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Abstract

High-altitude pulmonary edema occurs most frequently in non-acclimatized low landers on exposure to altitude �2500 m. High-

altitude pulmonary edema is a complex condition that involves perturbation of signaling pathways in vasoconstrictors, vasodilators,

anti-diuretics, and vascular growth factors. Genetic variations are instrumental in regulating these pathways and evidence is

accumulating for a role of epigenetic modification in hypoxic responses. This review focuses on the crosstalk between high-altitude

pulmonary edema-associated genetic variants and transcription factors, comparing high-altitude adapted and high-altitude pulmon-

ary edema-afflicted subjects. This approach might ultimately yield biomarker information both to understand and to design

therapies for high-altitude adaptation.
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Evolution and physiological adaptation have permitted sur-
vival at the highest topographically elevated regions of the
world.1–5 Reduced air pressure at high-altitude decreases the
partial pressure of inspired oxygen, affecting lungs, brain,
heart, and blood and can lead to a spectrum of high-altitude
disorders including high-altitude pulmonary edema
(HAPE), acute mountain sickness, and high-altitude cere-
bral edema.6,7 This review focuses on HAPE. HAPE is a
consequence of hypoxic pulmonary vasoconstriction leading
to increased pulmonary arterial pressure and capillary stress
failure.8–11 HAPE victims have lower arterial oxygen satur-
ation (SaO2) and higher heart rate, pulmonary vascular
resistance, and pulmonary vascular resistance index12,13

than do unaffected sojourners to altitude. Clinically,
HAPE is characterized by dyspnea, elevated body tempera-
ture, pink frothy sputum, tachypnea, tachycardia, persistent
cough, and cyanosis.14–17 Chest X-rays and CT scans show
increased lung vascular markings and patchy shadows.18,19

There have been great strides in understanding the clinical

and physiological mechanisms of HAPE that has led to the
discovery of successful treatments. Information on genetic
contributions to this disorder has also grown rapidly over
the last decade, partly to the development and implementa-
tion of newer genetic techniques.

Candidate gene approaches, advanced techniques
such as Next-Generation Sequencing and Genome-Wide
Association Studies have led to association of multiple gen-
etic variants with high-altitude adaptation or maladapta-
tion.20–26 The majority of these genes belong to multiple,
frequently related pathways. These include the renin–
angiotensin–aldosterone system, apelin signaling, nitric
oxide (NO) signaling, and hypoxia-induced signaling.
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These pathways regulate vasoactive molecules including
angiotensin II (ANG II), apelin, NO, aldosterone, and
beta-adrenergics.27–31 In addition to genetic variation, epi-
genetics plays prominent role in HAPE and other dis-
eases.32–35 DNA methylation, acetylation, histone
modifications/chromatin remodeling, and post translational
RNA regulations are increasingly being recognized as medi-
ators of crosstalk between genes and environment36,37

paving the way to epigenetic-based therapeutics.38,39

Interestingly, the Encyclopedia of DNA elements project
consortium has mapped active transcription sites with an
aim to identify the functional elements in the human
genome.40 Genetic variants that alter the binding site of
transcription factors (TFs) are increasingly being identified
and are associated with epigenetics.41,42 It is now known
that most of the genome is likely regulatory, and TFs play
a crucial role in its recognition and defining the function
that may again be in favor or against normal physiological
signaling.43 It is here that the relevance of TFs in diseases
becomes integral. In fact, last few years have seen increasing
efforts being put in to understanding the TF-mediated gene
regulatory mechanisms. These efforts also highlighted the
synchronization between the TFs and methylation; a syn-
chronization that works in tandem to regulate and define a
function.35,44 Altered TF binding results in differential gene
expression which brings out phenotypic differences in

associated diseases.35,45,46 This review will attempt to inte-
grate genetics, TFs, and the molecular regulation of vascular
homeostasis in HAPE. We first summarize the signaling
pathways, the associated genetic variants, and the signaling
molecules, followed by allele-specific transcriptional regula-
tion by TFs. The overall purpose is to highlight the cellular
crosstalk between HAPE-associated genetic variants and the
TFs. We expect this will ultimately lead to biomarker iden-
tification and to focus on development of improved
therapeutics.

Renin–angiotensin–aldosterone
system-mediated allele-specific TF
binding and salt sensitivity contribute
to vascular dysfunction

The renin–angiotensin–aldosterone system (RAAS) involves
renin-mediated conversion of angiotensinogen (AGT) to a
decapeptide, angiotensin I (Fig. 1). The latter is converted
into the vasoconstrictive, octapeptide ANG II by angioten-
sin-1 converting enzyme (ACE). In addition to vasoconstric-
tion, ANG II, through the ANG II receptor (AGTR1),
stimulates the adrenal cortex to secrete aldosterone, a
major minerlocorticoid hormone, under the regulation of
aldosterone synthase enzyme. Aldosterone acts on the

Fig. 1. The renin–angiotensin–aldosterone pathway regulates blood pressure and electrolyte balance in the body.

ACE: angiotensin-1 converting enzyme; AGTR1: angiotensin II receptor; SF1: steroidogenic transcription factor.

Note: Hash (#) represents HAPE-associated genetic variants.
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mineralocorticoid receptors on the renal duct cells to
increase the extracellular fluid retention via sodium chloride
reabsorption and acts as an anti-diuretic, thereby regulating
blood pressure and blood volume.47,48

Disturbance of the RAAS is attributed, in part, to genetic
variants in at least five critical genes namely REN, AGT,
ACE, AGTR1, and CYP11B2.20,49–53 Of these, the major
genetic variants that have been associated with HAPE are
rs4762 (Thr207Met) and rs699 (Met268Thr) of AGT,53,54

the insertion/deletion (indel) alleles (I/D, 287bp alu repeat
sequence), rs8066114 and rs4461142 of ACE,20,50,51,53,55

rs275651 and rs275652 of AGTR1,56 and –344T/C and
intron 2 conversion of CYP11B2 (Fig. 1 and Table 1).48,57

Whereas in case of the healthy native population, the homo-
zygotes of major alleles of these genes such as the homozy-
gotes rs4762CC of AGT, I/I of ACE1,20,58 and –344TT of
CYP11B248 were associated with HA adaptation, but
not without conflicts especially on ACE1 I/D

Table 1. Distribution of few significant SNPs in healthy controls and patients of HAPE.

S no. Gene rs ID Allele

P-Value

Significant genetic models

HAPE-p

vs HAPE-f

HAPE-p

vs HL

HL vs

HAPE-f

1 AGT rs69955 A/G 0.05 – – Co-dominant and additive model

rs476256 G/A – 0.024 0.03 Co-dominant and additive model

2 ACE I/D20,50,53 I/D �0.05 – – Co-dominant and additive model

rs806611457 C/G 0.04;

0.03

– – Additive model;

Dominant model

rs446114257 T/C 0.03 – – Dominant model

3 AGTR1 rs27565156 T/A 0.017 – – Additive model

rs27565256 T/G 0.016 – – Additive model

4. CYP11B2 –344T/C48 T/C – – <0.0001 Additive model

intron 2

conversion57
intron 2

conversion

– 0.03 – Co-dominant model

5 APLN rs376158125 T/G 0.0027 3.9E-05 – Co-dominant and additive model

rs223531225 C/T 1.0E-06 1.2E-06 – Co-dominant and additive model

rs311575725 C/G 0.0032 0.04 – Co-dominant and additive model

6 APLNR rs1154437425 G/A 0.004 – – Co-dominant and additive model

rs228262325 A/G 0.013 1.0E-07 4.5E-05 Co-dominant and additive model

7 NOS3 rs179998321,25,80 G/T 0.03 1.2E-05 – Co-dominant and additive model

rs783025 A/C 1.6E-05 3.0E-06 – Co-dominant and additive model

4b/4a21,25,80 b/a 0.0003 9.0E-07 – Co-dominant and additive model

Gene rs ID Allele Minor allele predominance

8 EPAS1 rs56721780104 G/C Absence of minor allele C in other world population except Tibetans

rs13419896105 G/A Predominance of A allele in Tibetans and Sherpas

rs149594770106 T/A Absence of minor allele A in other world population except Tibetans

9 EGLN1 rs186996510107 G/C Absence of minor allele C in other world population except Tibetans

rs12097901107 C/G Absence of minor allele G in other world population except Tibetans

P-Value

HAPE-p vs HAPE-f Significant genetic models

rs153866445 T/C P< 0.008 Co-dominant and additive model

rs47920045 G/A/C

rs248672945 C/G/T

rs279087945 A/C

rs48090245 T/C

rs248673645 C/T

rs97325245 A/G

HAPE-p: HAPE-patients; HAPE-f: HAPE-free controls; HL: high-landers.
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polymorphism.13,59 These allelic variations in health and
disease are also substantiated with varied circulating levels
of the respective protein or enzyme levels. For example, the
variants associated with increased circulating levels; where
ACE, aldosterone, and sodium levels were increased in
HAPE patients.20,50,60 Here, the D allele was associated
with elevated activity of ACE; likewise, –344C allele of
CYP11B2 was associated with elevated levels of aldosterone.
Interestingly, however, ethnicity-based differences were also
observed for few of the genes but in sealand population,
such as the CYP11B2 –344T/C polymorphism associated
with increased salt sensitivity in the Japanese,61 as the sub-
jects with TT genotype displayed inappropriately higher
aldosterone levels and systolic blood pressure in response
to high salt intake. In addition to high-altitude adaptation
and maladaptation, RAAS genetic variants have been exten-
sively investigated in hypertension and cardiovascular
diseases.52,62,63

Variants of RAAS pathway are predicted to change the
respective protein’s physicochemical properties, secondary
structure, and solvent accessibility, which in turn may
affect the binding of a molecule with its target.64 Under
the given conditions, allele-specific binding of TFs may
amend gene expression, leading to phenotypic differences
in several diseases.42,46 Of the several genetic variants of
RAAS, the CYP11B2 variant –344T/C appears significant
because of its interaction with a TF, namely steroidogenic
TF (SF1).65 Stronger binding of SF1 to variant –344C, as
confirmed by electrophoretic mobility shift assay (EMSA),65

was associated with elevated aldosterone levels in HAPE
and hypertension.59,66 However, as conveyed already else-
where above, this gene represents variations from popula-
tion to populations, such as the T allele was also associated
with SF1 factor and with high aldosterone levels and blood
pressure.67,68 Such conflicts were attributed to sampling and
genetic differences between the populations.68 Under such
circumstances, it is possible that a TF may strongly bind to
one allele at a given locus but may also bind indirectly and
weakly to other allele. Furthermore, at any given time more
than one, TFs are attracted to a particular allelic
locus,35,69,70 though due to specificity, only one TF will
bind to the allelic locus and other TFs will hang along the
first TF.45 Likewise, altered binding of p300, a histone acetyl
transferase and HDACs, a histone deacetylase at ACE I/D
polymorphism may control ACE levels by differentially reg-
ulating histone acetylation and deacetylation.71 It is vital to
note that most TFs do not work alone, instead these form
homotypic and heterotypic interactions. Such interactions,
which are abundant in the system, comprise of TF–TF, TF–
nucleosome, and such other combinations. Thus, there are
ways to interact and collaborate, such as the cooperative
binding and the synergistic regulation. Now, these combin-
ations/attractions could be dimeric, trimeric, and higher-
order.72 It also defines the various types or classes of TFs
and thereby the mechanisms that have been so very well
elucidated in recent times. However, it is not the intention

of this review to interpret these interactions. It is pretty
obvious from these findings that physiological traits are vul-
nerable to the complex human system.

Allele-dependent control of apelin and
NO signaling

G-protein-coupled apelin receptors (APJ) and NO signaling
play crucial role in maintaining pulmonary vascular homeo-
stasis.25,73 Its malfunction is associated with several diseases
including HAPE, pulmonary arterial hypertension, and car-
diovascular diseases.25,74 X-linked apelin (APLN) gene
encodes different variants of apelin peptide, differing in
number of amino acid residues (apelin-36, -31, -28, -13),
which upon binding to the vascular endothelial APJ pos-
sesses hypotensive as well as angiogenic activity (Fig. 2).
Apelin phosphorylates serine/threonine-specific protein
kinase B (Akt), raises intracellular calcium levels, and facili-
tates the production of NO, a potent vasodilator, generated
by the endothelial NO synthase (NOS3) protein.57

Apelin-mediated angiogenesis is a consequence of its phos-
phorylation (ERKs and Akt), leading to the proliferation of
endothelial cells and the formation of new blood vessels.75

Apelin also mediates vasoconstriction by stimulating
myosin light chain phosphorylation in vascular smooth
muscle cells.76

Interestingly, the expression ofApelin andNOS3 as well as
circulating levels of apelin 13 and NO when downregulated
contribute to impaired vasodilation in HAPE patients.25 This
decrease in the levels of vasodilators was associated with
several genetic variants such as Apelin rs3761581,
rs2235312, and rs3115757; apelin receptor (APLNR)
rs11544374 and rs2282623; and NOS3 rs1799983, 4b/4a,
and rs7830 (Fig. 2 and Table 1). The apelin–APJ polymorph-
isms also were reported with low apelin 13 levels and the risk
of hypertension.77 The risk alleles includeApelin rs3115757C,
rs56204867C, and rs3761581A.78 Beside polymorphisms, in
vitro functional assays viz luciferase assay and real-time
PCR, revealed allele-specific transcriptional regulation of
apelin/APJ pathway by TFs such as TF specificity protein 1
(SP1).79 Likewise, electrophoretic mobility shift assay and
chromatin immunoprecipitation confirmed SP1 binding to
the APLNR polymorphism rs9943582 (–154G/A), specific-
ally to G allele and thereby upregulating its expression. In
addition to APLNR, apelin is also a direct transcriptional
target of SP1 (Fig. 2). Thus, transcriptional upregulation of
both, Apelin and APLNR, in response to SP1 enhances
apelin–APJ signaling. This relates to blood pressure disorder,
progression of atherosclerosis, and increased susceptibility to
brain infarction.79 Interestingly, of the several TFs, SP1,
signal transducer and activator of transcription 3 (STAT3),
and Activating transcription factor 4 (ATF4) are known to
control transcriptional regulation of apelin and APLNR.80,81

NOS has three isoforms, two constitutive, i.e. neuronal
(NOS1) and endothelial (NOS3), and one inducible (NOS2),
and all isoforms produce NO, which promotes cyclic
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guanosine monophosphate-mediated vascular smooth
muscle relaxation by activating guanylate cyclase.21,27

Differential NO levels were associated with NOS3 poly-
morphism at high-altitude.21,82,83 Low NO levels were asso-
ciated with haplotype of NOS3 bearing heterozygotes, i.e.
GTbaAGTC of the polymorphisms 894G/T, 4b/4a (27bp
repeat), –922A/G and –786T/C in HAPE patients, while
the homozygous haplotype GG/bb of G894T and 4b/4a
polymorphisms was associated with elevated NO levels in
HA natives.21,25,61,81,83 Three NOS3 polymorphisms namely
894G/T, 4b/4a, and –786T/C are the most studied and vali-
dated (Fig. 2). Beginning with rs1799983 (894G/T), it
encodes protease-sensitive NOS3 Glu298Asp variant
(894T) that associates with decreased NO levels in HAPE
patients.25,82,84,85 The reduced levels of NO in turn cause
hypoxia-mediated pulmonary vasoconstriction72,86 and are
inversely related to increased levels of an endogenous NOS
inhibitor, asymmetric dimethylarginine.87 On the contrary,
the 894G allele associates with increased NO levels and
adaptation and acclimatization in several different high-alti-
tude populations like the Ladhakis, the Chinese from
Qinghai-China, the Han recruits traveling to the Lhasa

plateau, and the Quechua of the Andean population.25,82,83

Likewise, the NOS3 4b/4a intron 4 variant that expresses
five or four copies of the 27bp variable number tandem
repeat is pertinent. The 4b allele associates with elevated
NO levels and NOS3 expression in high-altitude adapta-
tion,82 while the 4a allele associates with low NO and
NOS3 expression in HAPE and hypertension.21,88 Of the
several nuclear TFs bound to 27bp repeats as revealed
through biotin–streptavidin pull down assay, mass spec-
trometry, and luciferase reporter assay,89 b-actin (Fig. 2)
upregulated NOS3 expression in the presence of 4b
allele.90 With b-actin’s specificity for 27bp repeats and its
role in the associated NOS3 transcriptional regulation,
perhaps b-actin works here like a TF.

On the contrary, in vitro studies such as northern blot
showed endothelial cells with 4b allele displayed higher
levels of a 27bp small interference RNA, leading to
decreased NOS3 expression compared to the 4a allele.91 In
case of the NOS3 –786T/C promoter polymorphism, the
protective –786T allele enhances NOS3 transcription effi-
ciency as compared to its risk –786C allele;89 whereas, spe-
cific binding of replication protein A1 to its risk –786C allele

Fig. 2. The apelin and nitric oxide signaling system. Apelin mediates nitric oxide-mediated smooth muscle relaxation via Akt and calcium signaling

(Solid lines). Apelin mediates vascular smooth muscle cells contraction via myosin light chain (MLC) phosphorylations (dashed lines).

Ap: Apelin; APLNR: Apelin receptor; Ca: calcium; NOS3: nitric oxide synthase; NO: nitric oxide; sGC: soluble guanylate cyclase; GTP: guanosine

triphosphate; cGMP: cyclic guanosine monophosphate; SP1: specificity protein 1; RPA1: replication protein 1; VNTR: variable number tandem

repeat; MLC: myosin light chain; HAPE: high-altitude pulmonary edema; TF: transcription factor.

Note: Hash (#) represents HAPE-associated genetic variants.
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decreased NOS3 transcription.92 This could be related to
risk –786C allele-dependent decreased NO levels in HA
adaptation. Surprisingly, in relation to –786T/C polymorph-
ism, 4b/4a plays a contrasting cis-acting role in NOS3 regu-
lation. Here, both the protective 4b and risk 4a alleles
decreased the NOS3 transcription efficiency in the presence
of the protective –786T allele.89 On the other hand, both the
4b and 4a alleles increased the NOS3 transcription efficiency
in the presence of the risk C allele of NOS3 –786T/C
promoter polymorphism. This could be attributed to the
various TFs that are attracted to these allele-specific sites
(Fig. 2).

Differential expression of the
hypoxia-inducible factor-signaling
in the presence of TFs

Expression and activity of hypoxia-inducible factor (HIF)-1,
a key oxygen-sensitive TF, increases exponentially with
decrease in cellular oxygen.93,94 The HIF signaling is
depicted in Fig. 3. HIF-1 consists of an oxygen-sensitive
HIF-1a subunit and a constitutively expressed HIF-1b sub-
unit. HIF-1 drives transcriptional activation of numerous

genes involved in vascular homeostasis, erythropoiesis,
angiogenesis, and glycolysis.95,96 Although HIF-1a subunit
shares 48% sequence homology with HIF-2a subunit
(encoded by the endothelial Per/ARNT/Sim domain pro-
tein-1 (EPAS-1)) and both bind to the same consensus
sequence, hypoxia response element, however, HIF1 and
HIF2 mediate different responses to hypoxia.97,98 Another
molecule in this system, EGLN1, encoding prolyl hydroxy-
lase 2 (PHD2), negatively regulates the activity of HIF-1a
by hydroxylation of its two prolines.97 Additionally, PHD2/
HIF-2a axis regulates pulmonary arterial pressure in vivo by
antagonistically regulating vasoconstrictor, Endothelin 1,
and the vasodilator, apelin-mediated signaling.99 However,
which of the two molecules is activated more at any given
time will depend on the overall pathways influenced. The
expression of PHD2 is regulated under hypobaric environ-
ment.45 Over the years, the polymorphisms in these genes
have found relevance (Fig. 3 and Table 1).

Several independent groups have shown association of
the polymorphisms in EPAS1/HIF2a and EGLN1 with
high-altitude adaptation in Tibetans.100–103 Interestingly,
two EPAS1 promoter polymorphisms, rs56721780 and an
indel positioned at –886 and –742 upstream of its TSS,

Fig. 3. The hypoxia signaling pathway involves EGLN1-mediated hydroxylation and VHL-dependent ubiquitination of HIF-1a/2a subunits leading

to its proteosomal degrardation under normoxic conditions. However, under hypobaric hypoxic conditions, HIF-1a/2a subunits are stabilized,

which complexes with HIF-b subunit and drives transcriptional regulation of numerous genes involved in vascular homeostasis.

HIF: hypoxia-inducible factor; HRE: hypoxia response element; VHL: Von Hippel-Lindau; Ub: ubiquitin; indel: insertion–deletion; 3.4kb TED:

Tibetan-enriched 3.4kb deletion; D4E: aspartate4glutamate; C127S: cysteine127serine; IKZF1: IKAROS family zinc finger 1; SP1: specificity protein

1; AP1: activator protein 1; EGLN1: Egl nine homolog 1; HAPE: high-altitude pulmonary edema; TF: transcription factor.

Note: Hash (#) represents high-altitude adaptation/maladaptation associated genetic variants.
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regulate EPAS1 by allele-specific TF binding (Fig. 3). Here,
the rs56721780C allele decreased the binding of EPAS1
transcriptional repressor, IKAROS family zinc finger 1 as
confirmed by EMSA. While the 40bp insertion at –742 indel
increased the binding of its transcriptional activator SP1.
Thus, both the rs56721780C allele and the –742 insertion
increased EPAS1 levels as revealed by luciferase reporter
assays. This modification has been associated with higher
birth weight and embryonic development in Tibetan new-
borns.104 Similarly, another EPAS1 polymorphism in intron
1, namely rs13419896, regulates EPAS1 transcription.105

The rs13419896A allele that was associated with high-alti-
tude adaptation in Tibetans and Sherpas, has also been
reported to bind to the TF Activator protein-1 (AP1) that
upregulated the EPAS1 levels. Contrary to this, evidence of
diminished EPAS1 activity at high-altitude has also been
reported.106 For example, another Tibetan-enriched
EPAS1 rs149594770A allele weakens its TF-binding cap-
acity as well as its promoter activity as seen by EMSA
and luciferase reporter assay.106 This weakened EPAS1
activity was attributed to the relatively low hemoglobin
level in Tibetans.100,106

Among the other members of HIF signaling, EGLN1
polymorphisms have been investigated (Fig. 3 and Table 1).
Several EGLN1 variants and its haplotypes are reported to
associate with decreased SaO2 levels, increased pulmonary

arterial systolic pressure (PASP), and circulating EGLN1
levels in HAPE.45 Specifically, two key exonic polymorph-
isms, rs186996510 (Asp4Glu) and rs12097901 (Cys127Ser),
contribute to high-altitude adaptation in Tibetans,107 albeit
at a lower frequency in highland Andeans.108 Interestingly,
these two missense variants exhibit low Km for oxygen and
promote increased HIF-1a degradation under hypoxic con-
ditions.107 Abrogation of HIF-mediated responses like
erythropoiesis prevents polycythemia in Tibetans. In fact,
EGLN1 gain-of-function mutants in combination with
EPAS1 polymorphisms also associated with decreased hemo-
globin concentration in Tibetan highlanders.109 Surprisingly,
another study reported the EGLN1 Tibetan haplotype, D4E/
C127S, as loss-of-function mutant, which increases HIF-1a-
mediated respiration andNO levels.110 Although TFs have so
far not been reported in regard to EGLN1 variants, however,
we have found few important TFs associating with EGLN1
variants (unpublished). Therefore, altered binding of TFs to
EGLN1 variants (Fig. 3) may regulate HIF-signaling under
the hypobaric hypoxic environment at high-altitude.

Gene to drug interactions in HAPE

Drug responses increasingly are being seen to be influenced
by genetic polymorphisms. Nifedipine pharmacokinetics are
influenced by genetic polymorphisms in cytochrome P450

Fig. 4. Genetic variants and associated TFs in pathways of interest control vascular homeostasis by regulating the levels of vasodilators and

vasoconstrictors.

Ren: renin; AGT: angiotensinogen; ACE: angiotensin converting enzyme; AGTR1: angiotensin receptor; CYP11B2: aldosterone synthase;

SF1: steroidogenic transcription factor; APLN: apelin; APLNR: apelin receptor; NOS3: endothelial nitric oxide synthase; RPA1: replication

protein A1; SP1: specificity protein 1; AP1: activator protein 1; ADMA: asymmetric dimethylarginine; EGLN1: Egl nine homolog 1;

EPAS1: endothelial Per/ARNT/Sim domain protein-1; IKZF1: IKAROS family zinc finger 1; RAAS: Renin–angiotensin–aldosterone system.
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(CYP) 3A5.111 Sildenafil protects against the development
of altitude-induced hypoxemia, pulmonary hypertension,
and improves gas exchange.112 Sildenafil response is influ-
enced by NOS3 genetic polymorphisms in several diseases
including pulmonary hypertension.113 The polymorphism in
the b-adrenergic receptor 2 (ADRB2) gene affects thera-
peutic responses to beta agonists. The ADRB2 Arg16Gly
loss-of-function polymorphism in particular dictates
responses in heart patients.114 Renin polymorphisms predict
the effects of thiazide diuretics, genetic variants in patients
with decompensated heart influenced furosemide drug
response.115 While mineralocorticoid receptor gene vari-
ation influences dexamethasone-induced stress response.116

Such insights from pharmacogenomics research will help to
characterize genetic determinants effecting drug response to
HAPE; paving way to personalized medicines. Of conse-
quence, research on the role of TFs in influencing drug
response is increasing.117,118 For instance, one mechanism
of action of aminophylline involves recruitment and activa-
tion of HDACs,119 allele-specific HDACs binding to genetic
variants may alter drug response in HAPE. Likewise, acet-
azolamide controls transcriptional activation of several TFs
namely, AP-1, HIF, Heat shock factor (HSF), Nuclear
factor-kappa B (NF-jB), Nuclear factor erythroid 2-related
factor 2 (NRF2), Tumor suppresor p53 (p53), and
STAT3.120 Also, the corticosteroid action involves binding
to several TFs including AP-1 or NF-jB as well recruitment
of HDACs.121 Thus, recent advances surely encourage to
envisage equally greater role for the various TFs in conjunc-
tion with the genetic variants in shaping a physiological
path.

Conclusion

We conclude that genetic variants and TFs play a pivotal
role in the regulation of HAPE. Allele-specific binding of
TFs seems to play a critical role in determining the causal
role and may be contributed by select loci. This observation
is an outcome of understanding of several of the pertinent
physiological pathways. Evidences of cellular role of allele-
specific TF binding in regulating these effects are wanting.
As of now, none of the genetic marker has diagnostic poten-
tial, unless tested in a larger sample size. Investigations on
association of genetic polymorphisms with predicted TFs
under hypobaric hypoxic conditions would shed light on
the physiological processes thereby advancing the develop-
ment of diagnostics and therapeutics.

Future perspectives

In addition to genetics, epigenetic influences play a signifi-
cant role in the regulation of physiological functions and
human health. With newer information on disease-asso-
ciated genetic variants, more extensive studies on poly-
morphisms-mediated changes in putative TF-binding
motifs, chromatin structure, chromatin states, methylation,

and gene expression will further elucidate the mechanisms
underlying the disease. Additionally, pharmacogenomics
research in turn will greatly enhance the life-expectancy or
survival of the fittest under the given extreme environment.
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