metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Carbonyl[tris(3,5-diphenylpyrazol-1-yl- κN^2)methane]copper(I) hexafluoridophosphate-dichloromethane-diethyl ether (4/3/1)

Katie E. Miller,^a Lauren M. Schopp,^a Kelly N. Nesseth,^a Curtis Moore,^b Arnold L. Rheingold^b and Christopher J. A. Daley^a*

^aDepartment of Chemistry and Biochemistry, University of San Diego, 5998 Alcalá Park, San Diego, CA 92110, USA, and ^bDepartment of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA Correspondence e-mail: cjdaley@sandiego.edu

Received 9 September 2009; accepted 6 October 2009

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.043; wR factor = 0.116; data-to-parameter ratio = 15.6.

In the title compound, $[Cu(C_{46}H_{34}N_6)(CO)]PF_6\cdot0.75CH_2Cl_2\cdot0.25C_4H_{10}O$, the Cu^I atom is coordinated by three N atoms from the tridentate chelating tris(3,5-diphenylpyrazol-1yl)methane ligand (average Cu—N distance = 2.055 Å) and the C atom from a carbon monoxide ligand in a distorted tetrahedral coordination geometry. The average N—Cu—N angle between adjacent pyrazole-ring-coordinated N atoms is 88.6°, while the average N—Cu—C angle between the pyrazole-bound N atom and the C atom of carbon monoxide is 126.3°. One of the 3-phenyl rings of the tris(pyrazolyl)methane ligand is disordered over two sites each with an occupancy factor of 0.50. The structure also exhibits disorder of the monosolvate that has been modeled with 0.75 CH₂Cl₂ and 0.25 Et₂O occupancy.

Related literature

For related copper complexes with coordinated tris(pyrazolyl)methane ligands, see: Kujime *et al.* (2007); Fujisawa *et al.* (2006).

 $\beta = 93.847 \ (2)^{\circ}$

Z = 4

 $V = 4398.0 (13) \text{ Å}^3$

Mo $K\alpha$ radiation

 $0.26 \times 0.16 \times 0.11 \text{ mm}$

57538 measured reflections

10230 independent reflections

7692 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 0.70 \text{ mm}^-$

T = 150 K

 $R_{\rm int} = 0.036$

6 restraints

 $\Delta \rho_{\rm max} = 1.02 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.85 \text{ e} \text{ Å}^{-3}$

Experimental

Crystal data

 $\begin{bmatrix} \text{Cu}(\text{C}_{46}\text{H}_{34}\text{N}_6)(\text{CO}) \end{bmatrix} \text{PF}_{6^{-1}} \\ 0.75\text{CH}_2\text{Cl}_2 \cdot 0.25\text{C}_4\text{H}_{10}\text{O} \\ M_r = 989.54 \\ \text{Monoclinic, } P2_1/c \\ a = 19.891 \text{ (3) Å} \\ b = 13.772 \text{ (2) Å} \\ c = 16.091 \text{ (3) Å} \\ \end{bmatrix}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2007) $T_{min} = 0.840, T_{max} = 0.927$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.116$ S = 1.0410230 reflections 655 parameters

Table 1 Selected bond lengths (Å).

C1-Cu1	1.796 (3)	Cu1-N2	2.0588 (18)
Cu1-N6	2.0453 (18)	Cu1-N4	2.0617 (19)

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *publCIF* (Westrip, 2009).

This work was supported by the National Science Foundation (RUI: #CHE-0809266) and the University of San Diego (Faculty Research Grant and the Department of Chemistry and Biochemistry).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2257).

References

- Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Fujisawa, K., Ono, T., Ishikawa, Y., Amir, N., Miyashita, Y., Okamoto, K. & Lehnert, N. (2006). *Inorg. Chem.* 45, 1698–1713.

Kujime, M., Kurahashi, T., Tomura, M. & Fujii, H. (2007). Inorg. Chem. 46, 541–551.

Sheldrick, G. M. (2008). *Acta Cryst.*, *A64*, 112-122. Westrip, S. P. (2009). *publCIF*. In preparation.

Acta Cryst. (2009). E65, m1354-m1355 [doi:10.1107/S1600536809040781]

Carbonyl[tris(3,5-diphenylpyrazol-1-yl- κN^2)methane]copper(I) hexafluoridophosphate-dichloromethane-diethyl ether (4/3/1)

K. E. Miller, L. M. Schopp, K. N. Nesseth, C. Moore, A. L. Rheingold and C. J. A. Daley

Comment

In the course of studying the chemistry of tris(pyrazolyl)methane copper(I) complexes, we reacted several substituted tris(pyrazolyl)methane (Tpm) ligands with various copper(I) salts to form the corresponding $[Cu(Tpm)]^+$ complexes based on literature references. Once prepared, we tested the complexes for activity as catalysts, and we examined their reactivity with CO. The latter has been performed on several $[Cu(Tpm)]^+$ complexes including η^3 -tris(3,5-diphenylpyrazolyl)methane copper(I) perchlorate and has yielded the expected monocarbonyl adducts $[Cu(Tpm)(CO)]^+$ (Kujime *et al.*, 2007). While the synthesis of $[Cu(^{3,5-Ph}Tpm)]ClO_4$ ([1]ClO_4) has been reported, its crystal structure has not been determined. As such, we prepared the hexafluoridophospate salt analogue (avoiding the potentially dangerous perchlorate salt) and report its crystal structure.

The crystal structure of [1]PF₆, is shown in Figure 1. The Cu^I atom is four-coordinate, bound by 3 N atoms from the tris(pyrazolyl)methane ligand and the C atom of carbon monoxide in a distorted tetrahedral coordination geometry. The average Cu—N bond distances (2.055 Å), Cu—C bond distance (1.796 (3) Å), and C—O bond distance (1.126 (3) Å) are within normal ranges as are the average N—Cu—N angles from adjacent pyrazolyl arms (88.6 Å), average N—Cu—C angles from bound pyrazolyl N atom to carbon monoxide C atom (126.3 Å), and the Cu—C—O bond angle (179.59 (3) Å) (Fujisawa *et al.*, 2006).

Experimental

Ligand HC(3,5-Ph₂py)₃ (0.100 g, 0.149 mmol) was added to tetrakis(acetonitrile)copper(I) hexafluoridophosphate (0.0557 g, 0.149 mmol) in methylene chloride (10 ml) under N₂ atmosphere in a 50 ml Schlenk flask. The mixture was stirred for 2 h then reacted with CO by bubbling $CO_{(g)}$, prepared from the reaction of concentrated sulfuric acid and formic acid, through the solution for 10 min. The flask was left under CO atmosphere for 2 d. The flask was opened to N₂ atmosphere again and hexane (18 ml) was added to precipitate the product. The product was isolated by inverse filtration and dried under a stream of N₂ (112 mg, 0.123 mmol, 82.8%). FTIR analysis showed the expected strong vCO peak at 2098 cm⁻¹. Single crystals were obtained by vapor diffusion of diethyl ether into a concentrated CH₂Cl₂ solution of [1]PF₆ at room temperature over several days.

Refinement

All hydrogen atoms were included at idealized positions and treated as riding to their parent atoms. The solvent in the lattice was modeled with a 75/25 disorder of dichloromethan/diethyl ether. The rotational disorder in the phenyl ring was modeled as a 50/50 disorder.

Figures

Fig. 1. Perspective view of complex [1]PF₆. Displacement ellipsoids are drawn at the 30% probability level. H-atoms and disordered solvate molecules are omitted for clarity. Only one of the two conformations (50:50) of the disordered main molecule is depicted for clarity. The disorder is in the 3-phenyl ring of one of the the 3,5-diphenylpyrazole arms of the tris(pyrazolyl)methane ligand.

Carbonyl[tris(3,5-diphenylpyrazol-1-yl- κN^2)methane]copper(l) hexafluoridophosphate_dichloromethane_diethyl ether (4/3/1)

Crystal data

 $[Cu(C_{46}H_{34}N_6)(C_1O_1)]PF_6 \cdot 0.75CH_2Cl_2 \cdot 0.25C_4H_{10}O_1F_{000} = 2024$

$M_r = 989.54$	$D_{\rm x} = 1.494 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 9980 reflections
a = 19.891 (3) Å	$\theta = 2.2 - 24.9^{\circ}$
b = 13.772 (2) Å	$\mu = 0.70 \text{ mm}^{-1}$
c = 16.091 (3) Å	T = 150 K
$\beta = 93.847 \ (2)^{\circ}$	Needle, colourless
$V = 4398.0 (13) \text{ Å}^3$	$0.26\times0.16\times0.11~mm$
Z = 4	

Data collection

Bruker APEXII CCD diffractometer	10230 independent reflections
Radiation source: fine-focus sealed tube	7692 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.036$
T = 150 K	$\theta_{\text{max}} = 28.2^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2007)	$h = -25 \rightarrow 25$
$T_{\min} = 0.840, \ T_{\max} = 0.927$	$k = -18 \rightarrow 17$
57538 measured reflections	$l = -21 \rightarrow 21$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.043$	H-atom parameters constrained
$wR(F^2) = 0.116$	$w = 1/[\sigma^2(F_o^2) + (0.0529P)^2 + 3.6625P]$ where $P = (F_o^2 + 2F_c^2)/3$

<i>S</i> = 1.04	$(\Delta/\sigma)_{\rm max} = 0.001$
10230 reflections	$\Delta \rho_{max} = 1.02 \text{ e} \text{ Å}^{-3}$
655 parameters	$\Delta \rho_{min} = -0.84 \text{ e } \text{\AA}^{-3}$
6 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Z	Uiso*/Ueq	Occ. (<1)
C1	0.42242 (13)	0.21405 (19)	0.37258 (16)	0.0355 (6)	
C2	0.21856 (10)	0.23550 (15)	0.51521 (13)	0.0214 (4)	
H2	0.1759	0.2386	0.5447	0.026*	
C3	0.19736 (10)	0.41694 (15)	0.49359 (13)	0.0222 (4)	
C4	0.23539 (11)	0.48860 (16)	0.45989 (13)	0.0247 (4)	
H4	0.2249	0.5559	0.4566	0.030*	
C5	0.29246 (10)	0.44312 (15)	0.43141 (13)	0.0227 (4)	
C6	0.13438 (10)	0.42759 (15)	0.53555 (13)	0.0231 (4)	
C7	0.07862 (11)	0.36688 (16)	0.51896 (14)	0.0255 (5)	
H7	0.0805	0.3164	0.4789	0.031*	
C8	0.02067 (11)	0.38043 (17)	0.56094 (15)	0.0308 (5)	
H8	-0.0170	0.3389	0.5499	0.037*	
C9	0.01761 (12)	0.45438 (17)	0.61897 (16)	0.0330 (5)	
Н9	-0.0219	0.4626	0.6483	0.040*	
C10	0.07186 (12)	0.51634 (17)	0.63438 (16)	0.0321 (5)	
H10	0.0693	0.5677	0.6734	0.039*	
C11	0.13009 (11)	0.50329 (16)	0.59263 (14)	0.0276 (5)	
H11	0.1672	0.5461	0.6030	0.033*	
C12	0.34983 (11)	0.48851 (16)	0.39286 (14)	0.0260 (5)	
C13	0.33862 (13)	0.56580 (18)	0.33750 (16)	0.0346 (5)	
H13	0.2942	0.5893	0.3248	0.042*	
C14	0.39264 (15)	0.6081 (2)	0.3011 (2)	0.0538 (8)	
H14	0.3850	0.6599	0.2626	0.065*	
C15	0.45756 (16)	0.5755 (3)	0.3205 (2)	0.0649 (10)	
H15	0.4943	0.6046	0.2951	0.078*	
C16	0.46896 (14)	0.5008 (2)	0.3766 (2)	0.0508 (8)	

H16	0.5137	0.4792	0.3905	0.061*	
C17	0.41550 (12)	0.45705 (18)	0.41269 (15)	0.0313 (5)	
H17	0.4236	0.4054	0.4512	0.038*	
C18	0.26913 (11)	0.17693 (15)	0.65675 (13)	0.0234 (4)	
C19	0.33265 (11)	0.14563 (16)	0.68269 (14)	0.0267 (5)	
H19	0.3467	0.1208	0.7362	0.032*	
C20	0.37271 (11)	0.15735 (19)	0.61518 (15)	0.0318 (5)	
C21	0.20807 (10)	0.18089 (16)	0.70288 (13)	0.0225 (4)	
C22	0.16647 (11)	0.26249 (16)	0.70177 (13)	0.0247 (4)	
H22	0.1780	0.3188	0.6717	0.030*	
C23	0.10811 (12)	0.26144 (17)	0.74472 (14)	0.0279 (5)	
H23	0.0792	0.3164	0.7427	0.034*	
C24	0.09191 (12)	0.18034 (18)	0.79061 (14)	0.0299 (5)	
H24	0.0519	0.1797	0.8197	0.036*	
C25	0.13437 (11)	0.10012 (17)	0.79392 (14)	0.0282 (5)	
H25	0.1239	0.0452	0.8264	0.034*	
C26	0.19178 (11)	0.09996 (16)	0.75005 (13)	0.0256 (5)	
H26	0.2203	0.0446	0.7519	0.031*	
C27	0.44506 (13)	0.1360 (3)	0.61176 (18)	0.0606 (10)	
C28	0.4780 (3)	0.0837 (5)	0.6667 (4)	0.0355 (13)	0.50
H28	0.4565	0.0434	0.7049	0.043*	0.50
C29	0.55288 (17)	0.0914 (4)	0.6656 (2)	0.0758 (13)	
H29	0.5782	0.0605	0.7103	0.091*	0.50
H29B	0.5782	0.0798	0.7153	0.091*	0.50
C30	0.5843 (3)	0.1308 (5)	0.6163 (4)	0.0441 (13)	0.50
H30	0.6299	0.1137	0.6098	0.053*	0.50
C31	0.5529 (2)	0.2027 (4)	0.5681 (4)	0.0408 (12)	0.50
H31	0.5783	0.2428	0.5337	0.049*	0.50
C32	0.4840 (2)	0.2157 (4)	0.5706 (3)	0.0335 (11)	0.50
H32	0.4621	0.2719	0.5476	0.040*	0.50
C33	0.15501 (11)	0.10446 (16)	0.43094 (13)	0.0239 (4)	
C34	0.17172 (11)	0.04769 (16)	0.36559 (14)	0.0255 (5)	
H34	0.1447	-0.0014	0.3388	0.031*	
C35	0.23664 (10)	0.07607 (15)	0.34583 (13)	0.0231 (4)	
C36	0.09176 (11)	0.11060 (16)	0.47349 (14)	0.0273 (5)	
C37	0.08969 (14)	0.0902 (2)	0.55808 (15)	0.0402 (6)	
H37	0.1294	0.0709	0.5898	0.048*	
C38	0.02932 (17)	0.0984 (2)	0.59565 (18)	0.0534 (9)	
H38	0.0278	0.0846	0.6533	0.064*	
C39	-0.02860 (16)	0.1264 (2)	0.5501 (2)	0.0519 (8)	
H39	-0.0695	0 1334	0 5768	0.062*	
C40	-0.02732(13)	0 14420 (19)	0 46590 (19)	0.0431(7)	
H40	-0.0674	0.1625	0.4344	0.052*	
C41	0.03278 (11)	0.13529 (17)	0.42740 (16)	0.0307 (5)	
H41	0.0335	0.1462	0 3692	0.037*	
C42	0 27480 (10)	0.03898 (16)	0 27714 (13)	0 0235 (4)	
C43	0 26789 (11)	-0.05816(17)	0 25368 (14)	0.0277 (5)	
H43	0 2413	-0 1007	0 2844	0.033*	
C44	0 29983 (12)	-0.09300(18)	0 18539 (15)	0.0318 (5)	
	0.27703 (12)	0.07500 (10)	0.10000 (10)	0.0010(0)	

H44	0.2953	-0.1593	0.1697	0.038*	
C45	0.33828 (12)	-0.0309 (2)	0.14024 (15)	0.0341 (5)	
H45	0.3593	-0.0545	0.0930	0.041*	
C46	0.31462 (11)	0.10025 (17)	0.23170 (14)	0.0273 (5)	
H46	0.3201	0.1664	0.2476	0.033*	
C47	0.34620 (11)	0.06525 (19)	0.16361 (15)	0.0319 (5)	
H47	0.3733	0.1073	0.1330	0.038*	
C28B	0.4911 (3)	0.1379 (5)	0.6694 (4)	0.0382 (13)	0.50
H28B	0.4831	0.1732	0.7185	0.046*	0.50
C30B	0.5773 (3)	0.0603 (5)	0.5966 (4)	0.0418 (13)	0.50
H30B	0.6243	0.0544	0.5906	0.050*	0.50
C31B	0.5304 (3)	0.0371 (4)	0.5340 (4)	0.0484 (14)	0.50
H31B	0.5436	0.0017	0.4871	0.058*	0.50
C32B	0.4634 (3)	0.0646 (4)	0.5380 (3)	0.0378 (12)	0.50
H32B	0.4296	0.0419	0.4982	0.045*	0.50
C1S	0.7723 (3)	0.1515 (4)	0.4724 (4)	0.0513 (12)	0.75
H1S1	0.7971	0.1754	0.4251	0.062*	0.75
H1S2	0.8058	0.1311	0.5173	0.062*	0.75
C2S	0.5816	0.2881	0.4872	0.033 (2)	0.25
H2S1	0.5755	0.3054	0.4281	0.049*	0.25
H2S2	0.5692	0.3435	0.5212	0.049*	0.25
H2S3	0.5527	0.2325	0.4984	0.049*	0.25
C3S	0.6585	0.2600	0.5098	0.032 (2)	0.25
H3S1	0.6882	0.3160	0.4999	0.039*	0.25
H3S2	0.6651	0.2411	0.5692	0.039*	0.25
C4S	0.7439	0.1566	0.4766	0.047 (4)	0.25
H4S1	0.7560	0.1501	0.5370	0.056*	0.25
H4S2	0.7746	0.2039	0.4524	0.056*	0.25
C5S	0.7455	0.0600	0.4331	0.057 (6)	0.25
H5S1	0.7248	0.0665	0.3763	0.086*	0.25
H5S2	0.7204	0.0121	0.4637	0.086*	0.25
H5S3	0.7923	0.0386	0.4308	0.086*	0.25
Cl1S	0.72306 (8)	0.05154 (8)	0.44009 (9)	0.0617 (3)	0.75
Cl2S	0.72256 (7)	0.24608 (9)	0.50909 (8)	0.0716 (4)	0.75
Cu1	0.346041 (13)	0.224475 (19)	0.425401 (16)	0.02380 (8)	
F1	0.13767 (9)	0.81255 (12)	0.31085 (11)	0.0542 (4)	
F2	0.05916 (8)	0.71373 (14)	0.24983 (13)	0.0632 (5)	
F3	0.14332 (9)	0.77162 (11)	0.17670 (11)	0.0508 (4)	
F4	0.13903 (12)	0.61327 (12)	0.20844 (14)	0.0730 (6)	
F5	0.21861 (8)	0.71132 (14)	0.27099 (14)	0.0688 (6)	
F6	0.13469 (10)	0.65282 (14)	0.34508 (12)	0.0659 (5)	
N1	0.23144 (8)	0.33174 (13)	0.48265 (11)	0.0216 (4)	
N2	0.29039 (9)	0.34751 (13)	0.44469 (11)	0.0223 (4)	
N3	0.27266 (9)	0.20641 (13)	0.57560 (11)	0.0235 (4)	
N4	0.33619 (9)	0.19362 (15)	0.54937 (12)	0.0299 (4)	
N5	0.20926 (8)	0.16426 (13)	0.44889 (11)	0.0222 (4)	
N6	0.25974 (8)	0.14726 (13)	0.39678 (11)	0.0224 (4)	
01	0.47013 (10)	0.20716 (18)	0.33911 (14)	0.0588 (6)	
O1S	0.6733	0.1850	0.4606	0.0355 (15)	0.25

P1	0.13840 (3)	0.71233 (5)) 0.261	25 (5)	0.03739 (17)			
Atomic displa	Atomic displacement parameters $(Å^2)$							
	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}		
C1	0.0317(13)	0 0377 (14)	0 0369 (14)	-0.0027(10)	0 0024 (11)	-0.0076(11)		
C2	0.0194 (10)	0.0213 (10)	0.0234 (11)	-0.0032(8)	-0.0002(8)	0.0009 (8)		
C3	0.0219 (10)	0.0213 (10)	0.0227 (11)	-0.0008(8)	-0.0034(8)	-0.0013(8)		
C4	0.0247 (11)	0.0211 (10)	0.0276 (11)	-0.0023(8)	-0.0024(9)	0.0001 (9)		
C5	0.0244 (10)	0.0229 (11)	0.0204 (10)	-0.0041 (8)	-0.0010 (8)	-0.0001 (8)		
C6	0.0212 (10)	0.0216 (10)	0.0263 (11)	0.0022 (8)	0.0008 (8)	0.0032 (9)		
C7	0.0235 (10)	0.0224 (11)	0.0303 (12)	-0.0003 (8)	-0.0002(9)	0.0012 (9)		
C8	0.0227 (11)	0.0270 (12)	0.0424 (14)	-0.0024 (9)	0.0000 (10)	0.0051 (10)		
С9	0.0269 (11)	0.0287 (12)	0.0444 (14)	0.0040 (9)	0.0093 (10)	0.0041 (11)		
C10	0.0313 (12)	0.0270 (12)	0.0385 (13)	0.0045 (10)	0.0050 (10)	-0.0040 (10)		
C11	0.0234 (11)	0.0227 (11)	0.0364 (13)	-0.0018 (9)	0.0005 (9)	-0.0012 (9)		
C12	0.0289 (11)	0.0233 (11)	0.0258 (11)	-0.0055 (9)	0.0028 (9)	-0.0013 (9)		
C13	0.0352 (13)	0.0306 (13)	0.0378 (14)	-0.0043 (10)	0.0005 (10)	0.0070 (11)		
C14	0.0532 (18)	0.0515 (18)	0.0575 (19)	-0.0080 (14)	0.0101 (14)	0.0292 (15)		
C15	0.0399 (16)	0.074 (2)	0.082 (2)	-0.0115 (15)	0.0181 (16)	0.039 (2)		
C16	0.0281 (13)	0.0574 (18)	0.068 (2)	-0.0051 (12)	0.0105 (13)	0.0219 (16)		
C17	0.0294 (12)	0.0315 (12)	0.0331 (13)	-0.0055 (10)	0.0027 (10)	0.0049 (10)		
C18	0.0278 (11)	0.0199 (10)	0.0224 (11)	-0.0025 (8)	0.0005 (8)	-0.0011 (8)		
C19	0.0277 (11)	0.0270 (11)	0.0250 (11)	-0.0021 (9)	-0.0019 (9)	0.0025 (9)		
C20	0.0222 (11)	0.0410 (14)	0.0317 (12)	-0.0030 (10)	-0.0019 (9)	0.0079 (11)		
C21	0.0245 (10)	0.0232 (11)	0.0196 (10)	-0.0020 (8)	-0.0011 (8)	-0.0025 (8)		
C22	0.0303 (11)	0.0222 (11)	0.0214 (11)	-0.0018 (9)	-0.0004 (9)	-0.0002 (8)		
C23	0.0308 (12)	0.0285 (12)	0.0244 (11)	0.0044 (9)	0.0008 (9)	-0.0037 (9)		
C24	0.0304 (12)	0.0366 (13)	0.0228 (11)	-0.0005 (10)	0.0040 (9)	-0.0019 (10)		
C25	0.0317 (12)	0.0311 (12)	0.0220 (11)	-0.0041 (10)	0.0027 (9)	0.0031 (9)		
C26	0.0283 (11)	0.0242 (11)	0.0238 (11)	0.0000 (9)	-0.0020 (9)	0.0004 (9)		
C27	0.0233 (13)	0.118 (3)	0.0404 (16)	0.0085 (15)	0.0027 (11)	0.0355 (18)		
C28	0.035 (3)	0.038 (3)	0.033 (3)	0.005 (3)	-0.003 (2)	0.002 (3)		
C29	0.0461 (18)	0.148 (4)	0.0318 (16)	0.048 (2)	-0.0068 (14)	0.003 (2)		
C30	0.028 (3)	0.063 (4)	0.041 (3)	0.008 (3)	-0.003 (2)	-0.002 (3)		
C31	0.025 (2)	0.051 (3)	0.046 (3)	0.000 (2)	-0.001 (2)	0.009 (3)		
C32	0.022 (2)	0.037 (3)	0.041 (3)	0.0022 (19)	-0.0028 (19)	0.009 (2)		
C33	0.0236 (10)	0.0226 (10)	0.0250 (11)	-0.0050 (8)	-0.0014 (8)	0.0020 (9)		
C34	0.0271 (11)	0.0232 (11)	0.0258 (11)	-0.0047 (9)	-0.0008 (9)	-0.0006 (9)		
C35	0.0236 (10)	0.0205 (10)	0.0247 (11)	0.0007 (8)	-0.0019 (8)	0.0013 (8)		
C36	0.0280 (11)	0.0248 (11)	0.0295 (12)	-0.0110 (9)	0.0055 (9)	-0.0047 (9)		
C37	0.0488 (15)	0.0441 (15)	0.0280 (13)	-0.0272 (12)	0.0042 (11)	-0.0031 (11)		
C38	0.068 (2)	0.0612 (19)	0.0336 (15)	-0.0426 (17)	0.0218 (14)	-0.0164 (14)		
C39	0.0539 (18)	0.0451 (17)	0.061 (2)	-0.0272 (14)	0.0381 (16)	-0.0226 (15)		
C40	0.0325 (13)	0.0354 (14)	0.0636 (19)	-0.0077 (11)	0.0190 (12)	-0.0048 (13)		
C41	0.0294 (12)	0.0284 (12)	0.0353 (13)	-0.0065 (9)	0.0090 (10)	0.0005 (10)		
C42	0.0212 (10)	0.0260 (11)	0.0225 (11)	0.0008 (8)	-0.0038 (8)	0.0007 (9)		
C43	0.0243 (11)	0.0288 (12)	0.0292 (12)	-0.0030(9)	-0.0036(9)	-0.0029(9)		

C44	0.0287 (12)	0.0340 (13)	0.0320 (13)	0.0007 (10)	-0.0033 (9)	-0.0095 (10)
C45	0.0259 (11)	0.0501 (15)	0.0259 (12)	0.0073 (11)	-0.0008 (9)	-0.0047 (11)
C46	0.0231 (11)	0.0260 (11)	0.0324 (12)	0.0023 (9)	-0.0020 (9)	0.0044 (9)
C47	0.0246 (11)	0.0425 (14)	0.0284 (12)	0.0021 (10)	0.0005 (9)	0.0070 (11)
C28B	0.032 (3)	0.055 (4)	0.027 (3)	0.006 (3)	0.001 (2)	-0.006 (3)
C30B	0.025 (3)	0.052 (4)	0.047 (3)	0.013 (2)	-0.003 (2)	0.002 (3)
C31B	0.041 (3)	0.053 (4)	0.051 (3)	0.016 (3)	0.002 (3)	-0.018 (3)
C32B	0.034 (3)	0.036 (3)	0.043 (3)	0.010 (2)	-0.004 (2)	-0.013 (2)
C1S	0.044 (3)	0.043 (3)	0.067 (3)	-0.0053 (19)	0.002 (2)	0.005 (2)
C2S	0.033 (5)	0.027 (5)	0.038 (5)	-0.004 (4)	0.002 (4)	0.007 (4)
C3S	0.034 (5)	0.028 (5)	0.034 (5)	-0.013 (4)	-0.005 (4)	0.007 (4)
C4S	0.070 (12)	0.039 (7)	0.032 (6)	0.017 (7)	0.007 (7)	0.003 (5)
C5S	0.067 (7)	0.055 (7)	0.048 (6)	0.020 (4)	-0.009 (4)	-0.002 (4)
Cl1S	0.0581 (7)	0.0341 (6)	0.0923 (10)	-0.0055 (5)	0.0016 (6)	-0.0124 (6)
Cl2S	0.0942 (9)	0.0459 (6)	0.0776 (8)	-0.0050 (6)	0.0261 (7)	-0.0174 (6)
Cu1	0.02001 (13)	0.02522 (15)	0.02630 (15)	-0.00240 (10)	0.00253 (10)	-0.00122 (11)
F1	0.0586 (10)	0.0414 (9)	0.0659 (11)	-0.0103 (8)	0.0290 (9)	-0.0078 (8)
F2	0.0290 (8)	0.0748 (13)	0.0853 (14)	-0.0085 (8)	-0.0008 (8)	0.0205 (11)
F3	0.0631 (11)	0.0338 (9)	0.0574 (10)	0.0033 (7)	0.0177 (8)	0.0088 (7)
F4	0.1047 (16)	0.0279 (9)	0.0863 (15)	0.0005 (9)	0.0050 (12)	0.0018 (9)
F5	0.0298 (9)	0.0645 (12)	0.1123 (17)	0.0112 (8)	0.0067 (9)	0.0202 (11)
F6	0.0656 (12)	0.0604 (12)	0.0696 (12)	-0.0195 (9)	-0.0107 (9)	0.0325 (10)
N1	0.0198 (8)	0.0204 (9)	0.0247 (9)	-0.0040 (7)	0.0020 (7)	0.0007 (7)
N2	0.0210 (9)	0.0237 (9)	0.0225 (9)	-0.0047 (7)	0.0034 (7)	-0.0004 (7)
N3	0.0180 (8)	0.0275 (10)	0.0247 (9)	-0.0022 (7)	-0.0005 (7)	0.0028 (7)
N4	0.0176 (9)	0.0416 (11)	0.0305 (10)	-0.0011 (8)	0.0010 (7)	0.0069 (9)
N5	0.0208 (8)	0.0210 (9)	0.0248 (9)	-0.0028 (7)	0.0017 (7)	-0.0004 (7)
N6	0.0210 (9)	0.0211 (9)	0.0251 (9)	0.0010 (7)	0.0020 (7)	-0.0004 (7)
01	0.0364 (11)	0.0804 (16)	0.0622 (14)	-0.0048 (10)	0.0235 (10)	-0.0186 (12)
O1S	0.031 (3)	0.039 (4)	0.036 (4)	0.006 (3)	0.003 (3)	0.002 (3)
P1	0.0277 (3)	0.0267 (3)	0.0579 (4)	0.0015 (2)	0.0043 (3)	0.0107 (3)

Geometric parameters (Å, °)

C1—Cu11.796 (3)C32—H320.9500C2—N51.452 (3)C33—C341.369 (3)C2—N11.454 (3)C33—N51.373 (3)C2—N31.457 (3)C33—C361.475 (3)C2—H21.0000C34—C351.406 (3)C3—N11.372 (3)C35—N61.339 (3)C3—C41.377 (3)C35—C421.474 (3)C4—C51.400 (3)C36—C411.388 (3)C4—H40.9500C36—C371.393 (3)C5—N21.335 (3)C37—C381.385 (4)C5—C121.474 (3)C37—H370.9500C6—C111.396 (3)C38—C391.378 (5)C6—C71.400 (3)C38—H380.9500	C1—O1	1.126 (3)	C31—H31	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—Cu1	1.796 (3)	С32—Н32	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—N5	1.452 (3)	C33—C34	1.369 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—N1	1.454 (3)	C33—N5	1.373 (3)
C2—H21.000C34—C351.406 (3)C3—N11.372 (3)C34—H340.9500C3—C41.377 (3)C35—N61.339 (3)C3—C61.470 (3)C35—C421.474 (3)C4—C51.400 (3)C36—C411.388 (3)C4—H40.9500C36—C371.393 (3)C5—N21.335 (3)C37—C381.385 (4)C5—C121.474 (3)C37—H370.9500C6—C111.396 (3)C38—C391.378 (5)C6—C71.400 (3)C38—H380.9500	C2—N3	1.457 (3)	C33—C36	1.475 (3)
C3—N11.372 (3)C34—H340.9500C3—C41.377 (3)C35—N61.339 (3)C3—C61.470 (3)C35—C421.474 (3)C4—C51.400 (3)C36—C411.388 (3)C4—H40.9500C36—C371.393 (3)C5—N21.335 (3)C37—C381.385 (4)C5—C121.474 (3)C37—H370.9500C6—C111.396 (3)C38—C391.378 (5)C6—C71.400 (3)C38—H380.9500	С2—Н2	1.0000	C34—C35	1.406 (3)
C3—C41.377 (3)C35—N61.339 (3)C3—C61.470 (3)C35—C421.474 (3)C4—C51.400 (3)C36—C411.388 (3)C4—H40.9500C36—C371.393 (3)C5—N21.335 (3)C37—C381.385 (4)C5—C121.474 (3)C37—H370.9500C6—C111.396 (3)C38—C391.378 (5)C6—C71.400 (3)C38—H380.9500	C3—N1	1.372 (3)	С34—Н34	0.9500
C3—C61.470 (3)C35—C421.474 (3)C4—C51.400 (3)C36—C411.388 (3)C4—H40.9500C36—C371.393 (3)C5—N21.335 (3)C37—C381.385 (4)C5—C121.474 (3)C37—H370.9500C6—C111.396 (3)C38—C391.378 (5)C6—C71.400 (3)C38—H380.9500	C3—C4	1.377 (3)	C35—N6	1.339 (3)
C4—C51.400 (3)C36—C411.388 (3)C4—H40.9500C36—C371.393 (3)C5—N21.335 (3)C37—C381.385 (4)C5—C121.474 (3)C37—H370.9500C6—C111.396 (3)C38—C391.378 (5)C6—C71.400 (3)C38—H380.9500	C3—C6	1.470 (3)	C35—C42	1.474 (3)
C4—H40.9500C36—C371.393 (3)C5—N21.335 (3)C37—C381.385 (4)C5—C121.474 (3)C37—H370.9500C6—C111.396 (3)C38—C391.378 (5)C6—C71.400 (3)C38—H380.9500	C4—C5	1.400 (3)	C36—C41	1.388 (3)
C5-N21.335 (3)C37-C381.385 (4)C5-C121.474 (3)C37-H370.9500C6-C111.396 (3)C38-C391.378 (5)C6-C71.400 (3)C38-H380.9500	C4—H4	0.9500	C36—C37	1.393 (3)
C5—C121.474 (3)C37—H370.9500C6—C111.396 (3)C38—C391.378 (5)C6—C71.400 (3)C38—H380.9500	C5—N2	1.335 (3)	C37—C38	1.385 (4)
C6—C111.396 (3)C38—C391.378 (5)C6—C71.400 (3)C38—H380.9500	C5—C12	1.474 (3)	С37—Н37	0.9500
C6—C7 1.400 (3) C38—H38 0.9500	C6—C11	1.396 (3)	C38—C39	1.378 (5)
	C6—C7	1.400 (3)	С38—Н38	0.9500

С7—С8	1.387 (3)	C39—C40	1.379 (4)
С7—Н7	0.9500	С39—Н39	0.9500
C8—C9	1.386 (3)	C40—C41	1.388 (3)
С8—Н8	0.9500	C40—H40	0.9500
C9—C10	1.385 (3)	C41—H41	0.9500
С9—Н9	0.9500	C42—C43	1.394 (3)
C10—C11	1.389 (3)	C42—C46	1.397 (3)
C10—H10	0.9500	C43—C44	1.391 (3)
C11—H11	0.9500	С43—Н43	0.9500
C12—C17	1.393 (3)	C44—C45	1.385 (4)
C12—C13	1.396 (3)	C44—H44	0.9500
C13—C14	1.386 (4)	C45—C47	1.383 (4)
С13—Н13	0.9500	C45—H45	0.9500
C14—C15	1.383 (4)	C46—C47	1.385 (3)
C14—H14	0.9500	С46—Н46	0.9500
C15—C16	1.376 (4)	C47—H47	0.9500
C15—H15	0.9500	C28B—H28B	0.9500
C16—C17	1.384 (3)	C30B—C31B	1.364 (8)
С16—Н16	0.9500	C30B—H30B	0.9500
С17—Н17	0.9500	C31B—C32B	1.390 (7)
C18—C19	1.373 (3)	C31B—H31B	0.9500
C18—N3	1.374 (3)	C32B—H32B	0.9500
C18—C21	1.466 (3)	C1S—Cl1S	1.748 (5)
C19—C20	1.399 (3)	C1S—Cl2S	1.762 (5)
С19—Н19	0.9500	C1S—H1S1	0.9900
C20—N4	1.340 (3)	C1S—H1S2	0.9900
C20—C27	1.473 (3)	C2S—C3S	1.5972 (2)
C21—C22	1.395 (3)	C2S—H2S1	0.9800
C21—C26	1.399 (3)	C2S—H2S2	0.9800
C22—C23	1.391 (3)	C2S—H2S3	0.9800
С22—Н22	0.9500	C3S—O1S	1.34576 (16)
C23—C24	1.389 (3)	C3S—H3S1	0.9900
С23—Н23	0.9500	C3S—H3S2	0.9900
C24—C25	1.389 (3)	C4S—O1S	1.4641 (2)
C24—H24	0.9500	C4S—C5S	1.5050 (2)
C25—C26	1.382 (3)	C4S—H4S1	0.9900
С25—Н25	0.9500	C4S—H4S2	0.9900
С26—Н26	0.9500	C5S—H5S1	0.9800
C27—C28B	1.259 (6)	C5S—H5S2	0.9800
C27—C28	1.286 (6)	C5S—H5S3	0.9800
C27—C32	1.521 (6)	Cu1—N6	2.0453 (18)
C27—C32B	1.602 (6)	Cu1—N2	2.0588 (18)
C28—C29	1.494 (7)	Cu1—N4	2.0617 (19)
C28—H28	0.9500	F1—P1	1.5949 (18)
C29—C30	1.175 (7)	F2—P1	1.5747 (17)
C29—C30B	1.313 (7)	F3—P1	1.5953 (18)
C29—C28B	1.391 (6)	F4—P1	1.608 (2)
С29—Н29	0.9500	F5—P1	1.5928 (18)
С29—Н29В	0.9300	F6—P1	1.5842 (18)

C30—C31	1.381 (8)	N1—N2	1.375 (2)
С30—Н30	0.9500	N3—N4	1.370 (2)
C31—C32	1.385 (7)	N5—N6	1.371 (2)
O1—C1—Cu1	179.6 (3)	C34—C35—C42	126.90 (19)
N5-C2-N1	111.58 (17)	C41—C36—C37	119.5 (2)
N5-C2-N3	110.88 (17)	C41—C36—C33	118.9 (2)
N1—C2—N3	110.53 (16)	C37—C36—C33	121.6 (2)
N5—C2—H2	107.9	C38—C37—C36	119.6 (3)
N1—C2—H2	107.9	С38—С37—Н37	120.2
N3—C2—H2	107.9	С36—С37—Н37	120.2
N1—C3—C4	105.85 (18)	C39—C38—C37	120.6 (3)
N1—C3—C6	126.01 (19)	С39—С38—Н38	119.7
C4—C3—C6	128.1 (2)	С37—С38—Н38	119.7
C3—C4—C5	106.69 (19)	C38—C39—C40	120.1 (3)
C3—C4—H4	126.7	С38—С39—Н39	119.9
C5—C4—H4	126.7	С40—С39—Н39	119.9
N2—C5—C4	110.76 (19)	C39—C40—C41	119.7 (3)
N2—C5—C12	121.24 (19)	С39—С40—Н40	120.1
C4—C5—C12	128.0 (2)	C41—C40—H40	120.1
C11—C6—C7	119.3 (2)	C36—C41—C40	120.4 (2)
C11—C6—C3	117.93 (19)	C36—C41—H41	119.8
C7—C6—C3	122.8 (2)	C40—C41—H41	119.8
C8—C7—C6	120.0 (2)	C43—C42—C46	119.1 (2)
С8—С7—Н7	120.0	C43—C42—C35	119.3 (2)
С6—С7—Н7	120.0	C46—C42—C35	121.5 (2)
C9—C8—C7	120.2 (2)	C44—C43—C42	120.2 (2)
С9—С8—Н8	119.9	C44—C43—H43	119.9
С7—С8—Н8	119.9	C42—C43—H43	119.9
C10—C9—C8	120.3 (2)	C45—C44—C43	119.9 (2)
С10—С9—Н9	119.9	C45—C44—H44	120.0
С8—С9—Н9	119.9	C43—C44—H44	120.0
C9—C10—C11	119.9 (2)	C47—C45—C44	120.4 (2)
С9—С10—Н10	120.0	C47—C45—H45	119.8
C11—C10—H10	120.0	C44—C45—H45	119.8
C10-C11-C6	120.3 (2)	C47—C46—C42	120.5 (2)
C10-C11-H11	119.8	С47—С46—Н46	119.8
C6-C11-H11	119.8	C42—C46—H46	119.8
C17—C12—C13	119.4 (2)	C45—C47—C46	119.9 (2)
C17—C12—C5	120.8 (2)	С45—С47—Н47	120.0
C13—C12—C5	119.8 (2)	С46—С47—Н47	120.0
C14—C13—C12	119.6 (2)	C27—C28B—C29	124.0 (5)
C14—C13—H13	120.2	C27—C28B—H28B	118.0
C12—C13—H13	120.2	C29—C28B—H28B	118.0
C15—C14—C13	120.4 (3)	C29—C30B—C31B	115.3 (5)
C15—C14—H14	119.8	C29—C30B—H30B	122.4
C13—C14—H14	119.8	C31B—C30B—H30B	122.4
C16—C15—C14	120.1 (3)	C30B—C31B—C32B	120.8 (5)
C16—C15—H15	120.0	C30B—C31B—H31B	119.6
C14—C15—H15	120.0	C32B—C31B—H31B	119.6

C15—C16—C17	120.2 (3)	C31B—C32B—C27	117.9 (4)
C15—C16—H16	119.9	C31B—C32B—H32B	121.0
С17—С16—Н16	119.9	С27—С32В—Н32В	121.0
C16—C17—C12	120.2 (2)	Cl1S—C1S—Cl2S	111.4 (3)
С16—С17—Н17	119.9	Cl1S—C1S—H1S1	109.3
С12—С17—Н17	119.9	Cl2S—C1S—H1S1	109.3
C19—C18—N3	106.08 (19)	Cl1S—C1S—H1S2	109.3
C19—C18—C21	129.4 (2)	Cl2S—C1S—H1S2	109.3
N3—C18—C21	124.55 (19)	H1S1-C1S-H1S2	108.0
C18—C19—C20	106.8 (2)	C3S—C2S—H2S1	109.5
C18—C19—H19	126.6	C3S—C2S—H2S2	109.5
С20—С19—Н19	126.6	H2S1-C2S-H2S2	109.5
N4—C20—C19	110.5 (2)	C3S—C2S—H2S3	109.5
N4—C20—C27	121.6 (2)	H2S1—C2S—H2S3	109.5
C19—C20—C27	127.9 (2)	H2S2—C2S—H2S3	109.5
C22—C21—C26	119.4 (2)	O1S—C3S—C2S	107.161 (5)
C22—C21—C18	122.3 (2)	O1S—C3S—H3S1	110.3
C26—C21—C18	118.35 (19)	C2S—C3S—H3S1	110.3
C23—C22—C21	120.0 (2)	O1S—C3S—H3S2	110.3
C23—C22—H22	120.0	C2S—C3S—H3S2	110.3
C21—C22—H22	120.0	H3S1—C3S—H3S2	108.5
C24—C23—C22	120.3 (2)	O1S—C4S—C5S	101.746 (4)
С24—С23—Н23	119.9	O1S—C4S—H4S1	111.4
С22—С23—Н23	119.9	C5S—C4S—H4S1	111.4
C23—C24—C25	119.8 (2)	O1S—C4S—H4S2	111.4
C23—C24—H24	120.1	C5S—C4S—H4S2	111.4
C25—C24—H24	120.1	H4S1—C4S—H4S2	109.3
C26—C25—C24	120.2 (2)	C4S	109.5
C26—C25—H25	119.9	C4S—C5S—H5S2	109.5
C24—C25—H25	119.9	H5S1—C5S—H5S2	109.5
C25—C26—C21	120.3 (2)	C4S—C5S—H5S3	109.5
С25—С26—Н26	119.8	H5S1—C5S—H5S3	109.5
C21—C26—H26	119.8	H5S2—C5S—H5S3	109.5
C28B—C27—C20	129.2 (4)	C1—Cu1—N6	125.15 (9)
C28—C27—C20	122.7 (4)	C1—Cu1—N2	128.14 (10)
C28B—C27—C32	86.5 (4)	N6—Cu1—N2	90.59 (7)
C28—C27—C32	116.9 (4)	C1—Cu1—N4	125.44 (10)
C20—C27—C32	113.6 (3)	N6—Cu1—N4	88.73 (7)
C28B—C27—C32B	111.6 (4)	N2—Cu1—N4	86.38 (8)
C28—C27—C32B	92.0 (4)	C3—N1—N2	111.43 (17)
C20—C27—C32B	114.9 (3)	C3—N1—C2	129.23 (17)
C32—C27—C32B	88.4 (3)	N2—N1—C2	118.68 (17)
C27—C28—C29	114.5 (5)	C5—N2—N1	105.25 (17)
C27—C28—H28	122.8	C5—N2—Cu1	139.91 (15)
С29—С28—Н28	122.8	N1—N2—Cu1	114.84 (13)
C30—C29—C28B	109.2 (5)	N4—N3—C18	111.21 (17)
C30B—C29—C28B	124.4 (4)	N4—N3—C2	119.02 (17)
C30—C29—C28	128.1 (4)	C18—N3—C2	129.24 (18)
C30B—C29—C28	114.4 (4)	C20—N4—N3	105.48 (18)

С30—С29—Н29	116.0	C20—N4—Cu1	139.45 (16)
C30B—C29—H29	106.7	N3—N4—Cu1	114.89 (13)
C28B—C29—H29	126.7	N6—N5—C33	111.50 (17)
С28—С29—Н29	116.0	N6—N5—C2	120.16 (16)
С30—С29—Н29В	112.1	C33—N5—C2	128.28 (18)
C30B—C29—H29B	117.5	C35—N6—N5	105.31 (17)
C28B—C29—H29B	118.1	C35—N6—Cu1	140.06 (15)
С28—С29—Н29В	117.4	N5—N6—Cu1	114.31 (13)
C29—C30—C31	118.0 (5)	C3S—O1S—C4S	110.237 (4)
С29—С30—Н30	121.0	F2—P1—F6	90.13 (10)
С31—С30—Н30	121.0	F2—P1—F5	178.92 (12)
C30—C31—C32	119.1 (5)	F6—P1—F5	90.88 (11)
С30—С31—Н31	120.4	F2—P1—F1	90.30 (10)
С32—С31—Н31	120.4	F6—P1—F1	91.10 (11)
C31—C32—C27	117.0 (4)	F5—P1—F1	90.06 (11)
С31—С32—Н32	121.5	F2—P1—F3	90.71 (10)
С27—С32—Н32	121.5	F6—P1—F3	179.08 (11)
C34—C33—N5	106.05 (19)	F5—P1—F3	88.27 (11)
C34—C33—C36	130.39 (19)	F1—P1—F3	89.25 (9)
N5—C33—C36	123.44 (19)	F2—P1—F4	89.54 (12)
C33—C34—C35	106.79 (19)	F6—P1—F4	90.78 (11)
С33—С34—Н34	126.6	F5—P1—F4	90.07 (12)
С35—С34—Н34	126.6	F1—P1—F4	178.12 (11)
N6—C35—C34	110.35 (19)	F3—P1—F4	88.88 (10)
N6-C35-C42	122.68 (19)		

