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Abstract: Infectious bronchitis virus (IBV) is a highly variable RNA virus that affects chickens
worldwide. Due to its inherited tendency to suffer point mutations and recombination events during
viral replication, emergent IBV strains have been linked to nephropathogenic and reproductive
disease that are more severe than typical respiratory disease, leading, in some cases, to mortality,
severe production losses, and/or unsuccessful vaccination. QX and DMV /1639 strains are examples
of the above-mentioned IBV evolutionary pathway and clinical outcome. In this study, our purpose
was to systematically compare whole genomes of QX and DMV strains looking at each IBV gene
individually. Phylogenetic analyses and amino acid site searches were performed in datasets obtained
from GenBank accounting for all IBV genes and using our own relevant sequences as a basis. The
QX dataset studied is more genetically diverse than the DMV dataset, partially due to the greater
epidemiological diversity within the five QX strains used as a basis compared to the four DMV strains
from our study. Historically, QX strains have emerged and spread earlier than DMV strains in Europe
and Asia. Consequently, there are more QX sequences deposited in GenBank than DMV strains,
assisting in the identification of a larger pool of QX strains. It is likely that a similar evolutionary
pattern will be observed among DMV strains as they develop and spread in North America.
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1. Introduction

Infectious bronchitis virus (IBV) is an avian coronavirus that affects predominantly
the upper respiratory tract of chickens [1]. The IBV viral genome is composed of a single
stranded, positive sense RNA molecule of nearly 30 kbp. In light of its genomic nature,
IBV is prone to constant evolutionary changes, either by point mutations that are not
proofread by its RNA-dependent RNA polymerase, or by recombination between subge-
nomic RNA molecules during viral replication [2]. For this reason, strains with modified
pathogenicity and tissue tropism have emerged and caused additional losses to the poul-
try industry worldwide since the early 1950s [3]. Pragmatically, IBV strains that induce
nephropathogenic and reproductive disease have been associated with more severe disease
than the typical respiratory strains, with increased mortality and reports of unsuccessful
vaccination [4].

The IBV QX strains emerged in China in the mid-1990s and were initially associ-
ated with proventriculitis [5,6]. Subsequently, variant strains spread throughout Asia
and Europe, where reports of nephropathogenic disease associated with QX rapidly in-
creased [7-11]. In the 2010s, QX was proposed as a possible causative agent of false layer
syndrome (FLS) [12-14], a disorder in which sexually mature chickens ovulate normally
but are unable to lay eggs [1]. This syndrome is thought to be a consequence of very early
infections with IBV, hampering the oviductal development and consequently leading to the
narrowing of the oviduct with possible cystic formations in the reproductive tract [3,15-17].

On a similar note, outbreaks of nephropathogenic disease associated with IBV in
broiler chickens began in the Delaware, Maryland, and Virginia (Delmarva) peninsula
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in 2011, originating the so-called DMV /1639/11 genotype [18]. Almost a decade later,
the DMV /1639 variants have been linked to FLS cases in Eastern Canada and the United
States [19-21].

QX and DMV variant strains have shown a similar trajectory in terms of clinical signs
and lesions since their emergence, initially causing high mortality due to a nephropathogenic
disease and subsequently affecting the reproductive tract of chickens. However, genomic
analyses do not show similarities between QX and DMV /1639. Using the current IBV
classification method based on the S1 gene, these strains belong to distantly related lineages,
with DMV /1639 strains belonging to lineage 17 and QX strains belonging to lineage 19 of
genotype I [22]. The objective of this study was to compare whole genomes of DMV /1639
and QX strains to look for similarities and divergences in each IBV gene independently.

2. Materials and Methods
2.1. Isolates

Virus isolation was performed from tissues of affected birds (tracheas, kidneys, cecal
tonsils, or intestines), homogenized in PBS and inoculated in the allantoic cavity of 9- to
11-day-old specific pathogen free (SPF) embryonating eggs (Charles River Laboratories,
Willimantic, CT, USA), as previously described [23]. From 3 to 7 days post-inoculation,
embryos presenting lesions (stunting, curling, and urate deposits in kidneys) were se-
lected and allantoic fluid was harvested for further processing. All virus strains induced
clinical signs in embryos in the very first passage, and the allantoic fluid from affected
eggs/embryos were used for further experimental analyses and testing.

Four isolates used in this experiment were previously classified as DMV /1639-like
(genotype I, lineage 17) based on the IBV S1 gene [22]. Isolate FLS/AZ/17 (OM525798) has
been previously used in live bird challenge experiments to assess its potential to induce
FLS compared to M41 [24]. The DMV25, DMV26 and DMV28 isolates were retrieved from
FLS-affected layer chicken flocks in the Ohio/Indiana border that did not reach peak of
production and presented with cystic ovaries upon postmortem evaluation. The GenBank
accession numbers for the DMV /1639 whole genomes are OM525798-OM5257801.

The five QX isolates used in this project are from Eurasia (China, France, Greece,
Hungary, and Slovakia) and were previously typed as genotype I, lineage 19 [22]. All
isolates, except the one from France, originated from broiler chickens presenting with
kidney lesions and /or respiratory disease. The French isolate was retrieved from 10-day-
old layer birds with respiratory signs. The pathogenicity of these QX strains has been
previously assessed in challenge experiments [12]. The GenBank accession numbers for the
QX whole genomes are OM525802-OM5258806.

2.2. Library Preparation and Sequencing

Total RNA was extracted from allantoic fluids using a combination of TRIzol LS
reagent (Thermo Fisher Scientific, Carlsbad, CA, USA) and Direct-zol MiniPrep Plus kit
(Zymo Research, Orange, CA, USA), as previously described [25]. RNA integrity was
checked with a bioanalyzer using the Agilent RNA 6000 Nano Kit (Agilent, Santa Clara,
CA, USA). Oligo dT-based RNA selection was performed with the NEBNext Poly(A) mRNA
Magnetic Isolation Module Kit (New England Biolabs, Ipswich, MA, USA). The reverse
transcription of poly A-tailed RNA and cDNA library construction was performed using
the NEBNext Ultra II RNA Library Prep kit for Illumina (New England Biolabs).

The libraries were sequenced using the Illumina HiSeq 4000 platform by pair-end
150-bp reads (Illumina, San Diego, CA, USA). Low quality sequences were removed, and
adaptors were trimmed using the BBDuk plugin in Geneious Prime 2022.0.2 (Biomatters
Ltd., Auckland, New Zealand). The trimmed reads were mapped to a reference IBV
M41 genome (GenBank accession number AY851295). A second round of reference-based
assembly was carried out using the consensus sequence obtained in the first round as a
reference. For accuracy verification, de novo assembly was performed using the SPAdes
assembler. The equivalent assemblies shared 100% nucleotide identity.
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2.3. Infectious Bronchitis Virus Genotyping and Classification

A total of 173 sequences belonging to all 8 IBV genotypes and 37 lineages [22,26-29]
were aligned with the 9 sequences from this study using the MAFFT plugin [30] in Geneious
Prime 2022.1.1. A phylogenetic tree based on the S1 gene was constructed to categorize the
IBV strains from this study into the current genotypic classification [22]. The maximum
likelihood method based on the GTRGAMMAI model with 1000 bootstraps was used to
build the phylogenetic tree with the RaxML plugin [31] in Geneious Prime 2022.1.1. The
GenBank accession numbers of the sequences are listed in Figure 1.
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Figure 1. Phylogenetic tree of infectious bronchitis virus sequences based on the S1 gene. A total of
182 sequences of all 8 IBV genotypes and 37 lineages are represented. The four DMV-like sequences
(genotype I, lineage 17) are highlighted in blue and the five QX-life sequences (genotype I, lineage 19)

are highlighted in red.




Viruses 2022, 14, 1998

40f12

2.4. Multilocus Genomic Analyses

The nine IBV sequences were divided into IBV lineages 17 (DMV /1639, n = 4) and 19
(QX, n = 5) from genotype I. BLAST searches were performed for each isolate by individual
viral genes, namely: ORFla, ORFlab, spike (S), 3a, 3b, envelope (E), membrane (M), 5a,
5b, and nucleocapsid (N). For each BLAST search (nine IBV sequences and 10 genes),
the top 5 nucleotide identity hits were selected, representing at least 5 sequences per
search. Only whole genomes were selected for setting up the datasets. The sequences
obtained in GenBank were sorted into DMV and QX datasets and repeated sequences were
removed. Once the two datasets were created, alignments and phylogenetic trees were
created separately by gene for DMV and QX as described in Section 2.3.

2.5. Prediction of Antigenic Regions

To predict potential antigenic sites within each protein of the viral genome, the EM-
BOSS Antigenic tool was used (https:/ /bioinformatics.nl/cgi-bin/emboss/antigenic (ac-
cessed on 4 July 2022). This tool predicts potential antigenic regions on the surface of a
protein by detecting hydrophobic regions containing cysteine, leucine, and valine, which
are more likely to be part of antigenic sites than other amino acids [32]. The number of
antigenic sites was measured from individual genes of QX and DMV datasets determined
in Section 2.4. The number of antigenic sites was divided by the number of amino acid
residues per gene and multiplied by 100 for a percentage (Supplementary Tables S3 and S4).
The average and standard deviation of these ratios were taken for each sequence of each
dataset (QX and DMV). The higher the average, the greater the chances of having antigenic
sites on the protein. The higher the standard deviation, the greater the variability within
the dataset.

2.6. Statistical Analyses

All phylogenetic analyses were performed using the maximum likelihood method as
described in Section 2.3.

The antigenic region ratios for each gene were compared using the nonparametric
Kruskal-Wallis test followed by Dunn’s multiple comparisons test in Prism 9 (GraphPad,
LaJolla, CA, USA). Two-sample one-tailed F tests were used to measure how spread out
the antigenic region ratio datapoints were in each gene. Since this is a one-tailed test, the
greater variance between QX and DMV /1639 was used as the numerator. The descriptive
statistics were calculated using Microsoft Excel (v. 16.6) with the Analysis ToolPak add-on.
When F is greater than Fiicq1, the null hypothesis that the variances of the two datasets are
equal is rejected (p < 0.05).

3. Results
3.1. Infectious Bronchitis Virus Genotyping and Classification

Based on the S1 gene [22], four sequences of this study were classified as genotype I,
lineage 17 (DMV) and five as genotype I, lineage 19 (QX) (Figure 1).

Of the four DMV sequences from this study, three are identical to each other (OM525799,
-800 and -801), which is foreseeable since they originated from the same US region and year.
These three sequences share a nucleotide homology of 97.71% to the original DMV /1639
strain (KX529738). Sequence FLS/AZ/17 shares 89.24% nucleotide identity with the other
DMV /1639-like strains from this study and 90.04% with the original DMV /1639 strain,
demonstrating its uniqueness. However, OM525798 has shown high nucleotide identity
(99.63-100%) to other DMV /1639-like sequences deposited in GenBank from the Delmarva
peninsula isolated in 2015 (data not shown).

The five QX-like sequences from this study are more diverse since they were retrieved
from different countries of Europe and Asia. The nucleotide identity between them varied
from 94.14 to 99.07%, with the strains from Greece and France (OM525803 and -804) being
the most closely related, and the Chinese strain (OM525802) the most distinct of the five.
The nucleotide identities of these strains to the original QX (AF193423) ranged from 94.35
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to 97.16%, and the strain from Slovakia (OM525806) was the only one showing nucleotide
homology below 95%.

3.2. Multilocus Genomic Analyses

The BLAST searches targeting the top five nucleotide homologies per gene for each of
the nine sequences from this study resulted in the selection of 33 DMV-like sequences and
96 QX-like sequences from GenBank, totaling 37 and 101 sequences per dataset, respectively.
Eleven hits were communal to both the DMV and the QX datasets (Figure 2).

QX-like

(101)

Figure 2. Venn diagram representing the highest BLAST hits to the DMV and QX sequences used
in this this study for each infectious bronchitis virus (IBV) genes on GenBank. For each dataset, the
top 5 highest nucleotide identity hits for each IBV gene was selected, totaling 37 sequences for the
DMV /1639 dataset, 101 sequences for the QX dataset, and 11 sequences that were common to both.

Once the QX and DMV datasets were established, sequences were aligned, and phylo-
genetic trees were built for each gene. We wanted to use the whole genome of the original
DMV /1639/11 strain as a reference, but only the S1 gene was available on GenBank (acces-
sion number KR232396). For this reason, DMV /1639-like strains from Canada and Iowa
were used for comparison (Figure 3, reference strains are highlighted in green, strains from
this study are highlighted in blue). As expected, all reference sequences and our sequences
clustered together with high identity in the S gene, which is used for genotyping (Figure 3,
panel S). On the other hand, the distribution of strains using other genes for phylogeny is
somewhat disconnected. For the most part, four groups are distributed separately: (1) the
Canadian strains, (2) the Iowa strain, (3) DMV-25, -26, and -28 strains, and (4) FLS/AZ /17
(Figure 3, panels 1a, 1ab, 3a, E, M, 5a, 5b, and N). The 3b gene is relatively more consistent
across the DMV dataset, with most of the strains clustering together (Figure 3, panel 3b).
Interestingly, three turkey coronavirus (TCoV) sequences were selected to be part of the
DMV-like dataset for having high similarity to at least one IBV gene. Although the TCoV
strains are clearly outliers in the S and 5b gene phylogeny, they seem to be closely related
or have a less significant distance to IBV strains in other genes. The nucleotide identities for
the DMV dataset are presented in the Supplementary Table S1. Compared to all sequences
retrieved from GenBank, FLS/AZ /17 showed less than 95% nucleotide identity in genes 1la
and S and using the whole genome. The DMV25, -26, and -28 sequences showed less than
95% nucleotide identity to any other DMV sequence on the E gene.
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Figure 3. Multilocus genomic phylogenetic trees of infectious bronchitis virus sequences. A total of
37 sequences that shared high similarity to the four DMV /1639-like strains from this study on at
least one gene are presented. The sequences from this study are represented in blue, while reference
DMV /1639-like strains are represented in green, and TCoV are in bold. Each tree represents a
different viral gene, which is labeled on the bottom right of each panel.

For the QX dataset, the original QX strain was used as a reference (accession number
MN548289) (Figure 4, highlighted in green). The QX strains from this study are highlighted
in red. Within all genes, the French strain D535/4/FR/2005 was closely related to the
reference QX strain (Figure 4), sharing 99.85% nucleotide identity in the whole genome.
Comparably to what was observed with the DMV dataset, all QX strains clustered together
using the S gene (Figure 4, panel S). A similar pattern is seen with gene 3b, with only the
Hungarian strain D683 /HU /06 clustering separately from the others (Figure 4, panel 3b).
With the exception of strain D535/4/FR /2005 and genes S and 3b, the QX strains from this
study were distributed unsystematically throughout the phylogenetic analyses of IBV genes
(Figure 4). The nucleotide identities for the QX dataset are presented in Supplementary
Table S2. The Greek strain d591/2/GR/05 had nucleotide identities lower than 95% in
genes lab and in the whole genome compared to all other strains in the QX dataset. The
Hungarian strain D683/HU/06 and the Slovakian strain D722/SK/06 presented with
nucleotide identities below 95% in genes 1a, 1ab, 3a, 3b, N, E (Hungarian only), and whole
genomes. The Chinese and French strains (D532/9/CH/05 and D535/4/FR/05) had high
nucleotide identities to at least one strain from the QX dataset.
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Figure 4. Multilocus genomic phylogenetic trees of infectious bronchitis virus sequences. A total
of 101 sequences that shared high similarity to the five QX-like strains from this study on at least
one gene are presented. The sequences from this study are represented in red, while the reference
QX strain is represented in green. Some branches of the trees were collapsed for better visualization.
Each tree represents a different viral gene, which is labeled on the bottom right of each panel.

3.3. Prediction of Antigenic Regions

The predicted antigenic site analysis shows that the envelope protein has the highest
rate of antigenic regions within the IBV genome, while accessory proteins 3a and 5b have
the lowest (Table 1, Figure 5A,B).

Table 1. Average number of predicted antigenic sites relative to the protein length for DMV (n = 37)
and QX (n = 101) datasets and variance comparison between QX and DMV datasets using the F test.

Average % Antigenic Sites 1 + F Test Results
Protein Standard Deviation (DMV vs. QX)
DMV QX F Fcritical p Value
Polyprotein 1a 11.61 £0.21 11.57 £0.23 1.09 1.54 0.36 s
Polyprotein lab 11.38 +0.13 11.40 £ 0.20 2.31 1.62 2.7 x 1073 **
Spike (S) 10.16 = 0.30 10.55 £ 0.40 1.74 1.62 0.03 *
Accessory 3a 8.18 £0.80 6.96 + 1.69 443 1.63 1.5 x 1076 *+
Accessory 3b 11.31 £1.46 11.15+273 3.48 1.62 3.13 x 1072 #*
Envelope (E) 14.42 + 0.94 13.44 + 0.93 1.02 1.54 0451
Membrane (M) 11.06 £+ 0.76 11.38 £0.73 1.06 1.54 0.40 s
Accessory 5a 9.25 £ 0.69 1042 £1.13 2.63 1.62 7.3 x 1074
Accessory 5b 7.36 £ 0.47 6.85 = 1.18 6.19 1.62 1.4 x 1078 »*
Nucleocapsid (N) 10.97 + 0.40 11.00 = 0.56 1.89 1.62 0.02 *

1 Nlumber of antigenic sites predicted using EMBOSS over the total number of amino acid residues times 100.
"8 = not significant; * p < 0.05; ** p < 0.01; *** p < 0.001.
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Figure 5. Predicted antigenic sites relative to the protein length for DMV /1639 (n =37) (A) and
QX (n =101) datasets (B). For (A,B), superscript letters represent statistical differences (p < 0.05).
Variances from (A,B) are represented in (C), and F test statistical differences between DMV and QX
variances are represented as follows: ns = not significant; * p < 0.05; ** p < 0.01; *** p < 0.001.

The standard deviations of the predicted antigenic sites vary within genes and within
datasets. In the DMV group, the average standard deviation was 0.62, and genes 3b, E, 3a,
M and 5a showed standard deviations above the mean. The average standard deviation
was higher in the QX dataset (mean SD = 0.98), with genes 3b, 3a, 5b, and 5a showing
variation greater than average (Table 1).

To compare the variability of the observations within each gene, F tests were performed.
The variances and the F test statistical differences between DMV and QX datasets for each
gene are displayed in Figure 5C and Table 1. The greatest difference in variability between
DMYV and QX were in genes 3a, 3b, 5a, and 5b, with QX showing greater heterogeneity
in all of them. The variances in 1a, E, and M genes were identical between DMV and
QX. Even though the variances of lab and S genes seem graphically identical between
the two datasets (Figure 5C), they are statistically different (Table 1), because the standard
deviations and variances are small numbers compared to other comparisons (e.g., 3b and

3a genes).

4. Discussion

The IBV dynamics in the poultry population have been investigated for decades,
and there are still gaps to be filled regarding the virus’ evolutionary patterns, tissue
tropism, and the pathobiology of the disease caused by IBV. Here, we investigate the
molecular relationships and dissimilarities between two well-known groups of IBV that
have caused unusual clinical outcomes in chickens: the QX and the DMV /1639 strains and
their emerging variants.

This study used four DMV /1639-like sequences and five QX-like sequences as a base-
line to determine datasets based on the similarities of each of the 10 IBV genes using BLAST
searches on GenBank. These isolates were obtained from collaborators that had previously
reported that they belonged to IBV genotype I, lineages 17 (DMV) and 19 (QX) [12,22,24]
(Figure 1). Three out of the four DMV-like isolates come from the same region in the US
and are almost identical. The fourth DMV strain (FLS/AZ/17) is rather unique, being more
closely related to PA/Wolgemuth /98 but with only 91% nucleotide identity on the S gene.
On the other hand, all five QX strains originated from different countries in Eurasia and
represent unrelated outbreaks. This difference in diversity between the baseline DMV and
QX strains is the main reason why the DMV dataset (n = 37) is so much smaller than the
QX dataset (n = 101) (Figure 2). In addition, the nucleotide identities between our strains
and strains from GenBank were lower for DMV than for QX (Supplementary Tables S1 and
52), indicating that there are few whole DMV sequences available on the database, and that
those available are distantly related to the ones used in this study. QX sequences are much
more abundant in GenBank than DMV sequences for two main reasons. First, QX outbreaks
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emerged about 10 years before the surfacing of DMV strains, allowing QX to evolve and
generate more variants for longer than DMV. Second, third generation sequencing has been
more largely used as a tool for the molecular surveillance of IBV in Europe and Asia than
in North America, with China being the main submitter of IBV whole genome sequences in
GenBank, where QX strains are widely distributed.

Although the S1 gene is rightfully consolidated as the main target for IBV classifi-
cation [22], our study shows that although some strains have been classified within the
same S gene classification, they seem to have arisen from completely different origins
when considering other genes. For instance, DMV25, -26, and -28 cluster together with
FLS/AZ/17 in genes S and 3b, but they group separately in all other genes (Figure 3).
Likewise, the five QX strains do not follow a pattern of distribution in the different gene
phylogenies except for S and 3b (Figure 4). There might be strains that are classified in
different S1 genotypes or lineages and share almost identical genes other than the S. When
investigating the pathobiology of the QX isolates used in this study, Benyeda et al. (2009)
found that these five QX strains have different pathogenicity and affinity for different
organs. For example, the Slovakian strain D722 /SK/06 was more prone to induce ovarian
lesions, while the Greek strain d591/2/GR/05 induced the mildest kidney and respiratory
disease [12]. Perhaps these slight differences in tissue tropism and lesion severity are
attributed to other genes, since they share the same S classification. Since recombination
may occur as a result of interactions between different viruses, it is possible that these
antigenic shifts rapidly shape evolutionary patterns of IBV. In the poultry industry, the use
of live vaccines has a direct influence on the speed and direction of viral evolution [33].
Therefore, the different vaccines used in Eurasia and North America might have influenced
the shaping and emergence of QX and DMV strains, respectively.

As previously mentioned, the 3b gene clustering follows a somewhat similar phy-
logenetic distribution to the S gene (Figures 3 and 4), but whole genome sequences of
representatives of all IBV genogroups and lineages are necessary to further evaluate this
possible correlation. Studies using reverse genetics have shown that the 3b accessory
protein suppresses interferon (IFN)-f production in primary cell lines [34], and that the
absence of 3b leads to virus attenuation [35]. Type I interferons such as IFN-{3 have an
important role in controlling the initial phase of the infection [36]; consequently, the lack of
viral 3b protein allows for a better function of innate immunity, hindering the progression
of the infection. Altogether, these findings suggest that gene 3b can be a useful tool for virus
attenuation. Since the lack of accessory protein 3b does not inhibit viral replication [35],
one can speculate if removing the 3b protein from vaccines could induce a more robust
adaptive immune response due to a more efficient IFN-f production. It would also be
interesting to see how the massive use of 3b-null viruses would shape viral evolution.

Considering all the nucleotide identities within the DMV and QX datasets, it appears
that the E and N genes are potential candidates for further investigations on IBV genetic
variability, since the homologies to any other sequence deposited on GenBank were below
95% in five of the nine sequences from this study. In BLAST searches using the whole
genomes, one DMV (FLS/AZ/17) and three QX strains (Greece, Hungary, and Slovakia)
only had hits with nucleotide identities below 95%. In all four cases, genes la and lab
also showed low homologies to all sequences in the database. Gene 1ab is thought to be
an important determinant of pathogenicity, bearing genomic regions that code for non-
structural proteins able to attenuate viruses in vivo and in ovo [37]. It is important to
remember that the lab gene encompasses almost 12 kbp of the IBV genome, representing
almost 40% of the entire genome. In other words, the homology of whole genomes depends
significantly on the homology of genes 1la and lab. Therefore, analyzing IBV whole
genomes without investigating each IBV gene individually might be misleading and cloud
conclusions about relevant genes of smaller fragment length than gene 1ab.

The EMBOSS software has been a useful tool to detect genomic regions in open reading
frames, in which some amino acids associated with antigenicity are more frequent [32].
In our study, the envelope protein showed the highest rate of predicted antigenic sites in
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both DMV and QX datasets (Figure 5A,B). This finding suggests that the envelope protein
might have a relevant role in antigenicity and immunogenicity, which could be useful since
the E gene is much smaller than the S gene (E = ~300 bp and S = ~3500 bp). It has been
shown that the envelope protein does not elicit high antibody titers after infection with
coronaviruses [38]. Humoral responses are an important arm of immune responses and
should always be a target for immune protection. However, if the E gene can stimulate
some level of innate immunity that could induce cross-protection between strains, it would
be a relatively easy gene to incorporate in novel vaccine technologies such as recombinant
vaccines or vaccines that use mRNA technology.

Surprisingly, the S gene/spike protein did not show the highest frequency of antigenic
sites among all IBV genes, even though the spike protein is the major determinant of
antigenicity and tissue tropism [39]. One possible explanation for this incongruence is
that the S1 portion of the S gene (~1600 bp) bears three hypervariable regions that are
responsible for the most antigenic proteins of IBV [40,41]. When analyzing the entire open
reading frame of the S gene, the S1 antigenic regions might have become diluted among
the remaining amino acids of the spike protein.

The dispersion of predicted antigenic site datapoints within the DMV and QX datasets
is noteworthy. For example, the average number of predicted antigenic sites was the
highest in the E gene among all genes in both datasets, but the standard deviations and
variances were also high (Table 1 and Figure 5C). This means that some strains presented
with many antigenic sites, but others had less, even though they belong to the same
dataset. Interestingly, despite the data distribution, the E gene variances between the QX
and DMV datasets are the same, indicating that this pattern of variability within gene E
might be constant within IBVs. Contrastingly, the accessory proteins 3a, 3b, 5a and 5b show
significantly different variances between DMV and QX, with the QX dataset showing higher
variability within these genes, whereas the variability seems to be steadier in DMV strains.

QX strains caused nephropathogenic disease when they emerged in the 1990s in
Europe and Asia [7-11], and have subsequently been linked to reproductive disease [12-14].
Over time, it seems that QX strains have become more fitted to the population, becoming
less pathogenic and more endemic. A similar clinical tendency is presently occurring with
the DMV /1639 variants in the US and Canada [18-21], even though the conditions for
viral evolution are not the same (i.e., geographic location, vaccination protocols, animal
husbandry, and concomitant diseases).

Whole genome sequencing is an asset to monitor the molecular evolution of emerging
IBV strains. Analyzing the entire IBV genome by individual genes provides a broader
wealth of information that can be helpful in elucidating strain origins and possible pathways
that lead to the selection of variants that are problematic in the field. Nevertheless, this
work is essentially an in silico multitargeted assessment of the IBV genome, highlighting
the variability and antigenic relevance of genes other than the S. Although the S gene is
categorically the best genomic segment for classification, other genes such as the envelope
and accessory protein 3b might be potential candidates to assist IBV research on antigenicity,
pathogenicity, and tissue tropism.
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