pikaart et al. also indicated that polypropylene
mesh degradation required removing the sling portion that eroded into the bladder [13]. Whereas, Lee
et al. convinced that trans-vaginal repair of an anterior vaginal wall prolapse with the monofilament
polypropylene mesh is an effective and safe procedure [14]. Achtariet al. [15] compared the erosion
rates of two prostheses: a polypropylene nonabsorbable, monofilament, macroporous mesh and
a composite polypropylene/polyglactin 910, mono/multifilament, absorbable/nonabsorbable mesh.
They found no statistically significant differences between those two prostheses during the first six
post-operative months. However, it was revealed that the mesh erosion was also dependent on the
surgeon’s experience and the patient age. On the contrary, Prudente et al. [16] demonstrated that the
implantation of monofilament and macroporous polypropylene in the subcutaneous of rats resulted
in the increased inflammatory activity and higher TNF production in the early post implantation
phase. After 30 days, PP had the similar cytokines immune reactivity, vessel density and extracellular
matrix organization values. Recently, PP composites filled with Ag or Cu nanoparticles have been
studied due to their antibacterial properties [17,18]. Using the spinning process, Yeo and Jeong [19]
have prepared sheath—core type nanocomposite fibers using PP chips and PP master-batches with
different concentrations of silver nanoparticles—and proved that fibers with silver in the sheath part
showed excellent antibacterial effects even in the low silver content. Moreover, they showed that the
silver content in nanocomposites decreased crystallinity with no impact on the fusion temperature.
Oliani et al. [20] obtained PP/AgNPs nanocomposites by the extrusion process and evaluated some
physicochemical and biological properties. They proved that introduction of AgNPs into PP led to a
significant decrease of its tensile strength at the nanoparticles content of 1%. In addition, composites
enriched with nanosilver showed biocide activity to Gram-positive and Gram-negative bacteria without
cytotoxic effect on mouse cells. Jokar et al. [21] also proved antimicrobial efficiency of silver LDPE
nanocomposite. However, they pointed out that a high level of silver nanoparticles may lead to
weakening of mechanical properties. Furthermore, they paid attention to the thermal stability of the
active component and the chemical compatibility of polymer matrix and antimicrobials in order to
evenly distribute antimicrobial substance. In spite of all the a fore mentioned data, little information is
still available in the literature describing the structure and mechanical properties of the PP composites
filled with Ag nanoparticles in a long period observation, as silver nanoparticles may also accelerate
the degradation process.

The above literature data indicate the need of conducting research on the behavior of polypropylene
matrix for the longest possible period. Therefore, the aim of this article is to determine whether the
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polypropylene modified with silver nanoparticles may maintain the physicochemical properties without
signs of degradation during the long-lasting performance. To study the stability, we characterized
two types of polymer matrices modified with different silver contents after the 12 and 24 months of
incubation engaging the DSC, XRD, and SEM examinations. We used a tensile tester to investigate the
mechanical properties of the composite materials and evaluated the surface properties.

2. Materials and Methods

2.1. Material Manufacturing

Two commercially available polymers PP polypropylene- EltexMED 100 (INEOS Olefins and
Polymers Europe, Koln, Germany), marked as MG03 (MFR = 3 g 10 min−1, E = 1450 MPa) and MG12
(MFR = 12 g 10 min−1, E = 1400 MPa) and composites modified with 0.5 and 1.0 wt. % nanosilver
(NanoAmor, Katy, TX, USA) with a purity of 99.9%, 80 nm particle size and density of 10.49 g cm−3

were formed as discs of 10 mm in diameter and paddles. All the materials were fabricated via extrusion
and injection molding (Figure 1). The procedure of obtaining specimens consisted of a few steps.
First, the granulates were prepared and dried in the laboratory dryer at 80 ◦C for 4 h. Then, the silver
nanoparticles were incorporated and homogenized with polymer granules in the plasticizing chamber
using 0.8 m length screw (the homogenization temperature 205 ◦C). Subsequently, the material was
injected into the steel molding form, cooled and extracted. The processing parameters were selected
and adapted to the manufacturing process according to characteristic data sheet of each polymer
(injection temperature in three zones was 230 ◦C, injection pressure—80 kg cm−2, flow—80%).

Polymers 2019, 11, x FOR PEER REVIEW 3 of 15 

 

physicochemical properties without signs of degradation during the long-lasting performance. To 
study the stability, we characterized two types of polymer matrices modified with different silver 
contents after the 12 and 24 months of incubation engaging the DSC, XRD, and SEM examinations. 
We used a tensile tester to investigate the mechanical properties of the composite materials and 
evaluated the surface properties. 

2. Materials and Methods 

2.1. Material Manufacturing 

Two commercially available polymers PP polypropylene- EltexMED 100 (INEOS Olefins and 
Polymers Europe, Koln, Germany), marked as MG03 (MFR = 3 g 10min−1, E = 1450 MPa) and MG12 
(MFR = 12 g 10min−1, E = 1400 MPa) and composites modified with 0.5 and 1.0 wt.% nanosilver 
(NanoAmor, Katy, TX, USA) with a purity of 99.9%, 80 nm particle size and density of 10.49 g cm−3 

were formed as discs of 10 mm in diameter and paddles. All the materials were fabricated via 
extrusion and injection molding (Figure 1). The procedure of obtaining specimens consisted of a few 
steps. First, the granulates were prepared and dried in the laboratory dryer at 80 °C for 4 h. Then, the 
silver nanoparticles were incorporated and homogenized with polymer granules in the plasticizing 
chamber using 0.8 m length screw (the homogenization temperature 205 °C). Subsequently, the 
material was injected into the steel molding form, cooled and extracted. The processing parameters 
were selected and adapted to the manufacturing process according to characteristic data sheet of 
each polymer (injection temperature in three zones was 230 °C, injection pressure—80 kg cm−2, 
flow—80%). 

 

Figure 1. Scheme of samples fabrication. 

2.2. Material Evaluation 

The obtained materials were incubated in deionized water at the temperature of 37 ± 1 °C for 12 
and 24 months. The sample weight to incubation medium ratio equaled 1g:10 mL in accordance with 
the ISO 10993-13:2010 standard: Identification and quantification of degradation products from 
polymeric medical devices [22]. All tests were conducted before and after the incubation. 

All tests carried out in this work have been selected to enable the assessment of structural and 
surface properties of the investigated materials. The authors focused primarily on the evaluation of 
the mechanical properties of polymers and composites measured during a 24-month incubation in 
water and structural studies. The selection of individual methods, such as XRD, DSC and SEM, 
confirmed the stable behavior of materials over time, which is extremely important from the point of 
view of biological stability in medical applications. In addition, studies were carried out to assess 
surface parameters, such as, wettability and roughness, which are relevant to the interaction of 
materials in contact with living organisms. 

2.2.1. Scanning Electron Microscopy 

Figure 1. Scheme of samples fabrication.

2.2. Material Evaluation

The obtained materials were incubated in deionized water at the temperature of 37 ± 1 ◦C for
12 and 24 months. The sample weight to incubation medium ratio equaled 1g:10 mL in accordance
with the ISO 10993-13:2010 standard: Identification and quantification of degradation products from
polymeric medical devices [22]. All tests were conducted before and after the incubation.

All tests carried out in this work have been selected to enable the assessment of structural and
surface properties of the investigated materials. The authors focused primarily on the evaluation of the
mechanical properties of polymers and composites measured during a 24-month incubation in water
and structural studies. The selection of individual methods, such as XRD, DSC and SEM, confirmed
the stable behavior of materials over time, which is extremely important from the point of view of
biological stability in medical applications. In addition, studies were carried out to assess surface
parameters, such as, wettability and roughness, which are relevant to the interaction of materials in
contact with living organisms.
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2.2.1. Scanning Electron Microscopy

Detailed microstructure examinations of the materials were carried out using the Nova NanoSEM
200 scanning electron microscope (FEI, Eindhoven, The Netherlands) equipped with a Genesis XM
X-ray microanalysis system (EDAX, Tilburg, The Netherlands) featuring the EDAX Sapphire Si(Li) EDX
detector. The SEM evaluation was performed in high vacuum conditions, with the back scatter electron
detector (BSE) of the accelerated voltage of 10–18 kV. The samples were coated with a carbon layer.

2.2.2. Roughness

The arithmetical mean roughness (Ra) of the MG03, MG12 and their composites with nanosilver was
measured using a contact profilometer HOMMEL-ETAMIC T1000 wave (Jenoptik AG, Jena, Germany).
The arithmetical mean roughness values were determined as an average of 10 measurements and were
expressed as the mean ± standard deviation (SD).

The laser confocal microscope Lext 4000 (Olympus, Tokyo, Japan) with the magnification 50×was
used to visualize the surface topography of the MG03, MG12 and their composites with nanosilver.
The scanned area was 2.56 mm × 2.56 mm.

2.2.3. Surface Wettability

The static water contact angle was measured by the sessile drop method with an automatic drop
shape analysis system DSA 10 Mk2 (Kruss GmbH, Hamburg, Germany). Ultra high quality-water
droplets of 0.25 µL were applied on each pure and dry sample. The measurements were performed at
a constant temperature in stable humidity conditions. The apparent contact angle was calculated as an
average of 10 measurements and expressed as a mean ± standard deviation (SD).

2.2.4. Tensile Test

The tensile strength (σM) and Young modulus (Et) were evaluated using a universal testing machine
Inspect Table Blue 5 kN with 5 kN load cell (Hegewald&Peschke, Nossen, Germany). The pre-load
force was 1 N, the test speed was 50 mm min−1. The investigations were carried out according to the EN
ISO 527-1 standards [23]. The mechanical parameters were calculated by averaging 10 measurements
and were expressed as a mean ± standard deviation (SD).

2.2.5. Differential Scanning Calorimetry

For the DSC measurements the Netzsch STA 449F3 Jupiter (Netzsch-Gerätebau GmbH, Selb,
Germany) was employed. The samples of ca. 4 mg weight were placed in sealed aluminum pans.
The heating rate of 10 ◦C·min−1 was applied. Argon was used as an inert gas with the flow rate
of 40 mL·min−1. Prior to its use, the calorimeter was calibrated with a sapphire standard and an
empty aluminum pan was used as a reference. The melting temperature (Tm) was determined at the
maximum of the melting endotherm during a single heating run. The degree of crystallinity (χc) of PP
was estimated using the enthalpy of melting change according to the Equation:

χc =
∆Hm

(1− x)∆H◦

m
(1)

where ∆Hm and ∆H◦m are the enthalpy of melting of the sample and the enthalpy of melting of fully
crystalline PP (207 J g−1), respectively, and x is the weight fraction of the AgNPs.

2.2.6. X-ray Diffraction Measurement

The phase analysis of the materials was examined with the XRD, using the X-ray diffractometer
(XRD, PhilipsX’Pert Pro, PANanalytical, Almelo, The Netherlands) operating at 50 kV and 30 mA with
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a CuKa radiation source, in the 2θ 10–50◦ range. Having separated X-ray diffraction lines, the content
of the β form (parameter kβ) was calculated using the well-known Turner-Jones Equation [24]:

kβ =
Iβ1

Iβ1 + Iα1 + Iα2 + Iα3
× 100% (2)

where: Iα1, Iα2, Iα3—the intensities of three typical peaks of α form assigned to the (110), (040) and
(130) planes of the α cell, respectively, Iβ1—the intensity of the strongest diffraction peak of the form
signed to the (300) plane at d = 5.495 Å.

3. Results

The polymer surfaces were homogeneous and smooth, which was proven via the microscopic tests
performed on the MG03 (Figure 2) and MG12 (Figure 3) polymers. The surface studies in the aquatic
environment after 12 and 24 months of incubation showed no significant changes. This characteristic
behavior was observed for the two polymer matrices. The analysis of polymer cross-sections also
confirmed the lack of changes in the microstructure of these materials. No cracks or fissures appeared
that could indicate the degradation of polymer matrices. Regarding the composites modified with
silver nanoparticles, a high degree of homogeneity of silver nanoparticles was observed for both 0.5 and
1 wt. % AgNPs content. However, during the cross-sections observations there were areas where
silver nanoparticle agglomerates appeared and such agglomerates were more common in composites
containing 1 wt. % AgNPs. During the surface observations after 12 and 24 months of incubation, silver
nanoparticles located near the surface were noted, which correlated with the results of XRD tests and
the content of the crystalline phase β (Figure 8 and Table 1). When observing the cross-sections after
12 and 24 months incubation, silver nanoparticle agglomerates were also noted, yet the composites
microstructure did not change.
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Table 1. Temperature, degree of crystallinity and relative contents of β crystals of the pure polymers
and polymers containing 0.5 and 1.0 wt. % of silver nanoparticles (AgNPs).

Before Incubation After 12-Months Incubation After 24-Months Incubation

Sample
DSC XRD DSC XRD DSC XRD

Tm (◦C) χC (%) kβ (%) Tm (◦C) χC (%) kβ (%) Tm (◦C) χC (%) kβ (%)

MG12 173.9 46.4 0.6 172.9 39.2 6.1 172.2 40.3 10.1
MG12_0.5Ag 172.3 47.6 1.2 171.2 38.3 7.5 170.7 36.8 11.6
MG12_1Ag 173.3 43.0 10.0 173.1 39.8 11.8 169.7 38.9 11.9

MG03 176.2 44.4 11.9 173.5 39.7 18.7 170.9 37.0 19.6
MG03_0.5Ag 175.2 49.3 14.7 173.9 37.8 27.5 171.2 36.6 28.6
MG03_1Ag 173.5 43.8 16.9 173.7 39.8 18.0 170.2 37.1 25.3

Tm–melting temperature. χC–degree of crystallinity. kβ–relative contents of β crystals in the crystalline phase of PP.

The introduction of silver nanoparticles into the MG12 polypropylene matrix in the amount
of either 0.5 or 1.0 wt. % did not change the roughness parameter (Figure 4). In the case of the
MG03 matrix, the 1.0 wt. % concentration of nanoparticles resulted in a significant (40%) increase in
roughness. In the case of the output samples, the Ra parameter value was 0.045 µm, while the 1 wt.
% content increased the Ra value to 0.074 µm. Furthermore, the 3D visualization via laser confocal
microscopy showed uniform and homogeneous surfaces of all the tested materials (Figure S1, from the
supplementary material). For all the samples, no change in roughness was noted during the incubation.
The absence of changes in the samples’ surface topography after a 24-month incubation in deionized
water was also confirmed by laser confocal microscopy. The in vitro tests carried out in distilled water
after 12 and 24 months confirmed the constant Ra parameter in comparison to the initial samples.
This behavior of materials proved the stability of both polymer matrices over time.



Polymers 2019, 11, 2018 7 of 14Polymers 2019, 11, x FOR PEER REVIEW 7 of 15 

 

 

Figure 4. The arithmetical mean roughness (Ra) of pure polymers and polymers containing 0.5 wt. % 
and 1.0 wt. % of silver nanoparticles (AgNPs). 

The wettability tests conducted on both types of polymers and their composites (Figure 5) 
showed an increase in the contact angle with an increasing proportion of the modifying phase. The 
average contact angle for the MG12 polymer matrix equaled about 82° and for the MG03 matrix - 
about 84°. The introduction of 0.5 and 1.0 wt. % silver nanoparticles caused an increase in the angle 
to 89° and 90°, and no change for the composites based on MG12 and MG03 matrix, respectively. 
However, the contact angle tests after 12 and 24 months incubation were similar with no increase in 
this parameter noted. 
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The wettability tests conducted on both types of polymers and their composites (Figure 5) showed
an increase in the contact angle with an increasing proportion of the modifying phase. The average
contact angle for the MG12 polymer matrix equaled about 82◦ and for the MG03 matrix—about 84◦.
The introduction of 0.5 and 1.0 wt. % silver nanoparticles caused an increase in the angle to 89◦ and 90◦,
and no change for the composites based on MG12 and MG03 matrix, respectively. However, the contact
angle tests after 12 and 24 months incubation were similar with no increase in this parameter noted.

The tensile strength and Young modulus of polymer matrices and PP/AgNPs composites were
determined in mechanical tests (Figures 6 and 7). The 0.5 and 1 wt. % addition of silver nanoparticles
did not affect the strength or the Young modulus value for either type of the polymer matrices. On the
other hand, the incubation process in the aquatic environment increased both the tensile strength
and Young modulus. In particular, a visible change was noted for the Young modulus, as its value
increased with the increasing content of silver nanoparticles. The observed phenomenon concerned
both the MG03 and MG12 polymer. The Young modulus for the MG03 matrix was 1.3 GPa, and for the
MG12 matrix it was 1.2 GPa. After the 12-month incubation, the Young modulus for the MG03 and
MG12 matrix and their composites was 1.4 GPa, and after 24 months of incubation it was1.5 GPa.
With respect to the tensile strength, the initial value σM for the MG03 and MG03_0.5Ag materials was
36 MPa, for the MG03_1Ag composite it was 35 MPa, while for the MG12 matrix it was 34 MPa and for
its composites it was 32 MPa. After 12 and 24 months of incubation, the strength of the composites
increased to 42 MPa. However, there was no difference in this parameter relating to the increasing
content of the modifying phase.



Polymers 2019, 11, 2018 8 of 14
Polymers 2019, 11, x FOR PEER REVIEW 8 of 15 

 

 

Figure 5. Static water contact angle of pure polymers and polymers containing 0.5 and 1.0 wt. % of 
silver nanoparticles AgNPs. 

The tensile strength and Young modulus of polymer matrices and PP/AgNPs composites were 
determined in mechanical tests (Figures 6 and 7). The 0.5 and 1 wt. % addition of silver nanoparticles 
did not affect the strength or the Young modulus value for either type of the polymer matrices. On 
the other hand, the incubation process in the aquatic environment increased both the tensile strength 
and Young modulus. In particular, a visible change was noted for the Young modulus, as its value 
increased with the increasing content of silver nanoparticles. The observed phenomenon concerned 
both the MG03 and MG12 polymer. The Young modulus for the MG03 matrix was 1.3 GPa, and for 
the MG12 matrix it was 1.2 GPa. After the 12-month incubation, the Young modulus for the MG03 
and MG12 matrix and their composites was 1.4 GPa, and after 24 months of incubation it was1.5 
GPa. With respect to the tensile strength, the initial value σM for the MG03 and MG03_0.5Ag 
materials was 36 MPa, for the MG03_1Ag composite it was 35 MPa, while for the MG12 matrix it was 
34 MPa and for its composites it was 32 MPa. After 12 and 24 months of incubation, the strength of 
the composites increased to 42 MPa. However, there was no difference in this parameter relating to 
the increasing content of the modifying phase. 

Figure 5. Static water contact angle of pure polymers and polymers containing 0.5 and 1.0 wt. % of
silver nanoparticles AgNPs.

Polymers 2019, 11, x FOR PEER REVIEW 9 of 15 

 

 

Figure 6. Strength (σM) of pure polymers and polymers containing 0.5 and 1.0 wt. % of silver 
nanoparticles (AgNPs). 

 

Figure 7. Young modulus (E) of pure polymers and polymers containing 0.5 and 1.0 wt. % of silver 
nanoparticles (AgNPs). 

The XRD tests (Figure 8) showed appearing peaks for the 2θ angle of 14.0°, 16.8°, 18.5°, 21.2°, 
and 21.6° corresponding to the crystalline α phase derived from the polymers MG12 and MG03 in 

Figure 6. Strength (σM) of pure polymers and polymers containing 0.5 and 1.0 wt. % of silver
nanoparticles (AgNPs).



Polymers 2019, 11, 2018 9 of 14

Polymers 2019, 11, x FOR PEER REVIEW 9 of 15 

 

 

Figure 6. Strength (σM) of pure polymers and polymers containing 0.5 and 1.0 wt. % of silver 
nanoparticles (AgNPs). 

 

Figure 7. Young modulus (E) of pure polymers and polymers containing 0.5 and 1.0 wt. % of silver 
nanoparticles (AgNPs). 

The XRD tests (Figure 8) showed appearing peaks for the 2θ angle of 14.0°, 16.8°, 18.5°, 21.2°, 
and 21.6° corresponding to the crystalline α phase derived from the polymers MG12 and MG03 in 

Figure 7. Young modulus (E) of pure polymers and polymers containing 0.5 and 1.0 wt. % of silver
nanoparticles (AgNPs).

The XRD tests (Figure 8) showed appearing peaks for the 2θ angle of 14.0◦, 16.8◦, 18.5◦, 21.2◦,
and 21.6◦ corresponding to the crystalline α phase derived from the polymers MG12 and MG03 in the
planes directions (110), (040), (130), (111) and (041), respectively. At the angle of 2θ = 16.0◦, there was
a peak corresponding to the crystalline phase β from individual polymers at the direction of planes
(300). However, for the angle of 2θ = 38◦ and Miller indexes (111) there was a peak responsible for the
presence of silver nanoparticles in polymer matrices. The intensity of this peak increased with the
content of silver nanoparticles, still it did not change after the 12- and 24-month incubation. The XRD
results also indicated an increase in the crystallinity of polymers and composites in the intensity of the
peaks corresponding to the crystalline phase α and β. The peak intensity increased with the incubation
time and it achieved the highest value after 24 months of incubation. The XRD studies determined
the relative share of the crystalline β phase in polypropylene matrices (Table 1). The obtained results
indicated that the share of the β phase increased with the content of nanoparticles in polymer matrices
and with the incubation time.

The DSC tests (Figure 9) allowed to determine the melting temperature Tm and to calculate the
degree of crystallinity XC, basing on the melting heat of the tested sample, the heat of fusion of fully
crystalline polypropylene and the weight share of the modifying phase x (AgNPs). The results revealed
(Table 1) that the melting point Tm decreased with the content of silver nanoparticles in composites.
The results obtained after 12 and 24 months incubation indicated that the melting point of all the
materials decreased and the fall was more significant after 24 months of incubation. The degree of
crystallinity decreased with the incubation time and after 24 months the crystallinity of polymer
matrices got reduced by 6.5% on average. However, for the materials containing silver nanoparticles
the crystallinity was in average reduced by 12% for the 0.5 wt. % AgNPs composites and by 5% for the
1 wt. % AgNPs composites.
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4. Discussion

Designing the polymer matrix composites modified with nanoparticles is inevitably associated
with a change in the materials properties. So as to achieve the desired biological property, e.g.,
the bactericidal one, nanoparticles of metals, such as: gold, copper, silver, or zinc, are introduced into
polymer matrices [25–27]. The volume introduction of nanoparticles into polymers can adversely affect
the mechanical properties of composites, which is crucial in terms of implants durability and stability
in the biological environment [28]. Maintaining the proper mechanical parameters at a constant level,
or even strengthening the matrix, is a desirable feature. In the case of MG03_AgNPs and MG12_AgNPs
composites tested after 12 and 24 months of incubation, the silver modification in the amount of either
0.5 wt. % Ag or 1.0 wt. % Ag increased the mechanical properties. The literature data revealed that low
amounts of nanoadditives incorporated into a polymer matrix could improve its tensile strength and
ductility [29–33]. For instance, 0.1–0.3 wt. % of silver nanoparticles measuring 30–110 nm increased
both the elongation at break and the Izod impact strength of PP [34]. The DSC and XRD examinations
also showed a change in structural properties, in particular the melting point, degree of crystallinity
and proportion of the crystalline β phase. The results clearly indicated that the AgNPs addition



Polymers 2019, 11, 2018 11 of 14

induced the formation of the β-izotatic PP (iPP) polymorph. It was proved that the relative amount of
the β form depended on the concentration of silver nanoparticles in the composites. It was proved that
the β-form enhanced the impact toughness of PP at the expense of yield strength [34]. High contents
of β-form of PP were obtained via the directional crystallization in a high temperature gradient field or
by adding specific nucleating agents, such as calcium carbonate [2]. Silver nanoparticles also acted
as effective heterogeneous nucleation agents to facilitate the PP crystallization. The heterogeneous
nucleating effect of Ag nanoparticles increased the crystallization temperature of PP nanocomposites,
whereas the AgNPs inclusions exhibited a nucleation effect on the crystallization of polypropylene [35].
The increasing content of nanoparticles resulted in the decrease in melting temperature and the
maintained constant level or decrease in crystallinity in the composites volume. This effect was also
visible after 12 and 24 months of incubation. Such a behavior pattern is consistent with the literature
references. Hybiak and Garbarczyk proved that the AgNPs’ role in the iPP formation was related to
the difference in the specific silver heat Ag (0.235 Jg−1K−1) and iPP (2 Jg−1K−1). The former was around
10-times lower than the latter one. During the crystallization being an exothermic process, heat from
the solidifying iPP matrix was quickly absorbed by silver particles. Therefore, the temperature in the
polymer around silver nanoparticles decreased [36]. They also showed that the β form occurrence
might be related to the epitaxial growth of iPP on the surface of Ag or to the differences between
specific heat of iPP and AgNPs. Chae and Kim indicated that silver nanoparticles in the polymer
matrix could retard the heat penetration [35]. However, the SEM and surface roughness tests revealed
no major differences in the surface microstructure of the materials tested after 12 and 24 months
of incubation, as compared to the initial materials. The roughness tests did not show any major
changes, while in the SEM observations the emerging nanosilver was noticed, which confirmed the
relationship with the increasing share of the β phase determined by XRD. The incubation process in
water could lead to the partial elution and exposure of silver nanoparticles located near the surface,
which directly influenced the increase in the crystalline β phase. In general, the β-form crystal was
less stable than the α-form crystal, which resulted in the decrease of the melting temperature [35].
It was also established that a higher content of the crystalline β phase affected the strengthening of the
polymer matrix and improved elongation at break. The above phenomena were associated with the
β-form occurrence in the iPP due to aggregation of AgNPs, therefore the degradation process of PP
slowed down [37]. Additionally, nanoparticles in the polymer matrix retarded the heat penetration
and prevented the diffusion out of the decomposed polymeric material. The changing value of surface
wettability served as an indicator of polymer-based materials stability in the long-term in vitro testing.
The polypropylene surface, due to the presence of CH2 and CH3 groups in its chain, had a contact
angle close to 90◦, which was confirmed by the results of the study. Resulting from the initial PP
degradation, hydrophilic groups results were inserted into the polymer surface, thus making it more
hydrophilic [38]. Furthermore, the degradation process of polyolefins could lead to the formation of
chemical species containing hydrophilic hydroxyl (OH) and hydroneutral carbonyl (C=O) groups [39].
However, our results showed no significant changes in the water contact angle of the materials after
the 12- and 24-month incubation in deionized water, which indicated the stability of polymer matrices.
The surface wettability of biomaterials is an important surface parameter that influences the in vitro
and in vivo biological response to the material. Hao et al. found that the moderate wettability
(40–90◦) could promote the adhesion, proliferation and osteogenic differentiation of mesenchymal
stem cells [40].

5. Conclusions

The structural and surface properties of the PP/AgNPs composites were successfully examined.
The dispersion of fillers and the composites properties depended on the filler content. The best
dispersion was achieved for the composites containing 0.5 wt. % of silver nanoparticles.
The incorporation of silver into polypropylene matrices improved the tensile strength and Young
modulus. The values improved in accordance with the filler content increase, which was observed after
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the incubation. The surface properties, such as roughness and wettability, also changed accordingly
to the content of the nanometric additive. The melting temperature of PP matrix in the composites
containing 1.0 wt. % of silver increased by up to 1.4 ◦C in comparison to that of the pure PP, although
the effect depended on the filler content. On the other hand, the Tm for composites with 0.5 wt. %
of nanoparticles remained unaffected. The crystallinity value increased likewise, yet this effect was
only observed in the surface measurements. The DSC examinations showed that the crystallinity
in volume decreased with the increasing content of nanoparticles. The in vitro tests proved the
mechanical and microstructural stability of the investigated samples. Both the Young modulus and
tensile strength increased after the incubation. Taking into account the surface observations and
XRD measurements after incubation, it can be concluded that the surface properties were altered.
The conducted studies proved the suitability of all the composites for medical applications, including
implants with a long-term contact in the human body.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/11/12/2018/s1,
Figure S1: 3D confocal microscope microphotographs of pure polymers and polymers containing 0.5 and 1.0 wt.
% of silver nanoparticles (AgNPs) before and 24 months of incubation.
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