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Purpose: Quantum dots (QDs) are used as fluorescent probes due to their high fluorescence

intensity, longevity of fluorescence, strong light-resistant bleaching ability and high light

stability. Therefore, we explore a more precise probe that can target an organelle.

Methods: In the current study, a new class of fluorescence probes were developed using

QDs capped with 4 different L-cysteine-polyamine-morpholine linked by mercapto groups.

Ligands were characterised by Electrospray ionization mass spectrometry (ESI-MS),

H-Nuclear Magnetic Resonance (1H NMR) spectroscopy, and 13C NMR spectroscopy.

Modified QDs were characterized by Transmission Electron Microscope (TEM),

Ultraviolet and visible spectrophotometry (UV–Vis), and fluorescence microscopy. And the

biological activity of modified QDs was explored by using MTT assay with HeLa, SMMC-

7721 and HepG2 cells. The fluorescence imaging of modified QDs was obtained by confocal

laser scanning fluorescence microscopy (CLSM).

Results: Synthesized QDs ranged between 4 to 5 nm and had strong optical emission

properties. UV–Vis and fluorescence spectra demonstrated that the cysteine-polyamine-

morpholine were successfully incorporated into QD nanoparticles. The MTT results demon-

strated that modified QDs had lesser cytotoxicity when compared to unmodified QDs. In

addition, modified QDs had strong fluorescence intensity in HeLa cells and targeted lyso-

somes of HeLa cells.

Conclusion: This study demonstrates the modified QDs efficiently entered cells and could

be used as a potential lysosome-targeting fluorescent probe.
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Introduction
Quantum dots (QDs) have range of applications as nano-fluorescent probes and

antitumor drug carriers, due to their unique optical properties and electronic

structure.1–6 Although QDs have strong fluorescence intensity, long fluorescence

lifetime and high light stability, QDs generally have poor water solubility, high

toxicity and poor cell targeting ability.7–13 It is well known that hydrophobic QDs

can be engineered to have great water solubility through surface-exchange of hydro-

phobic surfactant molecules for hydrophilic ligands.14–18 In addition, the cytotoxicity

of QDs can be reduced and targeting of tumor cells can be enhanced through

modification of QD surfaces using biomolecules.19–23 Therefore, when interfaced

with biological molecules including proteins, peptides, carbohydrates or DNA, the

resulting QD-biocomposites have widespread applicability in areas ranging from
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cellular fluorescence imaging to in vivo fluorescence

imaging.24–30 However, following surface modification of

QDs, it is important to retain its fundamental properties,

such as uniform dispersion and to ensure that functional

groups remain available for biological applications.31–35 As

a result, development of targetable fluorescent probe QDs

with fundamental properties of bio-molecules.

Polyamines are widely distributed in the body, and are

associated with cell proliferation and differentiation

process.36–40 In recent years, polyamine derivatives have

attracted increasing attention due to their ability to enhance

the selectivity and bioactivity of compounds.41–46 Protein

primary structure consists of amino acids linked by peptide

bonds. Because amino acids are generally water-soluble and

inexpensive, they have been used as capping agents for

QDs.47–51 Amino acid contain an amino and carboxyl

group, therefore they can be directly linked to the surface

of QDs and other drugs with the antitumor activity or

targetable groups.52–57

In this paper, we synthesized a new class of modified QDs

with small size, good water solubility, disperse uniformly and

strong optical emission properties. In such models, four types

of amino acid-polyamine-morpholine derivatives were used

and the bio-activities of modified QDs were greatly

improved. Since the polyamine or its derivatives are able to

mimic the environment of the second coordination sphere in

the active site of the corresponding enzyme. The modified

QDs were characterized by transmission electron micro-

graphs (TEM), UV–Visible Spectrophotometer (UV–Vis),

and fluorescence spectrophotometer. Biological activity of

modified QDs was explored using the MTT assay with

HeLa, SMMC-7721 and HepG2 cells. Results demonstrated

that modified QDs were less toxic to these cells. Fluorescence

imaging of modified QDs with confocal laser scanning fluor-

escence microscopy (CLSM) demonstrated strong fluores-

cence intensity in targeted lysosomes of HeLa cells.

Materials and Methods
Materials
All reagents were purchased from commercial suppliers

and used without further purification. Solvents were pur-

ified by standard methods prior to use. Cervical cancer

cells (HeLa), human hepatoma cells (SMMC-7721) and

human hepatoma cells (HepG2) were obtained from the

Shanghai Cell Bank of the Chinese Academy of Sciences.
1H NMR spectra were recorded on a Bruker AV-400

spectrometers. ESI-MS spectra were performed on

a Thermo LCQ-DECA-XP spectrometer. UV–Vis spectra

were monitored using a Varian Cary 300 UV–Vis spectro-

photometer. Fluorescence spectra were measured using

a Varian Cary Eclipse fluorescence spectrophotometer

(American, Agilent, Co.). Confocal microscopy images

were obtained using a confocal laser scanning fluorescence

microscope (Leica SP8, Germany). The cell fluorescence

intensity was measured using a FACSCalibur flow cyt-

ometer (Becton Dickinson & Co., Franklin Lakes, NJ).

Synthesis of L-Cysteine-2-Amino-

3-Mercapto-N-(3- Morpholinopropyl)

propanamide (L-Cys-MPA) (Scheme 1)
A 250 mL round bottomed flask equipped with a magnetic

stirring bar was charged with Boc-Cys(trt)-OH (2.0 g, 3.5

mmol) (1) dissolved in 100 mL acetonitrile and 0.59 g (3.5
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Scheme 1 Schematic illustration of the formation of the L-Cys-MPA.
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mmol) NHS. Next, EDC (0.89 g, 3.5 mmol) was added

dropwise and stirred at 0°C for 2 hrs. Then the reaction

mixture was stirred at room temperature overnight. After

completion, the precipitate was filtered, extracted with

chloroform and vacuum dried to produce a slightly yellow

solid.

N-aminopropylmorpholine (0.5 g, 3.5 mmol), com-

pound 2, and NaHCO3 (0.35 g, 4.2 mmol) were placed

in a 100 mL round-bottomed flask with a magnetic stirrer,

and stirred at 60°C for 12 hrs. Next, the reaction mixture

was evaporated to dryness under reduced pressure and

extracted with chloroform. After vacuum drying, the

solid was purified by silica gel column chromatography

using a CH2Cl2-CH3OH (v:v = 20:1) mixture as the eluent

to obtain the yellow grease compound 3.

Compound 3 was dissolved in 10 mL CH2Cl2 in a 50 mL

three-necked flask, and then trifluoroacetic acid (TFA)

(9.5 mL) and triethyl silicane 0.5 mL were injected sequen-

tially under nitrogen protection. The resulting solution was

stirred at 25°C for 6 hrs. After completion, the reaction

mixture was evaporated to dryness under reduced pressure,

and the residues were extracted with dichloromethane and

distilled water. Removal of the solvent from the aqueous

phase resulted in a solid compound 2-amino-3-mercapto-

N-(3-morpholinopropyl) propanamide (L-Cys-MPA).

L-Cys-MPA, yield: 75%; 1H NMR (300 MHz, D2O) δ
3.98 (dd, J=7.4, 4.5 Hz, 2H), 3.92 (d, J=1.5 Hz, 1H),

3.71–3.55 (m, 2H), 3.41–3.30 (m, 2H), 3.20 (q, J=7.2

Hz, 2H), 3.04 (dt, J=12.3, 4.5 Hz, 4H), 2.88 (dd, J=5.9,

2.1 Hz, 2H), 1.90–1.76 (m, 2H); 13C NMR (75 MHz, D2O)

δ 168.03, 163.35, 162.87, 162.40, 161.93, 121.97, 118.11,

114.25, 110.39, 63.66, 54.67, 54.42, 51.67, 51.65, 36.38,

24.62, 22.98; ESI-MS, m/z: 248.09 [M+H]+.

Synthesis of L-Cysteine-N1-

(3-Morpholinopropyl) Propane-1,3-Diamine

(L-Cys-MPPDA), L-Cysteine-N1-

(4-Morpholinobutyl) Butane-1,4-Diamine

(L-Cys-MBBDA) (Scheme 2)
A 100 mL round-bottom flask equipped with a magnetic

stirring bar was charged with N-aminopropylmorpholine

(1.4 g, 10 mmol) dissolved in 50 mL acetonitrile and K2

CO3 (2.1 g, 15 mmol). Then N-(3-Bromopropyl) phthali-

mide (2.7 g, 10 mmol) or N-(4-Bromobutyl) phthalimide

(2.8 g, 10 mmol) was added and stirred at 25°C for 12 hrs.

After completion, the reaction mixture was evaporated to

dryness under reduced pressure, and the residues were

extracted with dichloromethane and 10% Na2CO3.

Removal of the solvent in the organic phase resulted in
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Scheme 2 Schematic illustration of the formation of the L-Cys-MPPDA and L-Cys-MBBDA.
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a yellow compound 4a or 4b. Then compound 4a or 4b was

dissolved in 50 mL methyl alcohol and (Boc)2O (3.3 g,

15 mmol) was added and the solution was stirred at 25°C

for 12 hrs. After completion, the reaction mixture was

evaporated to dryness under reduced pressure. After

vacuum drying, the resulting solid was purified on a silica

gel column using a CH2Cl2-CH3OH (v:v = 20:1) mixture as

the eluent to obtain the grease compound 5a or 5b.

Compound 5a or 5b was then dissolved in 50 mL absolute

ethyl alcohol, and hydrazine hydrate (NH2NH2) (5 mL) was

added and stirred for at 25°C for 12 hrs. The resulting

mixture was evaporated to dryness under reduced pressure,

and the residues extracted with CH2Cl2 and 10% Na2CO3.

Following removal of the solvent, the solid compound 6a or

6b was produced. Synthesis of 7a or 7b, L-Cys-MPPDA

and L-Cys-MBBDAwas completed using a similar method

but with compound 3 and L-Cys-MPA.

L-Cys-MPPDA, yield: 76%; 1H NMR (300 MHz, D2

O) δ 4.10 (d, J=3.0 Hz, 2H), 4.05 (d, J=3.0 Hz, 1H), 3.78

(t, J=13.5Hz, 2H), 3.50 (d, J=12.0 Hz, 2H), 3.32 (dd,

J=12.1, 5.2 Hz, 1H), 3.27–3.18 (m, 3H), 3.18–3.00 (m,

6H), 2.20–2.05 (m, 2H), 1.89 (p, J=7.0 Hz, 2H). 13C NMR

(75 MHz, D2O) δ 168.12, 63.64, 54.41, 53.60, 51.73,

45.31, 44.26, 36.41, 25.33, 24.64, 20.32. ESI-MS, m/z:

305.20 [M+H]+.

L-Cys-MBBDA, yield: 79%; 1H NMR (300 MHz, D2

O) δ 4.08 (d, J=6.0 Hz, 2H), 4.04 (t, J=4.5 Hz, 1H), 3.74 (t,

J=12 Hz, 2H), 3.45 (d, J=6.0Hz, 2H), 3.33–3.09 (m, 4H),

3.09–2.94 (m, 6H), 1.83–1.47 (m, 8H). 13C NMR (75

MHz, D2O) δ 167.73, 163.49, 163.02, 162.55, 162.08,

122.07, 118.21, 114.35, 110.49, 63.70, 56.22, 54.48,

51.61, 47.09, 46.61, 38.84, 25.37, 24.76, 22.97, 22.59,

20.32. ESI-MS, m/z: 333.29 [M+H]+.

Synthesis of L-Cysteine-N1-

(3-Aminopropyl)-N3-(3- Morpholinopropyl)

propane-1,3-Diamine (L-Cys-AMPDA)

(Scheme 3)
A 100 mL round-bottomed flask equipped with a magnetic

stirring bar was charged with 6a (3.0 g, 10 mmol) dissolved

in 50 mL acetonitrile solution and K2CO3 (2.1 g, 15 mmol).

Then, N-(3-Bromopropyl) phthalimide (2.7 g, 10 mmol) was

added and stirred at 25°C for 12 hrs. After completion, the

reaction mixture was evaporated to dryness under reduced

pressure, and the residues extracted with CH2Cl2 and 10%

Na2CO3. Removal of the solvent in the organic phase

resulted in a yellow greasy compound, termed compound

8. Then the compound 8 was dissolved in 50 mL methyl

alcohol solution. (Boc)2O (3.3 g, 15 mmol) was added and

the mixture was stirred at 25°C for 12 hrs. The resulting

reaction mixture was concentrated under vacuum and further

purified by silica gel column chromatography to obtain

a greasy compound, termed compound 9. Next, the com-

pound 9 was dissolved in 50 mL ethyl alcohol and the

hydrazine hydrate (NH2NH2) (5 mL) was added. The solu-

tion stirred at 25°C for 12 hrs. After completion, the reaction

mixture was evaporated to dryness under reduced pressure,

and the residues were extracted with CH2Cl2 and 10% Na2
CO3. The organic phases were then dried with Na2SO4

under vacuum to yield compound 10. Synthesis of com-

pound 11 and L-Cys-AMPDA can refer to the synthetic

method of compound 3 and L-Cys-MPA.

L-Cys-AMPDA, yield: 70%; 1H NMR (300 MHz,

Deuterium Oxide) δ 4.18 (d, J=6.0 Hz, 2H), 4.12 (s, 1H),

3.83 (t, J=12.0 Hz, 2H), 3.56 (d, J=12.0 Hz, 2H), 3.45–

3.22 (m, 6H), 3.22–3.04 (m, 10H), 2.25–2.04 (m, 4H),

1.96 (q, J=7.3 Hz, 2H). 13C NMR (75 MHz, D2O) δ
163.10, 162.63, 118.18, 114.32, 63.68, 54.45, 53.60,

51.77, 45.32, 44.57, 44.39, 36.46, 29.74, 25.36, 24.67,

22.60, 20.32. ESI-MS, m/z: 364.32 [M+H]+.

Synthesis of Water-Soluble Amino

Acid-Polyamine-Morpholine-Modified

QDs
QDs (1 mL) (CdSe or CdSe/ZnS or CdSe/CdS) in 1 mL of

chloroform, amino acid-polyamine-morpholine (300 mg) in

3 mL triple distilled and water and 10 drops triethanolamine

were placed in a bottle, and sonicated for 4 hrs. After

completion, ethyl acetate was added to precipitate nanocrys-

tal complexes to purify nanocrystals. The solid was filtered

and dried under vacuum to obtain the water-soluble amino

acid-polyamine-morpholine derivatives modified QDs.

Cell Culture
Three types of cells (HeLa, SMMC-7721, HepG2) were

cultured in RMPI-1640 medium at 37°C under 5% CO2.

These cells were allowed to grow in a monolayer in

a tissue culture flask.

Cell Cytotoxicity Test
Antitumor activity of modified QDs was monitored using

a modified MTT method. Briefly, cells were seeded into

96-well plates at 5×104 cells per well. After 12 hrs, the

modified QDs (50, 100, 200, 500 and 1000 μg/mL) were
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subsequently added and incubated for 48 hrs. Next, 20 μL

MTT (2.5 mg/mL) was added to each well and after 4 hrs,

supernatant was removed and 100 μL DMSO was added to

each well for 10–15 mins. The absorbance was measured

at a wavelength of 570 nm and the inhibition of cell

growth was calculated for each concentration of the

samples.

Cellular Uptake of Modified QDs
HeLa cells were seeded in a 35 mm diameter utensil

containing 15 mm diameter glass cover-slips, in culture

medium containing 10% FBS incubated for 24 hrs at 37°C

and 5% CO2. The modified QDs were then added at the

indicated time points (1, 2, 6, 12, and 24 hrs). Then, cells

were washed twice with PBS buffer, and incubated with

Hoechst 33342 (10 μg/mL) for 30 mins at 37°C. The cells

were washed with PBS, and viewed using a confocal

microscope (Leica-SP8) at an excitation wavelength of

488 nm and emission wavelength between 580 and

650 nm. Cell nuclei stained with Hoechst 33342 were

observed at a wavelength of 405 nm, and emission wave-

length between 430 and 480 nm.

Targeted Localization of Modified QDs in

Cells
HeLa cells were seeded in a 35 mm diameter utensil

containing 15 mm diameter glass cover-slips, in culture

medium containing 10% FBS and incubated for 24 hrs at

37°C and 5% CO2. Then the modified QDs (200 μg/mL)

were added to the utensil and incubated for 6 hrs. The

cells were thoroughly washed with PBS buffer to remove

QDs which were not absorbed. Then the cells were incu-

bated for 30 mins at 37°C with the green fluorescent

probe LysoTracker Green DND-26 (1 μM), and then

rinsed twice with PBS. The images of the cells were

obtained using a fluorescence microscope. The excitation
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wavelength of the QDs was 488 nm, and the emission

wavelength was 580–650 nm. The excitation wavelength

of LysoTracker green DND-26 was 488 nm. The band

path for the marker imaging was between 500 and

560 nm.

Results and Discussion
Synthesis and Characterization
In this work, three kinds of QDs (CdSe, CdSe/ZnS, and

CdSe/CdS) were prepared using an organic phase

synthesis method. And four kinds of amino acid-polya-

mine-morpholine derivatives, L-Cysteine-2-amino-3-mer-

capto-N-(3-morpholinopropyl) propanamide (L-Cys-MPA),

L-Cysteine-N1-(3-morpholinopropyl) propane-1,3-dia-

mine (L-Cys-MPPDA), L-Cysteine-N1-(4-morpholinobutyl)

butane-1,4-diamine (L-Cys-MBBDA), and L-Cysteine-N1-

(3-aminopropyl)-N3-(3-morpholinopropyl) propane-1,3-dia-

mine (L-Cys-AMPDA), were connected to the surface of

QDs. Synthesized ligands were characterised by ESI-MS,
1H NMR spectroscopy, and 13C NMR spectroscopy. In addi-

tion, we characterized the size and dispersion of original QDs

and cysteine-polyamine-morpholine-modified QDs using

TEM. As shown in Figure 1, the cysteine-polyamine-mor-

pholine-modified QDs maintained uniform dispersion and

a spherical shape when suspended in PBS. Namely, the

modified QDs had good water solubility and dispersed

evenly.

QDs had improved better optical properties when mea-

sured using UV/Vis spectra and fluorescence spectroscopy.

Figure 2 presents absorption spectra of original QDs and

the cysteine-polyamine-morpholine modified QDs, where
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Figure 1 TEM images and size distribution of CdSe/ZnS QDs (A, C) and CdSe/ZnS@L-Cys-MPPDA QDs (B, D) (scale bars = 50 nm).
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it is clear the UV–Vis absorption spectra of QDs had

absorption properties typical of CdSe, CdSe/CdS, and

CdSe/ZnS QDs. The shell would not affect peak position

of the absorption spectra of QDs due to the high energy

band gap of ZnS in comparison to that of either CdS or

CdSe.58 Absorbance peak of modified QDs has a slight

red-shift relative to that of the original QD nanoparticles.

Therefore, it is likely that the cysteine-polyamine-

morpholine has been successfully incorporated into QD

nanoparticles.

The original QDs and cysteine-polyamine-morpholine

-modified QDs were further characterized by fluores-

cence spectroscopy. As shown in Figure 3, the fluores-

cence peak of cysteine-polyamine-morpholine modified

QDs exhibited a slight red-shifted emission spectra when

compared with that of corresponding QDs, suggesting

that the elicited wavelengths arose due to recombination

of cysteine-polyamine-morpholine derivatives on the

surface of QDs. Bands of fluorescence of modified QDs

were broad and significantly more intense when com-

pared to that of original QDs. Differences in bands of

fluorescence among QDs were likely due to recombina-

tion of cysteine-polyamine-morpholine derivatives on

their surface.

Cell Cytotoxicity Assay
In order to explore the cell toxicity of original QDs,

amino acid-polyamine-morpholine-modified QDs, HeLa,

SMMC-7721 and HepG2 cells were treated with different

concentrations of samples for 48 hrs. Cytotoxicity was

measured using the MTT assay. The IC50 values of ori-

ginal QDs and cysteine-polyamine-morpholine-modified

QDs in HeLa, SMMC-7721 and HepG2 cells are pre-

sented in Table 1. Calculated IC50 values demonstrate

that original QDs have greater cytotoxicity when com-

pared with cysteine-polyamine-morpholine-modified
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QDs. Because CdSe QDs may slowly release the toxic

CdII ions into solution, it is expected that particles would

be inert for a short period of time during in vitro applica-

tion. The release of CdII from the particle surface can be

reduced using core/shell particles or coating of the parti-

cles with biomolecules or a polymer. Results of this study

indicate that the developed cysteine-polyamine-

morpholine-modified QDs reduce release of toxic CdII

ions from QDs.

Fluorescent Labeling of Cells
The unique optical properties of QDs make them useful as

biological fluorescent probes.59,60 Laser scanning confocal

microscopy was used to study fluorescence intensity of

cysteine-polyamine-morpholine-modified QDs at different

concentrations across time. Since CdSe/ZnS@L-Cys-

MPPDA QDs showed good optical properties and minimal

toxicity in this work, they were used as a representative

QDs in subsequent experiments. Figure 4 presents changes

in fluorescence intensity of CdSe/ZnS@L-Cys-MPPDA

QDs at different concentrations in cells. As concentration

increased, more CdSe/ZnS@L-Cys-MPPDA QDs entered

the cell and a concomitant increase in fluorescence inten-

sity was observed. Furthermore, it was observed that QDs

selectively accumulated in the cytoplasm of cells.

Accumulation of CdSe/ZnS@L-Cys-MPPDA QDs (200

μg/mL) in HeLa cells over differing incubation periods

was monitored (Figure 5). As presented in Figure 5, fluor-

escence intensity of QDs in cells gradually increased with

incubation time and reached a plateau in the cytoplasm

after 6 hrs. Remarkably, the fluorescence intensity of QDs

in cells did not decrease following 24 hrs incubation.

Thus, the fluorescence intensity of CdSe/ZnS@L-Cys-

MPPDA QDs treated cells increased with increasing
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Figure 3 Fluorescence spectra of original QDs and cysteine-polyamine-morpholine-modified QDs.
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concentrations and incubation times. So the cysteine-

polyamine-morpholine-modified QDs can act as potential

fluorescent probes for cells.

To confirm the cell selectivity of the QDs in vitro, HT-

29, HepG2, SMMC-7721 and HeLa cells were incubated

with CdSe/ZnS@L-Cys-MPPDA QDs. After incubation for

6 hrs with QDs, the cells were washed. And the images of

cells were collected under CLSM. As shown in Figure 6,

the fluorescence intensity of CdSe/ZnS@L-Cys-MPPDA

QDs in SMMC-7, HepG2, and HT-29 cells was weak and

little to no fluorescence was observed. However, the

fluorescence intensity of CdSe/ZnS@L-Cys-MPPDA QDs

in HeLa cells was strong. These results provide strong

evidence to suggest CdSe/ZnS@L-Cys-MPPDA QDs have

strong HeLa cells targeting ability.

In addition, labeling of subcellular compartments by

QDs was of particular importance. To further study target-

ing and localization of modified QDs in cells, we stained

HeLa cells with the lysosome green fluorescent probe

LysoTracker Green DND-26, and observed distribution

of QDs in HeLa cells using laser confocal microscopy.

As can be seen from Figure 7, the fluorescence of CdSe/

ZnS@L-Cys-MPPDA QDs demonstrated complete co-

localization with lysosomes in HeLa cells. Evaluation of

the staining patterns and co-localization demonstrated that

CdSe/ZnS@L-Cys-MPPDA QDs remained intact follow-

ing uptake and had a perinuclear distribution; therefore,

these results suggest that QDs are predominantly confined

within lysosomes. This evidence indicates that nearly all

cysteine-polyamine-morpholine-modified QDs were trans-

ported inside lysosomes without release to the cytoplasm

or nucleus. Lysosome targeting of modified QDs may be

attributed to the morpholine group of ligand cysteine-

polyamine-morpholine.

Conclusion
In conclusion, a new class of fluorescence probes,

L-cysteine-polyamine-morpholine-modified QDs was

synthesized in this work. These modified QDs had good

water solubility and dispersed evenly. And the modified

QDs had lower cytotoxicity to cells in vitro when

Table 1 IC50 Values of Modified and Unmodified QDs to HeLa,

SMMC-7721 and HepG2 Cells

Compounds IC50 (μg/mL)

HeLa SMMC-7721 HepG2

CdSe@L-Cys-MPA 798.2 ± 1.9 767.9 ± 2.7 703.1 ± 3.2

CdSe/ZnS@L-Cys-MPA 816.5 ± 2.5 775.6 ± 2.9 823.8 ± 2.0

CdSe/CdS@L-Cys-MPA 820.3 ± 4.3 817.0 ± 3.5 757.4 ± 2.9

CdSe@L-Cys-MPPDA 779.0 ± 1.8 796.1 ± 2.4 775.0 ± 2.3

CdSe/ZnS@L-Cys-MPPDA 830.7 ± 3.2 858.2 ± 2.8 869.1 ± 1.8

CdSe/CdS@L-Cys-MPPDA 798.4 ± 3.7 803.6 ± 1.2 827.8 ± 2.1

CdSe@L-Cys-MBBDA 512.9 ± 2.5 686.9 ± 0.9 700.6 ± 1.4

CdSe/ZnS@L-Cys-MBBDA 771.7 ± 4.0 798.0 ± 3.1 815.9 ± 3.3

CdSe/CdS@L-Cys-MBBDA 657.3 ± 1.6 754.6 ± 2.6 768.0 ± 2.0

CdSe@L-Cys-AMPDA 767.5 ± 3.0 779.0 ± 2.3 796.2 ± 2.6

CdSe/ZnS@L-Cys-AMPDA 823.4 ± 1.1 812.6 ± 0.8 826.9 ± 2.4

CdSe/CdS@L-Cys-AMPDA 779.8 ± 2.7 795.2 ± 1.8 814.0 ± 1.3

CdSe 15.5 ± 2.5 13.9 ± 3.1 14.5 ± 3.4

CdSe/ZnS 18.4 ± 2.2 18.2 ± 1.9 18.7 ± 2.9

CdSe/CdS 16.2 ± 3.1 15.4 ± 2.7 16.8 ± 2.8

50 µm 50 µm 50 µm 50 µm

50 µg/mL 200 µg/mL 500 µg/mL 1000 µg/mL

Figure 4 Confocal images of HeLa cells treated with CdSe/ZnS@L-Cys-MPPDA for 6 hrs at 37°C with different concentrations.

1 h 2 h 6 h 12 h 24 h

50 µm50 µm50 µm50 µm50 µm

Figure 5 Confocal images of HeLa cells treated with CdSe/ZnS@L-Cys-MPPDA (200 μg/mL) at 37°C in the medium at different time.
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compared to unmodified QDs. In addition, modified QDs

had strong fluorescence intensity in HeLa cells and effec-

tively targeted lysosome of HeLa cells. Therefore, mod-

ified QDs can efficiently enter cells and could be used as

lysosome-targetable fluorescent probes.
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